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Abstract

We describe Bayesian models for data from N-of-1 trials, reviewing both the basics of Bayesian 

inference and applications to data from single trials and collections of trials sharing the same 

research questions and data structures. Bayesian inference is natural for drawing inferences from 

N-of-1 trials because it can incorporate external and subjective information to supplement trial 

data as well as give straightforward interpretations of posterior probabilities as an individual’s 

state of knowledge about their own condition after their trial. Bayesian models are also easily 

augmented to incorporate specific characteristics of N-of-1 data such as trend, carryover, and 

autocorrelation and offer flexibility of implementation. Combining data from multiple N-of-1 

trials using Bayesian multilevel models leads naturally to inferences about population and 

subgroup parameters such as average treatment effects and treatment effect heterogeneity and 

to improved inferences about individual parameters. Data from a trial comparing different diets for 

treating children with inflammatory bowel disease are used to illustrate the models and inferences 

that may be drawn. The analysis shows that certain diets were better on average at reducing pain, 

but that benefits were restricted to a subset of patients and that withdrawal from the study was a 

good marker for lack of benefit.

Media Summary

N-of-1 trials (or personalized trials) are randomized trials for comparing the effects of two or 

more interventions on an outcome on a single individual. Bayesian methods are natural for 

statistical analysis of data from N-of-1 trials because they give straightforward interpretations of 

the probability of treatment outcomes that supplement the information coming from the trial with 

information from external sources and the individual’s own subjective beliefs. These posterior 

probabilities update the individual’s state of knowledge about their own condition after their trial. 

Bayesian models can also easily incorporate specific characteristics of N-of-1 data such as trend, 

carryover, and autocorrelation and offer flexibility of implementation. By combining the data from 

a collection of N-of-1 trials, Bayesian multilevel models also lead naturally to inferences about 
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average treatment effects and heterogeneity of effects across subgroups in the population and to 

improved inferences about effects in individuals.

This article reviews the basics of Bayesian inference and models for both single N-of-1 trials and 

collections of N-of-1 trials sharing the same research questions and data structures. Data from a 

trial comparing different diets for treating children with inflammatory bowel disease are used to 

illustrate the models and inferences that may be drawn. The analysis shows that certain diets were 

better on average at reducing pain, but that benefits were restricted to a subset of patients and that 

withdrawal from the study was a good marker for lack of benefit.

Keywords

meta-analysis; multilevel model; inflammatory bowel disease; personalized medicine; Markov 
chain Monte Carlo; posterior inference

1. Introduction

Randomized controlled trials (RCTs) are generally considered the gold standard tool for 

assessing the average efficacy of health care interventions in specified patient populations. 

Clinicians, however, are focused on treating individual patients in particular settings that 

may differ from the context in which the RCTs have been conducted. Because trials focus on 

average efficacy, results may not apply to an individual patient who requires treatment (Duan 

et al., 2013).

N-of-1 trials are a type of single-case experimental design in which two or more 

interventions are applied multiple times in a randomized order to an individual participant. 

Interventions are typically crossed over multiple times and multiple measurements may 

be made during each intervention period. The resulting set of measurements provides an 

estimate of treatment efficacy for the individual, generating truly personalized evidence 

(Schork, 2015).

N-of-1 trial designs may also be personalized so that individuals design their own trials 

evaluating interventions and outcomes of interest to them in a manner of their choosing. For 

example, the PREEMPT trial compared the use of N-of-1 trials to usual care for patients 

with chronic musculoskeletal pain (Kravitz et al., 2018). Participants randomized to the 

N-of-1 arm set up their own trials comparing two treatments of their choice and using 

between two and four intervention periods of one or two weeks on each treatment. They 

then scored themselves daily on five patient-reported outcomes. Such trials could usefully be 

termed ‘personalized trials.’

When participants use similar trial designs, though, it may be possible to combine them 

analytically using a multilevel model in a meta-analysis to provide evidence of efficacy for 

groups of individuals and even improve estimates for the individuals themselves (Gelman & 

Hill, 2006)(Zucker et al., 1997). For example, (Kaplan et al., 2022) compared two special 

diets, each assigned for two eight-week periods to 54 children with inflammatory bowel 

disease (IBD). (Marcus et al., 2022) assessed the impact of triggers for atrial fibrillation 
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by having individuals test triggers over a 6-week trial. Each trigger was tested for three 

randomly chosen weeks and the number of atrial fibrillation episodes was compared to the 

number in the other three weeks in which no trigger was tested.

The purpose of this article is to describe ways to analyze both individual and combined 

N-of-1 trial data using Bayesian inference. Bayesian models provide a flexible framework 

for constructing and computing complex models that incorporate information both from the 

data at hand and from relevant external evidence, thus facilitating principled and transparent 

inference that aids decision-making.

The Bayesian framework provides several advantages for analyzing N-of-1 data. First, it 

allows participants, both patients and clinicians, to use a prior distribution to combine their 

own subjective assessment of treatment efficacy with the experimental data to come up 

with a posterior assessment needed to make a decision. Second, knowing the entire joint 

posterior distribution of all model parameters enables making direct statements about the 

probability of a variety of scientific hypotheses such as that one treatment is better than 

another by a certain amount and about composite statements of interest such as the chance 

that one treatment is better on each of two outcomes. It also eliminates the need to rely 

on asymptotic normality for drawing inferences as with maximum likelihood estimation. 

When trials are aggregated, inferences can be easily drawn about each individual borrowing 

strength using information from other individuals. Finally, missing data may be treated as 

random quantities so that imputation follows directly from their posterior distribution.

For the remainder of the article, we shall assume that the conditions under which 

N-of-1 trials are appropriate hold: substantial therapeutic uncertainty about treatment, 

heterogeneous treatment effects, a stable chronic condition, short-acting treatments with 

rapid onset, no carryover of treatment effect, and measurable outcomes that are easy to 

collect and whose levels return to baseline after each treatment period (n.d.-a).

The article is organized as follows. Section 2 introduces models for a continuous outcome in 

a single trial that incorporate treatment effects, trend, autocorrelation, and carryover. Section 

3 discusses Bayesian models and various considerations that go into their computation, 

interpretation, and evaluation with application to the N-of-1 model. In Section 4, we extend 

the modeling to a collection of individuals, discussing how a multilevel framework permits 

estimating common parameters as well as improving estimation of individual parameters. 

Section 5 applies the model to data from a recent series of N-of-1 trials evaluating the effects 

of two different diets on a pain outcome for children with inflammatory bowel disease. In 

Section 6, we discuss extensions of models to other types of data such as discrete outcomes 

and networks of trials. Section 7 covers some issues relevant to practical use of N-of-1 trials, 

such as presenting results to participants and implementation before a short summary in 

Section 8.

Before moving on, we point out some useful general references for readers desiring more 

detail on Bayesian inference (Gelman et al., 2013), meta-analysis (Schmid, Stijnen, et al., 

2020b), and N-of-1 trials (n.d.-b).
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2. Model for a Single Trial

2.1. Treatment Effects

Let us begin by specifying a simple design for a single N-of-1 trial comparing K treatments. 

Often K = 2. Let Y j denote the jtℎ measurement of a continuous outcome with corresponding 

treatment Aj taking on values k = 1, …, K. Each treatment is given for a certain period of time 

and the treatment periods are randomized. For example, if daily treatments are randomized 

in weekly blocks so that all treatments in a given week are the same, A1, …, A7 would have 

the same value as would A8, …, A14. In the simplest model, we ignore any effects of time and 

write

Y j = m + ∑
k ≠ 1

δkI Aj = k + ϵj

(2.1)

ϵj ∼ N 0, σ2

(2.2)

where m is the mean outcome for the reference treatment Aj = 1 and δk is the difference 

between the mean outcomes on treatment Aj = k and the reference treatment for k = 2, …, K. 

This is called a contrast-based model because it is formulated in terms of the contrasts 

between each treatment and the reference treatment. Equivalently, we could write an arm-

based model in terms of the K treatment arms and their means mk as

Y j = ∑
k

mkI Aj = k + ϵj .

(2.3)

The treatment effect comparing treatment k to k′ is estimated by mk − mk′ for 

k, k′ ∈ 1, …, K, k ≠ k′ . The data include J measurements y = y1, …, yJ ; the parameters are 

Θ = m, σ2, δ2, …, δK  for the contrast-based model and Θ = σ2, m1, …, mK  for the arm-based 

model.

2.2. Trend

As an N-of-1 trial evolves over time, underlying forces may lead to changes in the outcome 

independent of treatment effects. Such changes can often be captured by smooth trends, the 

simplest of which is linear trend in which the outcome changes as a linear function of time. 

