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Using deep learning to quantify neuronal
activation from single-cell and spatial
transcriptomic data

Ethan Bahl1,2, Snehajyoti Chatterjee 3,4, Utsav Mukherjee 3,4,5,
Muhammad Elsadany 1,2, Yann Vanrobaeys 2,3, Li-Chun Lin3,4,
Miriam McDonough 4,6, Jon Resch4, K. Peter Giese 7, Ted Abel 3,4 &
Jacob J. Michaelson 1,3,8,9

Neuronal activity-dependent transcription directs molecular processes that
regulate synaptic plasticity, brain circuit development, behavioral adaptation,
and long-term memory. Single cell RNA-sequencing technologies (scRNAseq)
are rapidly developing and allow for the interrogation of activity-dependent
transcription at cellular resolution. Here, wepresent NEUROeSTIMator, a deep
learning model that integrates transcriptomic signals to estimate neuronal
activation in a way that we demonstrate is associated with Patch-seq electro-
physiological features and that is robust against differences in species, cell
type, and brain region. We demonstrate this method’s ability to accurately
detect neuronal activity in previously published studies of single cell activity-
induced gene expression. Further, we applied our model in a spatial tran-
scriptomic study to identify unique patterns of learning-induced activity
across different brain regions in male mice. Altogether, our findings establish
NEUROeSTIMator as a powerful and broadly applicable tool for measuring
neuronal activation, whether as a critical covariate or a primary readout of
interest.

Transcriptional regulation is a key component in the downstream
response to neuronal stimulation, and the dysregulation of this
activity-dependent gene expressionhas been linked to several nervous
system disorders1–6. Although several techniques exist to identify
active neurons with transgenic single-gene reporter systems7–10,
there is currently no method available to estimate neuronal activity
from transcriptome-wide signal in gene expression data. Estimating
neuronal activation based on gene expression data is vital for
unraveling the intricate processes governing neuronal function and
dysfunction, and decades of research has been devoted to

characterizing these processes1,4,11. Accurate estimation of activation
could provide insights into neural circuitry, advance our under-
standing of neurological disorders, and ultimately contribute to
the development of targeted therapeutic interventions.With advances
in single-cell RNA-sequencing (scRNAseq) technologies, researchers
can now study activity-dependent transcription at the individual neu-
ron level12,13. However, scRNAseq has persistent limitations such as
sparsity and stochasticity in gene expression measurements, which
challenge our ability to use these tools to understand neuronal
activation14–17.
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To address these challenges, we present an innovative tool that
estimates neuronal activation using transcriptome-scale data as input.
Using a comprehensive multi-species gene expression dataset, our
deep learning model employs a single unit bottleneck to derive
interpretable neuronal activity scores and an auxiliary input to the
decoder to counteract dataset-specific biases. This novel approach,
which distills the whole transcriptome into a single integrative activity
score, challenges the single-gene paradigm (e.g., Fos) for measuring
activity at the single cell and bulk tissue level.

Distilling transcriptome-scale signatures into a one-dimensional
information bottleneck, our approach reconstructs the expression
profiles of 22 well-established neuronal activity markers. We show
that the resulting activity score is significantly associated with
electrophysiological features of increased excitability, demonstrating
its applicability in classifying neurons along this essential character-
istic. We further show its application in secondary analyses of
several single-cell data sets, as well as in new spatial transcriptomic
data that captures learning-related circuit activation in the mur-
ine brain.

To facilitate community usage, we developed NEUROeSTIMator,
an R packagewith a tutorial that demonstrates ourmodel’s application
to single-cell data. This innovative method offers a powerful solution
to estimate neuronal activation based on de-noised latent patterns in
single-cell gene expression, outperforming alternative approaches and
providing significant associations with electrophysiological features at
the single-cell level.