We can incorporate trend by adding a linear term to Equation 2.1 as

Y j = m + ∑
k ≠ 1

δkI Aj = k + βtj + ϵj

(2.4)
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where tj is the time at which measurement j is taken and β is the change in the outcome per 

unit time. We can also add this linear trend to Equation 2.3.

Trend can also be nonlinear. Introducing effects for each treatment period creates a step 

function. This might be reasonable if one believes that the individual learns over time and 

starts from a new baseline in each period. Cyclical trend is also realistic for conditions that 

may wax and wane and may be modeled with sinusoidal or spline functions.

2.3. Autocorrelation

Time series such as N-of-1 data often exhibit autocorrelation in which measurements taken 

close together are more highly correlated than measurements taken further apart in time. 

Autocorrelated measurements can be formed either by directly autocorrelating the outcomes 

or by autocorrelating the error terms. Introducing autocorrelation into the errors gives a set 

of equations

Y j = m + ∑
k ≠ 1

δkI Aj = k + βtj + ej

ej = ρeej − 1 + ϵj

ϵj ∼ N 0, σ2

(2.5)

where ρe is the autocorrelation between ej and ej − 1 and ϵj is the residual error after accounting 

for the autocorrelation. Assuming stationarity, it follows that ej ∼ N 0, σ2/ 1 − ρe
2 .

Marginally, then

Y j ∼ N m + ∑
k ≠ 1

δkI Aj = k + βtj, σ2/ 1 − ρe
2 .

(2.6)

The model can also be extended to include first-order autocorrelated outcomes as

Y j = m + ∑
k ≠ 1

δkI Aj = k + βtj + ρYY j − 1 + ϵj

(2.7)

where ρY  is the autocorrelation between consecutive measurements assuming stationarity and 

ϵj is a random error independent of the previous outcomes. Interpretation of δk and β require 

care in this model because their effects are conditional on Y j − 1. In other words, δk is the 

treatment effect comparing two measurements taken on different treatments for which the 

previous outcomes were the same.

As with trend, autocorrelation for either errors or outcomes can also be added to the 

arm-based model in Equation 2.3.
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2.4. Carryover

When carryover is present, one treatment is still having an effect when the next treatment 

starts. The carryover effect for each treatment can differ in both amount and duration. 

Because carryover complicates the determination of treatment effects, many trials are 

designed to avoid it.

A standard approach to remove carryover uses washout periods in which no treatment is 

given during the transition to a new treatment. Essentially, one treatment is allowed to wash 

out of the body before the next one begins. Because a washout period may not be practical, 

either because it makes trials too long or because it is not safe to withdraw treatment, N-of-1 

designs may use an analytic washout in which outcomes at the beginning of crossover 

periods are disregarded (Kaplan et al., 2022).

Analytic washout requires untestable assumptions about the length of carryover, so it 

may often be necessary to model the potential carryover. But since carryover can only 

be measured after a treatment crossover, estimating it in a single N-of-1 trial with few 

crossovers is difficult. We therefore reserve discussion of modeling caryover for Section 4 

when discussing the aggregation of multiple trials.

3. Bayesian Models

3.1. Using Bayes’ Rule to Form Posterior Distributions

In the Bayesian paradigm, model parameters Θ are random variables. Their probability 

distribution reflects current knowledge about their true values about which we have 

uncertainty. Bayesian inference seeks to describe our knowledge about Θ given information 

that the data y supply to the likelihood through the model p y Θ  for the data-generating 

process and from our prior beliefs about Θ described by the prior distribution p Θ . The 

posterior distribution of p Θ y  describes our knowledge about Θ conditional on the known 

data y in terms of a probability distribution that quantifies our beliefs about the values of 

the parameters after (or posterior to) the data. As data accrue, the posterior continually 

updates to incorporate the new information. The Bayesian method therefore intrinsically 

incorporates the scientific learning process.

Mathematically, the prior and the likelihood combine to form the posterior through Bayes’ 

rule

p Θ y = p y Θ p Θ
p y = p y Θ p Θ

∫ p y Θ p Θ dΘ ∝ p y Θ p Θ .

(3.1)

The denominator p y  is the marginal distribution of the data and does not depend on Θ. This 

greatly simplifies computing the posterior distribution. Furthermore, because Θ includes all 

model parameters, the posterior accounts for all uncertainty about them.
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We can compute the posterior distribution for any component of Θ by integrating over the 

other parameters. For instance, if Θ consists of two parameters θ1 and θ2, one can compute 

the marginal distribution of θ1 by integrating over θ2

p θ1 y = ∫ p y θ1, θ2 p θ1, θ2 dθ2
∫ ∫ p y θ1, θ2 p θ1, θ2 dθ1dθ2

.

(3.2)

Posterior inference depends on the prior and the likelihood. Because the likelihood 

incorporates the data-generating process, it reflects both the study design and the data 

model. A full Bayesian model must therefore specify design, model, and prior. The analyst 

needs to justify the choice of each and assess their influence via sensitivity analyses.

3.2. Likelihood for Single N-of-1 Trial

Using the model incorporating trend and autocorrelation given by Equation 2.6, the 

likelihood for a single trial can be written as

ℒ = ∏
j

p Y j ∣ δ, β, m, ρe, σ2

= ∏
j

exp yj − ℳj
2/ 2σ2/ 1 − ρe

2 / σ/ 1 − ρe
2

where δi = δi2, …, δiK  is the vector of treatment effects and 

ℳj = m + ∑k ≠ 1δkI Aj = k + βtj is the marginal mean of Y j.

Writing y = yj , the posterior is then proportional to the product of the likelihood and the 

prior

p δ, β, m, ρe, σ2 y ∝

∏
j

exp yj − ℳj
2/ 2σ2/ 1 − ρe

2 / σ/ 1 − ρe
2 *p δ, β, m, ρe, σ2 .

(3.3)

To complete the model specification, we need to choose the prior.

3.3. Choosing a Prior Distribution

In problems with substantial information in the likelihood, the prior will have little effect 

on posterior inferences and it may be possible to get away with using a noninformative 

(flat) prior distribution. Noninformative priors can also be used as a convenience to retain 

the interpretive advantages of Bayesian inferences and to enable computation via simulation 

of posterior distributions for complex models whose likelihoods are not easily optimized. 

Often, it is useful to tailor the flat prior to the problem at hand by bounding it to exclude 

values deemed implausible by experts or by experience from the previous literature.
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But when the amount of information in the data is small and the likelihood is relatively 

flat, the choice of prior can have a large influence on the posterior. It is then important 

to use all available information to construct strong priors that reflect what is known 

about the parameters either from historical data or from expert opinion, perhaps elicited 

through a structured process (Chaloner et al., 1993)(O’Hagan et al., 2006). Because different 

people can have different priors, they may also develop different posteriors with the same 

likelihoods. Often seen as a weakness, this dependence on the prior actually reflects the 

different choices people may make with the same information. Unfortunately, little may be 

known about some parameters, such as between-study variances, which require a reasonably 

large number of studies to be well estimated (Röver et al., 2021). In these cases, it will 

only be possible to construct weak priors and it will be important to try different choices to 

examine the sensitivity of posterior inferences to prior choices.

In practice, the priors chosen for parameters affecting the mean like m, β, and δ will rarely 

matter assuming that treatments are given a sufficient number of times, so it is common to 

choose a flat prior, often a normal distribution centered at zero with a large variance such 

as N 0, 106 . An informative prior may be desired if prior knowledge of the treatments or 

the individual is available. For example, it may be possible to bound the potential treatment 

effect or the individual’s outcome levels may be approximated reasonably well.

Priors for correlation parameters like ρe tend to be a bit more important. Likelihoods often 

have much less information about correlations and can have modes near the boundaries 

of ±1 (Trikalinos et al., 2014). Thus, some information in the prior may be needed to 

supplement the data. With enough data, though, a flat uniform prior bounded by −1 and 1
may be sufficient.

Posterior inferences tend to be most sensitive to choice of the prior for the variance, for 

example, σ2 in this model. Using a common variance across measurements as we have 

makes the model more robust, but possibly at the expense of accuracy. In some problems, 

it may be possible to group the measurements into sets with different common variances. 

For instance, outcomes on one treatment may be more variable than those on another. 

Because the variance is always a positive number and often has a skewed distribution, 

symmetric prior distributions that can take positive and negative values such as the normal 

do not work well and one must choose a distribution with support only on the positive 

real line. Assuming a gamma distribution for the inverse of the variance (the precision) 

leads to a conjugate prior (i.e., the posterior precision is also a gamma distribution), which 

simplifies computation. But the parameters of the gamma distribution are not very intuitive 

and supposedly noninformative gamma parameters can actually be informative, so it is safer 

to choose a distribution whose parameters represent bounds or variation. Common choices 

are uniform distributions ranging between zero and an upper bound or a folded distribution 

such as a half-normal or half-t that only take positive values (Gelman, 2006)(Röver et al., 

2021).
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3.4. Computation via Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) has become the primary tool for Bayesian computation 

because it uses an iterative numerical integration algorithm to simulate from the complete 

joint posterior distribution. This permits numerical calculation of any quantities of interest 

such as functions of parameters, predictive distributions, and the probabilities of hypotheses. 

It also simplifies computing for complex models by breaking them into simpler components 

(Gelfand & Smith, 1990).

Essentially, MCMC works by repeatedly simulating the parameters in a carefully chosen 

sequence such that at each step one or more of them is drawn from a known distribution 

conditional on the data and the current state of the other parameters. Because the sequence 

of draws forms a Markov chain, all of the information from the previous history of the chain 

is contained in the most recently sampled values of the parameters, and so the current state 

is the only part of the chain’s history needed to take the next sample. Crucially, it can be 

shown that the algorithm will converge to a stationary distribution, which is the true joint 

posterior distribution under mild regularity conditions that are generally satisfied for most 

statistical models (Roberts & Smith, 1994). Convergence may be monitored with diagnostics 

that check whether simulation variability is consistent with that expected from a probability 

distribution (Gelman, 1996). Once the Markov chain is deemed to have converged, inference 

is based on additional Monte Carlo samples drawn from the correct posterior distribution. 

Each complete pass through the algorithm results in a new draw of each parameter. The 

sequence of draws provides a random tour of the (high-dimensional) parameter space, 

visiting locations in that space with frequencies proportional to the joint posterior density. 

The number of additional samples should be chosen to be sufficient to obtain results with 

acceptable precision for making inferences. Accurate inferences about some parameters such 

as extreme quantiles may require more simulations than for others such as means (Gelman et 

al., 2013).

The output of the MCMC sequence is a full set of draws from the posterior distribution. 

Characteristics of any parameter, set of parameters, or function of parameters can be 

evaluated by empirical summaries of the drawn samples using the Monte Carlo method. 

For example, the median of the marginal distribution of a parameter can be estimated by the 

median of its sampled draws and upper and lower bounds of a posterior credible interval 

can be constructed from the appropriate quantiles of these same samples (e.g., a 95 % 

central credible interval is formed by the 2.5 and 97.5 percentiles). Because the credible 

interval is constructed directly from the empirical quantiles returned by the simulation, it 

need not be symmetric and need not assume asymptotic normality. The empirical posterior 

distribution also permits inferences to be made about quantities that clearly do not have 

normal distributions, such as the correlation or ratio between two parameters. This ability to 

evaluate the posterior of any parameter function is a key advantage of MCMC.

Implementing MCMC is a complex process that includes choosing efficient starting values 

and updating schemes, determining when the algorithm has converged and is sampling from 

the true posterior, and then taking a sufficiently large number of samples from the posterior 

distribution to limit Monte Carlo simulation error and ensure reliable inferences. The reader 

interested in more details should consult the extensive literature. A useful starting point is 

Schmid and Yang Page 9

Harv Data Sci Rev. Author manuscript; available in PMC 2024 January 26.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



a chapter on Bayesian meta-analysis in the Handbook of Meta-Analysis (Schmid, Carlin, et 

al., 2020). Book length coverage can be found in (Brooks et al., 2011).

3.5. Point and Interval Estimation

Posterior inferences are often focused on marginal distributions of parameters or functions 

of parameters. The posterior mean, median, or mode can be used as a point estimate for 

a scalar parameter θ. Under a relatively flat prior, the posterior mode will be close to the 

maximum likelihood estimate. If the posterior is normal, the three measures are the same, 

but for multimodal or otherwise nonnormal posteriors, such as for a variance parameter, 

the mode will often be the poorest choice of centrality measure. The posterior mean will 

sometimes be overly influenced by heavy tails (just as the sample mean is often not robust 

against outlying observations). As a result, the posterior median will often be the best and 

safest point estimate and is relatively easy to compute using MCMC.

The posterior distribution allows us to make direct statements about not just its median, 

but any quantile or interval. For instance, a 100 × 1 − α % credible interval for θ is an 

interval qL, qU  such that P qL < θ < qU y = 1 − α. Such an interval is easy to compute from 

MCMC simulations, and has a direct interpretation as an interval within which θ lies with 

probability 1 − α . Most commonly, a symmetric interval is chosen to exclude α/2 of the 

probability on each side, although for positively valued parameters like variances, one-tailed 

intervals may be preferred. Unlike a frequentist confidence interval, the credible interval 

provides a direct probabilistic interpretation of the specific numerical credible interval. 

If little prior information is available about model parameters, a credible interval and a 

confidence interval may be numerically similar, though.

Note also that p values, which are probabilities about the likelihood of specific null 

hypotheses, do not have a role in Bayesian inference. Instead, Bayesians report the posterior 

probability of hypotheses of interest. This does not preclude testing of hypotheses that may 

be needed for confirmatory testing, though, because one can always formulate the test in 

terms of a required posterior probability about a particular hypothesis, such as that the 

treatment is better than the control by a certain amount with at least a certain prespecified 

probability.

3.6. Prediction

Making predictions is often the primary motivation for doing a statistical analysis. 

Predictions are useful with N-of-1 trials in several situations. One might want to predict 

the results of a new trial or one might wish to predict the eventual result of an ongoing trial. 

In both situations, the Bayesian approach is well suited to making predictions through the 

use of the predictive distribution.

Let p Θ  represent the current information about the model parameters. This may be based 

on previous data y in which case we could use a posterior distribution p Θ y . Because 

the posterior distribution conditional on the previous data y can be thought of as the 

prior distribution before collecting the new data ynew, we can work with either notation. 
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Recognizing that the prior distribution is often based on past information, we will simply 

condition on the past history noted as ℋ.

The posterior predictive distribution for ynew is found by averaging the conditional 

predictive distribution p ynew Θ  with respect to the prior distribution p Θ . The predictive 

distribution for new data ynew may then be written

p ynew ℋ = ∫ p ynew Θ p Θ ℋ dΘ .

The predictive distribution can be estimated by simulating Θ many times from p Θ ℋ
and then drawing from p ynew Θ  for each simulated Θ. When Θ is being drawn from a 

posterior distribution, the MCMC samples of Θ may be used as the draws from p Θ ℋ . The 

predictive distribution for a new treatment effect θnew can likewise be written

p θnew ℋ = ∫ p θnew Θ p Θ ℋ dΘ .

Because the predictive distribution captures the uncertainty in both the true value of the 

model parameters expressed by p Θ ℋ  as well as the uncertainty of the individual outcome 

drawn from the model in p ynew Θ , credible intervals for predictions are often much wider 

than those for model parameters. This can lead to conclusions that one treatment may be 

better than another on average, but not necessarily in individual trials.

For example, consider a disease condition with binomial outcomes for which the posterior 

probability that a treatment is successful is highly concentrated near 0.8. One would call this 

a useful treatment, especially if the alternative always failed. And yet, the treatment will fail 

in one out of every five future patients that are treated. One can apply similar logic to the 

likelihood that an N-of-1 trial will succeed if rerun, particularly if the new attempt is much 

shorter than the original. In general, one can predict the likelihood of any future event E by 

substituting E for ynew above.

3.7. Missing Data

Because N-of-1 data are often collected and recorded by participants themselves in the 

course of their daily lives, missing values are common (Marcus et al., 2022)(Kaplan et al., 

2022), Proper analysis with missing data requires knowledge of the missing data mechanism 

and whether the reason that the data are missing is related to measured or unmeasured 

variables. It is therefore important to collect information on why data are missing.

If the missing information is only related to variables included in the model, that is, if they 

are missing at random, then missing measurements may be imputed based on the model. 

Multiple imputation is straightforward with Bayesian models because the missing values 

may be treated as model parameters. MCMC then simulates from their correct posterior 

distribution (Lunn et al., 2013). For single trials, models with trend and autocorrelation can 
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therefore ignore the missing values if it can be assumed that the reason they are missing is 

independent of external factors.

If the data are missing-not-at-random, then more complex models that account for the cause 

of the missing data would need to be developed. For example, if a participant becomes ill 

and cannot enter data and if the outcome is health-related, then analyzing the available data 

or imputing from a model based on the available data may lead to a biased result. If some 

information is available about outcomes during illness periods, that could be used to build 

an imputation model. The analysis of the PRODUCE data in Section 5 provides an example 

of constructing a missing-not-at-random imputation model in which the imputation model 

depends on the time that the participant dropped out of the study.