Results
Multi-species training, test, and validation data sets
We developed a neural network to quantify signatures of transcrip-
tional activation by training an autoencoder to reconstruct expression
of 22 coexpressed activity-dependent genes from a 1-dimensional
latent space (Fig. 1). We trained, validated, and tested the model using
publicly available datasets, including single cell datasets from theAllen
Institute of Brain Science18 (AIBS) totaling over one million combined
samples, as well as GEO datasets and a novel spatial transcriptomics
dataset (Supplementary Data 1). Activity-dependent genes were iden-
tified by intersecting differential expression results of three studies of
experimental manipulation of neuron activity19–21. All three differential
expression studies examined different brain regions, used different
methods of neuronal stimulation, and were published from indepen-
dent groups. Intersecting these three lists yielded a list of 29 candidate
target genes (i.e., genes to be reconstructed in autoencoder output)
Principal component analysis of the candidate genes revealed a rela-
tively low dimensionality of expression profiles, with PC1 explaining a
majority of the variance (Supplementary Fig. 1a). Using the Allen
datasets, we then performed bootstrap permutations of principal
component analysis on candidate target genes and found a subset of
22 genes robustly exhibiting greater PC1 loadings than expected under
a null PCA with randomly shuffled data (Supplementary Fig. 1b). These
22 genes were selected as the final set of target genes to be recon-
structed by the autoencoder during training. The Allen Cell Type
Databases were downsampled with hierarchical weighting to increase
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Fig. 1 | Schematic Overview of NEUROeSTIMator. The graphical abstract illus-
trates the application of NEUROeSTIMator, a deep learning model, to estimate
neuronal activity. Transcriptome-wide gene expression data from individual neu-
rons is input to an autoencoder, which reconstructs expression of immediate early

genes from a single unit latent space called the ‘activity score’. The activity score
can be applied to gene expression data, including single cell RNA-sequencing,
Patch-seq, or spatial transcriptomics studies for detecting transcriptomic sig-
natures of activity.
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balance of cell types, datasets, technical variation, and biological var-
iation (Supplementary Fig. 2a, b). Five hundred thousandneuronswere
selected and partitioned into cell type-balanced training and testing
sets, and the training set was further split into 5 folds for cross vali-
dation. We trained the neural network to predict expression of the 22
activity-dependent target genes through a 1-dimensional hidden bot-
tleneck layer with sigmoidal activation (see methods for a detailed
description of model architecture and training). To evaluate model
performance,weapplied it to adiverse test set of 164,658neurons held
out fromthe training process, including 86,650 samples fromtheAllen
and 78,108 samples from additional labeled datasets. We selected our
final model based on classification accuracy of labeled test set data
through cross validation.

For further analyses, model output at the bottleneck activation
layer was extracted to index activity level for each neuron passed
through the model. Hereafter, we refer to this output as the predicted
activity or activity score.

Genes informing model predictions
To identify genes whose expression levels influence model predic-
tions, we calculated integrated gradients22 for all input genes with
respect to predicted activity using data from the held out test set.
Integrated gradients attribute model predictions to input features for
each cell. We first compared the attributions of target and non-target
genes on predicted activity. The most influential genes were Fos, Egr1,
Fosl2, Junb, Fbxo33, and Nr4a1. We further explored gene importance
for all non-target input genes and found varying degrees of influence
throughout the transcriptome (Supplementary Data 2). The most
influential non-target genes, such as Fosb, Npas4, Egr2, and Ntrk2 ten-
ded to have higher initial support for consideration as a target gene
and were more often differentially expressed in multiple tran-
scriptomic studies of neuronal activity-dependent transcription (Sup-
plementary Fig. 3a). Other known activity response genes such as
Homer1, Egr4, Dusp6, andBdnfwere also among the topfifty geneswith
the highest feature attribution. To evaluate whether influential genes
were enriched for specific annotated biological mechanisms, we per-
formed gene set enrichment analysis on gene ontology and pathway
annotation sets (Supplementary Fig. 3b, Supplementary Data 3).
Among the most highly enriched gene sets were DNA binding tran-
scription factor activator activity (padjusted = 3.97 × 10−9, NES = 2.29),
signaling by NTRKs (padjusted = 2.07 × 10−8, NES = 2.40), cognition
(padjusted = 5.35 × 10−3, NES = 2.01), MAPK signaling pathway (padjusted =
2.02 × 10−4, NES = 2.01), circadian rhythm (padjusted = 1.60 × 10−3, NES =
2.03), and cellular response to extracellular stimulus (padjusted = 0.033,
NES = 1.89). To identify gene sets with higher attribution in non-target
genes, we removed target genes, repeated the analysis, and identified
gene sets that remained, or became significant. Of the 45 pathways
significantly enriched when examining all genes, seven sets remained
significant when excluding target genes, and seven new sets became
significant, including positive regulation of neurogenesis
(padjusted = 0.019, NES = 1.48), regulation of synapse structure or activ-
ity (padjusted = 0.018, NES = 1.49), and PI3/AKT signaling (padjusted =
0.019, NES = 1.37) (Supplementary Fig. 3b).

Electrophysiological features of individual neuronspredictedby
transcription via NEUROeSTIMator
As an initial application of our model, we examined neurons subjected
to direct electrical stimulation. We integrated single cell RNA assays of
a Patch-seq dataset23 with a SMART-seq dataset18 of mouse GABAergic
neurons, both generated by the Allen Institute for Brain Science (AIBS)
(Supplementary Fig. 4a). Using the standard Seurat workflow24, we
identified seven clusters corresponding to AIBS-defined neuron types
including Sst, Sst Chodl, Pvalb, Vip, Lamp5, Sncg, and Meis2 neuron
clusters. We applied NEUROeSTIMator to both datasets and observed
elevated activity score predictions in the Patch-seq dataset relative to

the SMART-seq dataset for seven neuron types (Fig. 2a). We obtained
empirical p-value estimates of the Kolmogorov–Smirnov (KS) test by
permuting expression values in each cell and recalculating activity
score for one thousand permutations. Six of the seven neuron types
showed significant differences in activity score distributions between
datasets (Fig. 2b), of which Lamp5 neurons showed the greatest dif-
ference (p < 0.001, D = 0.79, KS test) and Vip neurons showing the
smallest difference (p =0.033, D =0.41, KS test). We also noted
that several immediate early genes, which serve as predictive targets
for NEUROeSTIMator, were among the top genes with higher
mean expression in the Patch-seq dataset compared to the SMART-seq
dataset (Supplementary Fig. 4b). Together, these results suggest
that the Patch-seq protocol induces significantly greater transcrip-
tional upregulation of activity-dependent genes as compared to the
standard SMART-seq protocol, and our model is sensitive to these
differences. Notably, this effect is consistent for nearly all neuronal
types tested.

We established that ourmodel detects transcriptomic signals that
separate the electrically stimulated Patch-seq dataset from the unsti-
mulated SMART-seq dataset. However, it is not clear whether elevated
activity was due to electrical stimulation and neuron depolarization, or
general features of the Patch-seq protocol. Patch-seq neurons showed
variability in predicted activity and, because all neurons underwent the
stimulation protocol, we hypothesized that variability in activity score
predictions were linked to individual neuron differences in electro-
physiological features, either intrinsic properties, or responses to
stimulation.