3.8. Model Checking: Posterior Predictive Checks

External validation in which a model constructed from one data set is applied to the data 

from a new data set with the new predictions compared to the new outcomes is the gold 

standard for model validation. New data sets are hard to find, though, so we often must 

make do with with internal validation using the data available. With any internal validation 

method, a good model should be able to replicate the observed data. For a Bayesian, this 

entails simulating data from the posterior predictive distribution and checking how well it 

compares to the observed data. The observed data should look plausible under the posterior 

predictive distribution. To carry out a posterior predictive check, we first simulate outcomes 

yrep from the posterior predictive distribution by drawing Θ from its posterior p Θ y , and 

then drawing yrep Θ. We then evaluate the test statistic T y, Θ  at both yrep and y and 

compare them. A posterior predictive p value, P T yrep, Θ ≥ T y, Θ y , is calculated as the 

proportion of the number of samples l = 1, 2, …, L such that T yrep, Θl ≥ T y, Θl . Note that 

this expression conditions on both y and Θ, so test quantities can also be functions of the 

unknown parameters Θ (Gelman et al., 2013).

In a typical N-of-1 trial, one is not interested in making predictions about other individuals, 

although one might be interested in predicting the future course of a particular individual. 

Nevertheless, rarely would one have enough information to develop such a model and so 

posterior predictive checks would not be indicated.

When aggregating across multiple individuals as outlined in the next section, though, it 

might be important to model the population in such a way that a prediction could be made 

for a new individual, or it might be important to transport the model to a new population. 

In such a case, posterior predictive model checks may be needed. We do not pursue them 

further in this article, however, as the application to follow is not focused on making 

predictions on new individuals.

4. Aggregating Data Across Multiple Individuals

When different individuals carry out N-of-1 trials with a similar design, it may be possible 

to aggregate them with a multilevel model to learn about the group and to learn more about 

each individual. In essence, the aggregated trials form a meta-analysis of the individual 
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trials. The first level of the multilevel model applies to the individual and the second applies 

to the group.

The first level can be written using the same notation as for the individual models in Section 

2 except that we add a subscript i to reference the individual. For the contrast-based linear 

trend model with autocorrelation

Y ij = μi + ∑
k ≠ 1

δikI Aij = k + βitij + eij

(4.1)

eij = ρeieij − 1 + ϵij

(4.2)

ϵij ∼ N 0, σi
2 ,

(4.3)

each individual has distinct parameters μi, δik, βi, ρei, and σi
2. Analogous formulas apply if the 

treatments are expressed in an arm-based format.

4.1. Common, Fixed, and Random Trial-Level Parameters

Analysts typically handle these individual study-level parameters in one of three ways. First, 

one can assume they are the same across studies, reducing them to one common parameter, 

for example, δik = δk for all i. This is a strong assumption that simplifies computations but 

requires justification (Schmid, Stijnen, et al., 2020a). Alternatively, the first-level parameters 

may be related to each other by assuming they come from a common distribution. Doing 

so treats each individual parameter as a random draw from the common distribution and so 

they are called random parameters (or random effects). Under the random effects model, 

both the individual-level parameters and their common mean and variance, for example, δk

and σδ
2, respectively, (the second-level parameters) have posterior distributions. The posterior 

distributions of the individual (first) level parameters, for example, δik turn out to be mixtures 

of their individual likelihoods and their common distribution. Essentially, by treating the 

parameters as related, we estimate their posteriors to be more alike than they would be 

if they were left unrelated. A third approach leaves the first-level parameters unrelated, in 

which case they are called fixed parameters (effects) and their posterior distributions are 

left unaffected by the rest of the model. Using fixed parameters precludes drawing any 

inferences beyond the trials modeled and thus are only appropriate if the focus is entirely on 

drawing inferences for those individuals studied. If one wants to draw inferences about the 

population from which these individuals are drawn, random effects should be used.

Random treatment effects δik and trend slopes βi are typically assumed to come from 

common normal distributions
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δik ∼ N dk, σδ
2 ; k = 2, …, Ki

(4.4)

where Ki is the number of treatments in trial i and

βi ∼ N b, σβ
2 .

(4.5)

When the outcomes in each trial are normally distributed given the first-level parameters 

and the first-level parameters are themselves drawn from a normal distribution, the posterior 

distributions of the first-level parameters are normal mixtures of these two distributions 

with mixing weights that are proportional to their relative precision, or inverse variances 

(Schmid, Carlin, et al., 2020). The resulting posterior is shrunk toward or close to the 

common distribution if the individual-level data are imprecise or if the individual effects are 

homogeneous. On the other hand, if an individual’s parameters are well-estimated or if the 

set of individual effects is heterogeneous, then the individual’s posterior estimates will not 

be shrunk toward the common group distribution.

We can also treat the intercepts μi as random or fixed parameters. A common intercept 

is usually considered unreasonable because individuals would be expected to have 

heterogeneous outcomes as a result of underlying individual characteristics. Treating the 

intercepts as random

μi ∼ N m, σμ
2

(4.6)

will result in their influencing the estimation of other parameters in the model. In particular, 

individual treatment effects are informed by differences in the mean outcome levels between 

trials (White et al., 2019). Because of this shrinkage, the meta-analysis literature has a long-

standing controversy over whether to treat the intercepts as fixed or random (Senn, 2000). 

Particularly for properly designed and conducted randomized trials that provide causal 

estimates of treatment effects, many consider the use of random intercepts that can influence 

those treatment effects to be inappropriate (Dias & Ades, 2016). Instead, they argue for 

deriving inferences conditional on their fixed values. Essentially, this treats the intercepts as 

nuisance parameters that can be ignored in drawing inferences about the other parameters. 

However, treating them as fixed precludes drawing inferences about the intercepts from new 

studies and so limits prediction.

If the intercepts are treated as random, then the model can also be extended to allow 

correlation between the intercepts and the treatment effects (Stijnen et al., 2020). As the 

intercept can be considered to be the average outcome under the reference treatment and 

the treatment effects are contrasts between each treatment and the reference, it makes sense 

that these would be related. Let us write Σμδ for the covariance matrix for μi, δi2, …, δiKi
T .
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Because the δik must be consistent within a trial, the treatment effect between levels k and k′
must equal the difference δik − δik′. Under the assumption of a constant treatment variance, all 

treatment contrasts must have the same variance. This implies that the correlation between 

the δik must then be 0.5 (Higgins & Whitehead, 1996). Assume that the correlation between 

μi and each δik is identically ρμδ. Then

Σμδ =
σμ

2 ρμδσμσδ1Ki − 1
⊺

ρμδσμσδ1Ki − 1
⊺ σδ

2PKi 0.5

(4.7)

where 1Ki − 1 is a Ki − 1 length vector of ones and PKi x  is a Ki × Ki matrix with all diagonal 

elements equal to one and all off-diagonal elements equal to 0.5.

The within-individual correlations ρei are slightly more complicated to model because they 

are typically skewed and bounded. Thus, they cannot be treated as normally distributed. To 

avoid this issue, one can assume common or fixed correlations, although this carries the 

limitations discussed above. Random effects formulations commonly work by applying a 

transformation that normalizes their distributions. It is common to use the inverse hyperbolic 

tangent transformation zei = 1
2 ln 1 + ρei

1 − ρei
 and assume that

zei ∼ N ze, σze
2 .

(4.8)

Using MCMC, one can easily recover the posterior distribution of the ρei from the posterior 

samples of zei by applying the hyperbolic transformation ρei = exp 2zei − 1 / 1 + exp 2zei .

Finally, it is easiest to treat the variances σi
2 as fixed parameters unless one is interested in 

modeling them. Alternatively, a common residual variance is often assumed so that σi
2 = σ2

for all i.

4.2. Multilevel Models and Hyperparameters

Parameters of the common distribution from which trial-level random effects are drawn are 

called hyperparameters because they are parameters of parameters. Combining Equations 

4.1–4.8 gives a multilevel model where dk , b, m, ze, ρμδ, σδ
2, σβ

2, σμ
2 and σze

2  are the 

hyperparameters. The full set of model parameters Θ includes the hyperparameters and the 

study-level parameters σi
2, βi , μi , zei  (or ρei ), and δi . Assuming the trials independent, 

the likelihood ℒ for the data y = yij  can be written

ℒ = ∏
i

p yi δi , βi, μi, zei, σi
2 p δi , μi dk , m, σδ

2, σμ
2, ρμδ p βi b, σβ

2 p zei , ze, σze2 .
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The posterior p Θ y  is then the product of the prior p dk , b, m, ze, σδ
2, σβ

2, σμ
2, σze

2 , σi
2  and this 

likelihood. We can compute the marginal posterior distribution for any component of Θ
by integrating over the other parameters. This is straightforward with MCMC because we 

simply use the simulations of the parameters of interest.