To determine if NEUROeSTIMator predictions of activity could be
explained by electrophysiology, we fit a lasso-regularized generalized
linear model with 10-fold cross validation to predict NEUROeSTIMator
output using only electrophysiological features derived from Patch-
seq recordings. We used 41 electrophysiological features, including
features measured at baseline and in response to the current ramp
stimulus. As substantial differences in electrophysiology exist between
neuron types, we residualized activity score and derived features for
neuron type in order to force the model to learn cell type-agnostic
combinations of features that explain variability in activity score. For
further analyses, we focus on the four most abundant neuron types:
Lamp5, Pvalb, Sst, and Vip neurons. A PCA on these 41 features
revealed 90% of variance is explained by fifteen principal components,
three of which were associated with activity score (p <0.05) (Supple-
mentary Fig. 4c). The cross-validated lasso model predictions were
significantly correlated with NEUROeSTIMator output (R =0.234,
p < 2.2 × 10−16). To evaluate feature importance for each electro-
physiological feature, we obtained bootstrap coefficient estimates and
standard errors by permuting sample weights for each of 10,000
model fits (Fig. 2c). Three features showed robust non-zero coeffi-
cients; membrane time constant (tau) (coefficient = −0.154, standard
error = 0.037), input resistance (coefficient: 0.088, standard error =
0.041), and the threshold current to depolarization (coefficient =
−0.080, standard error = 0.038). The combination of these features
and their direction of effect suggest that themost stimulus-responsive
neurons, those which exhibit a transcriptional response, are more
excitable than other neurons of the same type (Fig. 2d). We then
examined specifically the relationship between input resistance and
NEUROeSTIMator predictions in an independent Patch-seq dataset of
human excitatory neurons and, again, found a significant positive
correlation (r =0.497, p = 0.011) (Fig. 2e). Despite the fundamental
differences between Patch-seq datasets in species and major neuron
class, this successful validation emphasizes the robustness of the
relationship between neuronal excitability and transcriptional
response to stimulation, as revealed through NEUROeSTIMator
predictions.

To better understand how NEUROeSTIMator connects gene
expression to electrophysiology, we performed generalized canonical
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correlation analysis using three input matrices: the gene expression
matrix, a matrix containing the three significant electrophysiology
features, and a one column matrix containing the NEUROeSTIMator
output. We computed a single component and examined gene
expression loadings to understand genes explaining covariance of
both predicted activity and the electrophysiological features of excit-
ability. We used GSEA to identify gene sets enriched for the genes
correlated to both predicted activity and excitability (Supplementary
Data 4).We found significant enrichment of several gene sets including
DNA binding transcription activator activity (padjusted = 2.74 × 10−5,
NES = 1.91), MAPK signaling (padjusted = 2.54 × 10−4, NES = 1.78), and RAS
signaling (padjusted = 3.80 × 10−2, NES = 1.48) (Supplementary Fig. 4d).
Genes common to these pathways with high loadings included Dusp6,
Dusp10,Map3k4,Ntrk2, Rasgrp1, and Prkca. These pathways constitute
an established molecular signaling cascade that functions to link
neuron depolarization and related calcium influx to transcriptional
response25,26.

Taken together, these results demonstrate that NEUROeSTIMator
captures transcriptomic signatures of activity that are associated with
electrophysiological properties measured in response to electrical
stimulation of individual neurons. Building upon this successful
application in electrophysiology, we next extended our analyses to
demonstrate NEUROeSTIMator’s utility across a range of applications
(Supplementary Data 1).

Detecting pharmacological activation of neurons
We applied ourmodel to three single-cell datasets containing neurons
from rodents and human cell lines treated with powerful stimulating,
pharmacological agents. From the first dataset, we computed activity
score for neurons of mice treated with either saline or pentylenete-
trazol (PTZ), a depolarizing agent used tomodel status epilepticus and
induce seizures12,27,28. As expected, we observed significant differences
in distributions of predicted activity (KS test) for 11/14 neuronal sub-
classes tested, including excitatory cortical layer 2/3 (L2/3) neurons,
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Fig. 2 | Electrophysiological features of neuronal stimulation captured by
transcriptome-based activity score. a Activity score distributions compared
between stimulated Patch-seq neurons (gold) and unstimulated SMART-seq neu-
rons (violet). The number of cells in each comparison are given as text annotations
for each density plot. b Observed D statistics (red line) and empirical distribution
from Kolmogorov–Smirnov tests (two-sided) between activity score distributions
of Patch-seq and SMART-seq datasets, using permutations of shuffled expression
values (n = 1000 permutations per cell type) from all cells represented in a. Box-
plots depict median value, box bounds denote interquartile range (IQR), whiskers
denote valueswithin±1.5 x IQR, andpoints outside ofwhisker range denote outliers
with values ≥1.5 x IQR. c Associations between electrophysiological (e-phys) fea-
tures and predicted activity (n = 1277 cells). Heatmap shows feature value columns
ordered by themean bootstrap coefficient, and individual neuron rows ordered by
ephys-based lasso model prediction of NEUROeSTIMator output (top). Predicted
and observed NEUROeSTIMator output shown to the right. Colors represent
z-scaled values, with red colors indicating higher values and blue indicating lower