When aggregating N-of-1 trials, both first- and second-level parameters are important 

because we want to draw inferences about both the individuals and the population. The 

posterior distributions of the individual parameters also inform about the true heterogeneity 

among individuals (as distinguished from sampling variation that occurs when the number 

of measurements taken from an individual is too small). As discussed above, the posterior 

estimates of individuals are affected by data from others through their common second-level 

distribution. We say that the individuals borrow strength from each other. Although it might 

seem strange that a better estimate of the effect of an individual may be gained by using 

data from other individuals, this phenomenon, called shrinkage, is well known in statistical 

theory (Efron & Morris, 1973)(James & Stein, 1961). Intuitively, if the individual effects 

come from a common distribution or are exchangeable in statistical terminology, then we 

can gain more information about each one by using information from the others (Draper et 

al., 1993). This phenomenon describes the standard way we learn about new things by using 

what we know about similar things.

4.3. Modeling Within and Between-Individual Heterogeneity

When individual effects exhibit heterogeneity, it may be worthwhile to try to characterize the 

between-individual heterogeneity in terms of baseline characteristics that apply to subgroups 

of individuals, for example, men and women or older and younger individuals. Variables 

representing these characteristics can be included as regression terms xjk in the expression 

for the mean of the treatment effects in the second-level model 4.4 as dk = d0k + ∑j = 1
J djkxjk. 

Heterogeneity among the intercepts μi or the trends βi may also be modeled by reformulating 

their means as regressions. Such covariates vary between but not within individuals. In 

addition to varying between individuals, outcomes may vary within individuals as a function 

of covariates zl too. These may be introduced into Equation 4.1 as

yij = μi + ∑
k ≠ 1

δikI Aij = k + βitij + ∑
l = 1

L
γlizlij + eij

(4.9)

4.4. Models for Carryover

Carryover is difficult to estimate in a single individual with only a few crossovers. With data 

from multiple individuals, however, the number of treatment crossovers is much larger and 

carryover is estimable for any treatment sequence that is repeated often enough (assuming 

of course some pattern in carryover such as that it is stable across time and across different 

individuals). Considering pairs of treatments, we can estimate crossover from one to the 

other in either order so the total number of possible crossover parameters for K treatments is 

2 × K
2 .
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One might also consider more complex ordering effects in which the effect of a treatment 

depends on more than the previous treatment. Often, scientific knowledge informs which 

crossovers to include in a model. For instance, switching from a placebo should not induce 

a crossover effect. In designs with repeating sequences such as ABAB designs, the crossover 

effect can become confounded with the sequence effect.

Carryover can be also incorporated into models by introducing covariates that describe the 

potential carryover effect. For instance, carryover from a pharmacological treatment that 

continues to act after it is discontinued can be captured by using an indicator variable that is 

on when the carryover may be present and is off otherwise.

If the drug loses potency over time, then the modeled carryover effect can be more complex, 

perhaps taking a positive fraction to reflect the treatment’s decline in potency. For example, 

carryover from a treatment period into the following placebo period for a drug with half-life 

of one time unit may be modeled by including a variable z1ij in Equation 4.9 such that 

z1ij = 2− tij − tij
*

 where tij
* is the time when the crossover occurred. In this case, γ1i = δik, so the 

total effect at tij is δik 1 + z1ij

4.5. Missing Data

Handling missing values becomes more complicated when aggregating trials because the 

causes of missing values often vary from individual to individual. If these can be captured 

in covariates that can be modeled, it is possible to multiply impute values from a model 

conditional on these covariates, both within and between individuals. Missing values can 

again be treated as model parameters and MCMC will correctly update them from the 

regression model. This approach may become impractical as the number of individuals 

becomes large, though, because the number of parameters to simulate will grow rapidly. 

With data missing not-at-random, models must incorporate missing data mechanisms that 

vary across individuals. The analysis of the PRODUCE data in the next section provides an 

example of constructing a missing-not-at-random imputation model in which the imputation 

model depends on the time that the participant dropped out of the study.

5. Example: PRODUCE Study

To illustrate these techniques, we turn to a set of N-of-1 trials in the PRODUCE study that 

we helped to design and analyze (Kaplan et al., 2019)(Kaplan et al., 2022). PRODUCE 

compared usual diet (UD) to two modified diets, the Specific Carbohydrate Diet (SCD) 

and a less restrictive modified SCD (MSCD), for treatment of pediatric noninflammatory 

bowel disease (IBD). Children had either Crohn’s disease (CD), ulcerative colitis (UC), or 

indeterminate colitis (IC). Following a 2-week baseline period of UD, participants were 

randomized to either SCD or MSCD. Each diet was maintained for 8 weeks at which point 

participants crossed over to the other experimental diet for 8 more weeks. Participants then 

repeated this 16-week sequence in the same order so that they followed either an ABAB or a 

BABA randomization sequence. Sequences were repeated to avoid 16 consecutive weeks on 

the stricter SCD diet, which patients who helped to design the study thought might lead to 

increased dropout.
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Participants were allowed to cross over to the next treatment at any time before 8 weeks and 

were also allowed to discontinue the study at any time. Following completion, they received 

graphical and textual information about their performance, which included the probability 

that SCD and MSCD improved outcomes compared to UD and also compared to each 

other. A variety of patient-reported outcomes including stool frequency, stool consistency, 

pain interference, IBD symptoms, and self-reported disease activity, as well as a laboratory 

measure of intestinal inflammation via fecal calprotectin were collected and analyzed. Here, 

we illustrate the analysis of the weekly $\text{PROMIS} ^{\text{\tiny{\textregistered}}}$ 

Pain Interference Scale, which is reported as a T-score measure (standardized mean of 50 

and standard deviation of 10) and has a range from 38 to 78 if reported by parents and 34 

to 78 if reported by children. A clinically important change is defined as a 3-point change in 

the scale so that an increase of at least 3 points indicates improvement and a decrease of at 

least 3 points indicates worsening.

Among 54 randomized participants, 21 completed the full four-period sequence, 9 

completed the study early after a single crossover (two periods), and 24 withdrew during 

the first or second period before completing both diets. To avoid issues with potential 

carryover, we did not analyze the first weekly measurement in any of the four experimental 

diet periods, so each period had a maximum of 7 measurements.

5.1. Analysis of Individual Trials

We analyzed the pain score as a continuous variable for each individual with an arm-based 

model that included autocorrelation, normally distributed errors, but no trend. Missing 

observations were imputed as parameters in the Bayesian model under the assumption that 

they were missing at random.

We chose noninformative prior distributions for the model parameters using a 

Uniform(34,78) for the treatment means αk when reported by the child and U(38,78) when 

reported by the parent to reflect the range of the pain outcome scale, a U(−1,1) for the 

correlation ρe and a U(0,1000) for the standard deviation σ.

Individual patient posterior probabilities for each diet comparison including SCD vs. UD 

(Panel A), MSCD vs. UD (Panel B), and SCD vs. MSCD (Panel C) are shown in Figure 

1. The corresponding median posterior treatment difference and 95% CrI are shown in 

Figure 2. The probability of improvement on SCD vs. UD varied by individual. Twelve of 

the full completers, 5 of the early completers, and 4 of the withdrawals were classified as 

responders, having a > 50% probability of clinically meaningful improvement of 3 points 

and a < 10% probability of worsened pain interference on SCD compared to UD. Similar 

heterogeneity was seen in the individual probabilities of improvement in pain interference 

on the MSCD versus UD. Twelve of the full completers, 4 of the early completers, and 

1 of the withdrawals had a > 50% probability of clinically meaningful improvement and a 

< 10% probability of worsened pain interference on the MSCD as compared to the UD. Most 

participants showed minimal differences between the SCD and MSCD.
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5.2. Analysis of Aggregated Trials

We also separately meta-analyzed each of the three sets of participants (full completers, 

early completers and withdrawals) with multilevel models using fixed intercepts, a common 

autocorrelation ρe and a common residual variance σ2 to obtain an average effect size. 

The use of fixed intercepts implicitly adjusts for the two factors (clinical site and disease 

condition) on which participants were stratified in randomization. Because results for the 

individual analyses are similar both with and without imputation, we ignore the missing 

values when combining participants in each set, analyzing only the observed outcome data 

in the meta-analysis for computational efficiency.

Prior distributions were again chosen to be noninformative with a U(34,78) distribution for 

μi, U(−44,44) for dk, U(−1,1) for ρe, and U(0,1000) distributions for σ and σδ.

Posterior medians, 95% credible intervals, and posterior probabilities of benefit and harm 

are shown in Figures 1 and 2 under the heading All. Overall, the SCD and the MSCD 

were almost certainly more effective than UD for full completers, had a greater than 50% 

chance of being more effective for early completers, but were not better for withdrawals. No 

differences were found between SCD and MSCD in any of the three groups.

Finally, we combined the full completers, early completers, and withdrawals together to 

derive an average effect across all participants, and multiply imputing missing values to 

form five complete data sets. Because the patient results differed so much by their stage of 

completion, we imputed values in each set separately based on the modeling results from 

each group alone. Both intermittent missing measurements and missing measurements due 

to dropout were imputed to ensure that all participants had at least one weekly measurement 

on UD and at least six in each SCD or MSCD period. Estimates from the five imputations 

were then combined using Rubin’s rules for multiple imputation (Rubin, 2004). On average, 

pain was decreased by −3.0 (95% CrI −4.2, −1.8) points on SCD compared to UD. The 

posterior probability was 0.48 that SCD was better than UD, 0.52 that they were no 

different, and < 0.01 that it was worse. Very similar results applied to MSCD.

To explore heterogeneity of treatment effects by different clinical characteristics, we 

included a term in the second-level model as in Equation 4.9. Table 1 shows results for 

girls and boys. Girls had larger improvements on both diets than boys with a 4.8 compared 

to 1.6 point improvement for SCD and a 4.5 compared to 1.7 point improvement for MSCD. 

The probability that improvement was more for girls than boys was 0.99 for SCD and 0.97 

for MSCD.

Analysis of the individual and aggregated trials shows that both diets reduced pain on 

average for this group of children, but that some individuals had no benefit. Benefit was 

much more likely among those who finished the study and least likely among those who 

withdrew early. Practically, this finding may suggest that diet therapy may be worth trying 

but that some individuals may not tolerate or improve from it. Girls may also benefit more 

than boys, perhaps because they were more adherent or for some unknown biological reason, 

although since this comparison was exploratory, all conclusions are purely speculative.
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6. Extending Models to Other Data Structures

Thus far, we have considered only continuous outcomes that can be modeled with normal 

error distributions and sets of trials in which each individual receives the same set of 

treatments. Here, we outline some possible approaches for handling discrete outcomes and 

discuss how network meta-analysis methods could be used for data in which individuals 

receive only a subset of potential treatments. Such data structures occur in many studies. For 

instance, the I-STOP-AFib study tested whether certain activities might trigger episodes of 

atrial fibrillation (AF). The episodes were treated as binary outcomes (Marcus et al., 2022). 

In the PREEMPT study, individuals with chronic pain were allowed to design their own 

trials and chose a wide variety of treatment pairs (Barr et al., 2015).

6.1. Discrete Outcomes

For discrete outcomes, such as categorical and count outcomes, we can adopt the 

generalized linear model in which

g E Y j = m + ∑
k ≠ 1

δkI Aj = k

(6.1)

for the contrast-based treatment effects model and

g E Y j = ∑
k

mkI Aj = k .

(6.2)

for the arm-based treatment effects model. Notation is similar to the previous linear models 

except that g ⋅  is a link function relating the expected value of the outcome to the linear 

predictor. Independent binary outcomes Y j take Bernoulli distributions with probabilities 

pj, E Y j = pj and have a link function that is generally taken to be a logit or probit function. 

For count outcomes, $Y_j \sim \textnormal{Poisson}(\lambda_j)$ where λj is the rate of 

events at time t. The link function is then log λj . For categorical outcomes, Y j can take 

on one of M discrete values m = 1, …, M with probabilities pjm such that ∑ pjm = 1. This 

describes a multinomial distribution. A variety of different models can be constructed to 

relate these probabilities to each other and to the linear predictors. When the categories are 

unordered it is common to use a baseline category logit model in which the linear predictor 

is set equal to pm/p0 for m = 2, …, M. Ordered categories can take several different forms, 

of which the most common is the cumulative logit with the linear predictor is set equal to 

∑m > m0 pm/∑m ≤ m0 pm for m0 = 1, …, M − 1. The linear model for continuous outcomes can 

also be written as a generalized linear model where g ⋅  is the identity link function and the 

data follow a normal distribution with variance σ2.

Models for discrete outcomes are easily extended to incorporate trend, but autocorrelation is 

a bit trickier because of the lack of an error term. Instead, one needs to express the discrete 
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outcome in terms of a latent continuous variable on which scale the autocorrelation can be 

modeled (Zeger, 1988).

6.2. Networks of Trials

Individual trials in a collection of N-of-1 trials may not share the same treatment sets. 

For example, the PREEMPT trial allowed participants to choose the two treatments they 

wanted to compare. As a result, the 98 trials had many different treatment pairs, many of 

which were unique. The different treatment comparisons then form a network in which the 

treatments are nodes. Two nodes are connected by trials that compare their treatments. This 

type of structure is the same as that in a network meta-analysis and methods of network 

meta-analysis can be applied (Dias et al., 2018). Analytically, this poses no real difficulties 

as the multilevel models are similar except that only a small number of treatment effects will 

be observed in any one trial and so a given treatment effect δik may only contribute to a small 

proportion of trials.

To be able to estimate each treatment comparison, however, one must make the strong 

transitivity assumption that the treatments missing in any given trial are missing at random 

(Salanti, 2012). This has several implications, one of which is that every missing treatment 

pair would have had the same expected effect in the trials for which it was missing as it had 

in the trials in which it was observed. Because the choice to test some treatments and not 

others is often related to the outcomes expected (e.g., one would not test a treatment that 

one knew did not work or was not practical), this assumption of transitivity is probably even 

more suspect in collections of N-of-1 trials than in the collections of randomized controlled 

trials that often form a network meta-analysis. Thus, it needs to be used with extreme care.

7. Practical Issues

Because N-of-1 trials are focused on facilitating decision-making by and for individuals, 

it is important that results be made understandable to those individuals or their agents. 

Bayesian models provide probabilistic answers that reflect uncertainty in knowledge about 

key parameters such as intervention effects. Discussions with users either when planning 

trials or in debriefing after trials have emphasized/revealed that many people have trouble 

understanding probabilities and uncertainty (Kaplan et al., 2019)(Whitney et al., 2018). Our 

experience has been that most people are comfortable with averages, but do not appreciate 

that averages alone without uncertainty estimates lead to poor decisions. Sometimes, the 

best option may just be to provide the data. For example, in the I-STOP-AFib study testing 

whether certain activities might trigger episodes of atrial fibrillation (AF), participants were 

followed for 6 weeks, 3 on a potential trigger and 3 off. After 6 weeks, they were given a 

graph like that in Figure 3, arranging their treatment periods in a calendar form with days of 

AF episodes noted and provided the posterior probability that events were more likely when 

using the trigger than when not (Marcus et al., 2022).

People also interpret probabilities themselves quite differently. Some will choose an option 

that has probability greater than 0.5; others require a greater degree of certainty (Zucker et 

al., 2006). Of course, the relative costs of different options also play a role in the decision, 

so personalized trials should incorporate formal decision modeling to make such choices 
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transparent. In general, more research is needed into how to make the patient experience 

more educational and less intimidating.

Successful implementations of N-of-1 trials using mobile applications are becoming more 

common (Daskalova et al., 2016)(Kaplan et al., 2022)(Kravitz et al., 2018)(Kravitz et al., 

2020)(Marcus et al., 2022). The display in Figure 3 was generated on a mobile phone 

using an application developed specially for the I-STOP-AFib study. The mobile app carries 

out many of the functions such as randomization, data entry, participant followup and 

data analysis provided by humans at great cost in standard clinical trials. It provides users 

with text reminders and motivational messages to keep them involved and committed. It 

also reduces the costs of the trial by automating many procedures that usually require 

considerable staff effort.

In discussions with researchers, participants have offered many reasons why they have 

chosen and liked N-of-1 trials (n.d.-c)(Whitney et al., 2018). They like the personalized 

learning approach in which the study is tailored directly to their needs and in which they get 

real-time feedback that enables them to track their performance and note changes in their 

health quantitatively. The data they receive helps them interact more effectively with their 

health care providers and enables them to manage their care themselves more easily and to 

participate more readily in their health decisions. They also note some challenges, more so 

when they are acting solely on their own without the support of a clinical expert. Use of 

the mobile app sometimes poses a problem, especially when service is interrupted or among 

users less savvy about technology.

The need to provide prompt feedback to those completing a trial leads to a need to automate 

data cleaning and analysis to the extent possible. We have used R packages attached at the 

back end, either embedded within the mobile app or as a standalone program computing 

on data uploaded to a server (Barr et al., 2015)(Kaplan et al., 2019). The current version 

of the R package nof1ins can be found at https://github.com/jiabei-yang/nof1ins (n.d.-d). As 

these packages incorporate more and more sophisticated features, they should facilitate the 

wider adoption of personalized trials. That can only help the task of making science more 

approachable and more valuable to the public.

8. Conclusions

N-of-1 trials provide a personalized scientific approach that could greatly expand the 

number of people and the number of environments in which research is carried out. The 

Bayesian approach offers a means to incorporate participants’ own beliefs and to express 

results probabilistically in a way that helps participants make decisions. With flexible 

models and software that implements them behind the scenes and then reports results to 

users intuitively, Bayesian models can facilitate the spread of these tailored research designs.

Acknowledgments

The authors would like to thank their collaborators in the PREEMPT, PRODUCE, I-STOP-AFib and Study of Me 
trials.

Schmid and Yang Page 22

Harv Data Sci Rev. Author manuscript; available in PMC 2024 January 26.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript

https://github.com/jiabei-yang/nof1ins


Disclosure Statement

This research was funded through a Patient-Centered Outcomes Research Institute (PCORI) Award (PPRND-1507–
31321). The study sponsor had no role in the study design, collection, analysis, and interpretation of the data, or in 
the writing of the report.

References

Barr C, Marois M, Sim I, Schmid CH, Wilsey B, Ward D, Duan N, Hays RD, Selsky J, Servadio 
J, Schwartz M, Dsouza C, Dhammi N, Holt Z, Baquero V, MacDon- ald S, Jerant A, Sprinkle 
R, & Kravitz RL (2015). The PREEMPT study-evaluating smartphone-assisted n-of-1 trials in 
patients with chronic pain: Study protocol for a randomized controlled trial. Trials, 16(1), Article 
67. 10.1186/s13063-015-0590-8

Brooks S, Gelman A, Jones G, & Meng X-L (2011). Handbook of Markov Chain Monte Carlo. 
Chapman & Hall/CRC Press. 10.1201/b10905

Chaloner K, Church T, Louis TA, & Matts JP (1993). Graphical elicitation of a prior distribution for a 
clinical trial. Journal of the Royal Statistical Society: Series D, 42(4), 341–353. 10.2307/2348469

Daskalova N, Metaxa-Kakavouli D, Tran A, Nugent N, Boergers J, McGeary J, & Huang J. (2016). 
SleepCoacher: A personalized automated self-experimentation system for sleep recommendations. 
In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (pp. 
347–358). 10.1145/2984511.2984534

Dias S, & Ades A. (2016). Absolute or relative effects? Arm-based synthesis of trial data. Research 
Synthesis Methods, 7(1), 23–28. 10.1002/jrsm.1184 [PubMed: 26461457] 

Dias S, Ades AE, Welton NJ, Jansen JP, & Sutton AJ (2018). Network meta-analysis for decision-
making. John Wiley & Sons. 10.1002/9781118951651

Draper D, Hodges JS, Mallows CL, & Pregibon D. (1993). Exchangeability and data analysis. Journal 
of the Royal Statistical Society: Series A, 156(1), 9–28. 10.2307/2982858

Duan N, Kravitz RL, & Schmid CH (2013). Single-patient (n-of-1) trials: A pragmatic clinical 
decision methodology for patient-centered comparative effectiveness research. Journal of Clinical 
Epidemiology, 66(8), S21–S28. 10.1016/j.jclinepi.2013.04.006 [PubMed: 23849149] 

Efron B, & Morris C. (1973). Stein’s estimation rule and its competitors—an empirical Bayes 
approach. Journal of the American Statistical Association, 68(341), 117–130. 10.2307/2284155

Gelfand AE, & Smith AF (1990). Sampling-based approaches to calculating marginal densities. 
Journal of the American Statistical Association, 85(410), 398–409. 10.2307/2289776

Gelman A. (1996). Inference and monitoring convergence. In Gilks WR, Richardson S, & 
Spiegelhalter D. (Eds.), Markov Chain Monte Carlo in practice (pp. 131–143). Chapman & Hall. 
10.1201/b14835-13

Gelman A. (2006). Prior distributions for variance parameters in hierarchical models (comment on 
article by Browne and Draper). Bayesian Analysis, 1(3), 515–534. 10.1214/06-BA117A

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, & Rubin DB (2013). Bayesian data analysis. 
(3rd ed.) Chapman & Hall/CRC. http://www.stat.columbia.edu/~gelman/book/BDA3.pdf

Gelman A, & Hill J. (2006). Data analysis using regression and multilevel/hierarchical models. 
Cambridge University Press. 10.1017/CBO9780511790942

Higgins JP, & Whitehead A. (1996). Borrowing strength from external 
trials in a meta-analysis. Statistics in Medicine, 15(24), 2733–2749. 10.1002/
(SICI)1097-0258(19961230)15:24&lt;2733::AID-SIM562&gt;3.0.CO;2-0 [PubMed: 8981683] 

James W, & Stein C. (1961). Estimation with quadratic loss. Berkeley Symposium on 
Mathematical Statistics and Probability, 4(1), 361–379. https://projecteuclid.org/ebook/Download?
urlid=bsmsp%2F1200512173&isFullBook=False

Kaplan HC, Marcus GM, Yang J, Schmid CH, Schuler CL, Chang F, Dodds C, Murphy L, Modrow 
M, Sigona K, & Opipari-Arrigan L. (2021). Using single subject (N-of-1) designs to answer 
patient-identified research questions [Manuscript submitted for publication].

Kaplan HC, Opipari-Arrigan L, Schmid CH, Schuler CL, Saeed S, Braly KL, Burgis JC, Nguyen K, 
Pilley S, Stone J, Woodward G, & Suskind DL (2019). Evaluating the comparative effectiveness 

Schmid and Yang Page 23

Harv Data Sci Rev. Author manuscript; available in PMC 2024 January 26.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript

http://www.stat.columbia.edu/~gelman/book/BDA3.pdf
https://projecteuclid.org/ebook/Download?urlid=bsmsp%2F1200512173&isFullBook=False
https://projecteuclid.org/ebook/Download?urlid=bsmsp%2F1200512173&isFullBook=False


of two diets in pediatric inflammatory bowel disease: a study protocol for a series of N-of-1 trials. 
Healthcare, 7(4), Article 129. 10.3390/healthcare7040129

Kaplan HC, Opipari-Arrigan L, Yang J, Schmid CH, Schuler CL, Saeed SA, Braly KL, Chang 
F, Murphy L, Dodds CM, Nuding M, Liu H, Pilley S, Stone J, Woodward G, Yokois N, 
Goyal A, Lee D, Yeh A, . . . ImproveCareNow Pediatric IBD Learning Health System. (2022). 
Personalized research on diet in ulcerative colitis and Crohn’s disease: A series of N-of-1 diet 
trials. Official Journal of the American College of Gastroenterology| ACG, 117(6), 902–917. 
10.14309/ajg.0000000000001800

Kravitz RL, Aguilera A, Chen EJ, Choi YK, Hekler E, Karr C, Kim KK, Phatak S, Sarkar S, 
Schueller SM, Sim I, Yang J, & Schmid CH (2020). Feasibility, acceptability, and influence 
of mHealth-supported N-of-1 trials for enhanced cognitive and emotional well-being in US 
volunteers. Frontiers in Public Health, 8, Article 260. 10.3389/fpubh.2020.00260

Kravitz RL, Duan N. (Eds), and the DEcIDE Methods Center N-of-1 Guidance Panel (Duan N, Eslick 
I, Gabler NB, Kaplan HC, Kravitz RL, Larson EB, Pace WD, Schmid CH, Sim I, & Vohra 
S) (2014). Design and implementation of N-of-1 trials: A user’s guide. Agency for Healthcare 
Research and Quality. https://effectivehealthcare.ahrq.gov/products/n-1-trials/research-2014-5

Kravitz RL, Schmid CH, Marois M, Wilsey B, Ward D, Hays RD, Duan N, Wang Y, MacDonald 
S, Jerant A, Servadio JL, Haddad D, & Sim I. (2018). Effect of mobile device–supported single-
patient multi-crossover trials on treatment of chronic musculoskeletal pain: A randomized clinical 
trial. JAMA Internal Medicine, 178(10), 1368–1377. 10.1001/jamainternmed.2018.3981 [PubMed: 
30193253] 

Lunn D, Jackson C, Best N, Thomas A, & Spiegelhalter D. (2013). The BUGS book: A practical 
introduction to Bayesian analysis. Chapman & Hall. 10.1201/b13613

Marcus GM, Modrow MF, Schmid CH, Sigona K, Nah G, Yang J, Chu T-C, Joyce S, Gettabecha 
S, Ogomori K, Yang V, Butcher X, Hills MT, McCall D, Sciarappa K, Sim I, Pletcher MJ, & 
Olgin JE (2022). Individualized studies of triggers of paroxysmal atrial fibrillation: The I-STOP-
AFib randomized clinical trial. JAMA Cardiology, 7(2), 167–174. 10.1001/jamacardio.2021.5010 
[PubMed: 34775507] 

O’Hagan A, Buck CE, Daneshkhah A, Eiser JR, Garthwaite PH, Jenkinson DJ, Oakley JE, & 
Rakow T. (2006). Uncertain judgements: Eliciting experts’ probabilities. John Wiley & Sons. 
10.1002/0470033312

Roberts GO, & Smith AF (1994). Simple conditions for the convergence of the Gibbs sampler and 
Metropolis-Hastings algorithms. Stochastic Processes and Their Applications, 49(2), 207–216. 
10.1016/0304-4149(94)90134-1

Röver C, Bender R, Dias S, Schmid CH, Schmidli H, Sturtz S, Weber S, & Friede T. (2021). 
On weakly informative prior distributions for the heterogeneity parameter in Bayesian random-
effects meta-analysis. Research Synthesis Methods, 12(4), 448–474. 10.1002/jrsm.1475 [PubMed: 
33486828] 

Rubin DB (2004). Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons.

Salanti G. (2012). Indirect and mixed-treatment comparison, network, or multiple-treatments meta-
analysis: Many names, many benefits, many concerns for the next generation evidence synthesis 
tool. Research Synthesis Methods, 3(2), 80–97. 10.1002/jrsm.1037 [PubMed: 26062083] 

Schmid CH, Carlin BP, & Welton NJ (2020a). Bayesian methods for meta-analysis. In Schmid CH, 
Stijnen T, & White IR (Eds.), Handbook of meta-analysis (pp. 91–127). Chapman & Hall/CRC 
Press. 10.1201/9781315119403-6

Schmid CH, Stijnen T, & White IR (2020b). General themes in meta-analysis. In Schmid CH, Stijnen 
T, & White IR (Eds.), Handbook of meta-analysis (pp. 19–26). Chapman & Hall/CRC Press. 
10.1201/9781315119403-2

Schmid CH, Stijnen T, & White IR (2020c). Handbook of meta-analysis. Chapman & Hall/CRC Press. 
10.1201/9781315119403

Schork NJ (2015). Personalized medicine: Time for one-person trials. Nature, 520(7549), 609–611. 
10.1038/520609a [PubMed: 25925459] 

Senn S. (2000). The many modes of meta. Drug Information Journal, 34(2), 535–549. 
10.1177/009286150003400222

Schmid and Yang Page 24

Harv Data Sci Rev. Author manuscript; available in PMC 2024 January 26.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript

https://effectivehealthcare.ahrq.gov/products/n-1-trials/research-2014-5


Stijnen T, Schmid CH, Law M, Jackson D, & White IR (2020). Exact likelihood methods for group-
based summaries. In Schmid CH, Stijnen T, & White IR (Eds.), Handbook of meta-analysis (pp. 
65–89). Chapman & Hall/CRC Press. 10.1201/9781315119403-5

Trikalinos TA, Hoaglin DC, & Schmid CH (2014). An empirical comparison of univariate and 
multivariate meta-analyses for categorical outcomes. Statistics in Medicine, 33(9), 1441–1459. 
10.1002/sim.6044 [PubMed: 24285290] 

White IR, Turner RM, Karahalios A, & Salanti G. (2019). A comparison of arm-based and contrast-
based models for network meta-analysis. Statistics in Medicine, 38(27), 5197–5213. 10.1002/
sim.8360 [PubMed: 31583750] 

Whitney RL, Ward DH, Marois MT, Schmid CH, Sim I, & Kravitz RL (2018). Patient perceptions 
of their own data in mHealth technology-enabled N-of-1 trials for chronic pain: Qualitative study. 
JMIR mHealth and uHealth, 6(10), Article e10291. 10.2196/10291

Yang J, & Schmid CH (2022). nof1ins: An R Package for analyzing and presenting n-of-1 studies. 
https://github.com/jiabei-yang/nof1ins.

Zeger SL (1988). A regression model for time series of counts. Biometrika, 75(4), 621–629. 
10.2307/2336303

Zucker DR, Ruthazer R, Schmid CH, Feuer JM, Fischer PA, Kieval RI, Mogavero N, Rapoport RJ, 
Selker HP, Stotsky SA, Winston E, & Goldenberg DL (2006). Lessons learned combining N-of-1 
trials to assess fibromyalgia therapies. The Journal of Rheumatology, 33(10), 2069–2077. https://
www.jrheum.org/content/jrheum/33/10/2069.full.pdf [PubMed: 17014022] 

Zucker DR, Schmid CH, McIntosh MW, D’agostino RB, Selker HP, & Lau J. (1997). Combining 
single patient (N-of-1) trials to estimate population treatment effects and to evaluate individual 
patient responses to treatment. Journal of Clinical Epidemiology, 50(4), 401–410. 10.1016/
s0895-4356(96)00429-5 [PubMed: 9179098] 

Schmid and Yang Page 25

Harv Data Sci Rev. Author manuscript; available in PMC 2024 January 26.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript

https://github.com/jiabei-yang/nof1ins
https://www.jrheum.org/content/jrheum/33/10/2069.full.pdf
https://www.jrheum.org/content/jrheum/33/10/2069.full.pdf


Figure 1. 
Posterior probability of symptomatic improvement in pain interference in individual N-of-1 

trials for full completers, early completers, and withdrawals for three diet comparisons: 

(A) SCD versus Baseline/Usual Diet, (B) MSCD versus Baseline/Usual Diet, and (C) 

SCD versus MSCD. Within each diet comparison, individual trial probabilities are ordered 

by disease type and by extent of baseline symptoms (more to less). For withdrawals, 

participants with measurements only on baseline diet are not included in the figure. Note: a 

indicates that a child response rather than a parent response was used in analysis, b indicates 

that the participant was randomized to begin with SCD, but began with MSCD.

Note. CD: Crohn’s disease; UC: ulcerative colitis; IC indeterminate colitis; UD usual diet; 

SCD specific carbohydrate diet; MSCD modified specific carbohydrate diet
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Figure 2. 
Posterior median and 95% credible interval of the difference of symptomatic improvement 

in pain interference in individual N-of-1 trials for full completers, early completers, and 

withdrawals for three diet comparisons: (A) SCD versus Baseline/Usual Diet, (B) MSCD 

versus Baseline/Usual Diet, and (C) SCD versus MSCD. Within each diet comparison, 

individual trial probabilities are ordered by disease type and by extent of baseline symptoms 

(more to less). For withdrawals, participants with measurements only on baseline diet are 

not included in the figure. Note: a indicates that a child response rather than a parent 

response was used in analysis, b indicates that the participant was randomized to begin with 

SCD, but began with MSCD.

Note. CD: Crohn’s disease; UC: ulcerative colitis; IC indeterminate colitis; UD usual diet; 

SCD specific carbohydrate diet; MSCD modified specific carbohydrate diet
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Figure 3. 
Screenshot of report given to participants in the I-STOP-AFib study following a 6-week 

N-of-1 trial testing a potential trigger of atrial fibrillation.
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Table 1.

Median posterior treatment difference, 95% credible interval and posterior probability of improvement 

(difference < 0) of $\text{PROMIS} ^{\text{\tiny{\textregistered}}}$ Pain Interference for 24 girls and 30 

boys using a multiple imputation model.

Girls Boys Girls vs. Boys

Comparison Median 95%CrI Pr < 0 Median 95%CrI Pr < 0 Median 95%CrI Pr < 0
SCD v Baseline −4.79 −6.65, −2.87 1.00 −1.62 −3.28, 0.00 0.97 −3.19 −5.66, −0.51 0.99

MSCD v Baseline −4.53 −6.44, −2.56 1.00 −1.73 −3.56, 0.22 0.96 −2.87 −5.39, 0.05 0.97

SCD v MSCD −0.27 −1.47, 0.92 0.67 0.08 −1.11, 1.25 0.45 −0.35 −2.00, 1.31 0.66

Note SCD – Specific Carbohydrate Diet; MSCD – Modified Specific Carbohydrate Diet; CrI – Bayesian Credible Interval.
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