values. The dot plot (bottom) shows a summary of coefficients estimated by fitting
lasso-regularized linear models between electrophysiology feature value and
NEUROeSTIMator output (n = 10,000 bootstrap permutations per feature). Dots
represent the mean coefficient estimate across bootstraps, lines indicate standard
error across bootstraps. P-values were estimated by counting the number of
bootstrap permutations where the coefficient was zero or the opposite sign of
coefficients observed from the lasso model fit to all data. Significant features with
standard errors that donot cross zero (p <0.05, unadjusted) are depicted by green-
colored dots (bottom). See source data for full statistics and feature descriptions.
d Spike train comparison of two Vip/Ptprt/Pkp2 neurons exhibiting representative
electrophysiological features of high (red) and low (blue) NEUROeSTIMator pre-
dictions (ramp current injected - top panel, membrane potential - bottom panel).
e Patch-seq validation of the positive association between input resistance and
NEUROeSTIMator predictions in a novel set of human excitatory neurons (n = 25
cells). Pearson’s correlation test (two-sided) statistics annotated; linear fit (orange
line). Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-023-44503-5

Nature Communications |          (2024) 15:779 4



Lamp5 interneurons, and Sst interneurons (L2/3 IT CTX: D = 0.40,
p = 9.67 × 10−24), (L2/3 IT ENT: D = 0.5, p = 4.64 × 10−28), (Lamp5:
D = 0.49, p = 1.73 × 10−4), (Sst: D =0.42, p = 3.81 × 10−6) (Fig. 3a, Supple-
mentary Data 5).

Next, we compared activity score between neurons from the
nucleus accumbens (NAc) of rats treated with either saline or cocaine,
a stimulant acting on dopaminergic neurotransmission29,30. We found
neuron subtype-specific increases in activity score. Two subclasses of
dopaminergic medium spiny neurons (MSNs) and both Pvalb inter-
neurons exhibited significant differences in predicted activity (Drd1-
MSN: D =0.15, p = 5.92 × 10−7), (Drd3-MSN: D =0.19, p =0.049), (Pvalb:

D = 0.22, p = 0.028 (Fig. 3b, SupplementaryData 5). Because ourmodel
was not trained using any rat or dopaminergic neurons, these findings
provide further endorsement for robust estimation of neuronal
activity induced by potent pharmacological agents of stimulation.

To further evaluate whether our model could be successfully
applied to human data, we examined a dataset of human induced
pluripotent stem cell-derived neurons31. Neuron cultures were either
unstimulated or treatedwith KCl depolarization32 buffer for 1, 2, or 4 h.
Ourmodel predicted lowneuronal activity for the unstimulated group,
which was consistent among cell types and biological replicates. Cells
treated with KCl for 1 h demonstrated substantial and significant
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Fig. 3 | Multi-species generalization of neuronal activity score applied to pre-
viously published chemical induction studies. Predicted activity for various
neuron types responding to treatment with potent chemical modulators of neuron
activity. a Response to PTZ-induced seizure (red) and controls (white) in mouse
cortical neurons. b Cocaine treatment (red) or controls (white) in rat nucleus
accumbens neurons. c Time series of predicted activity for human iPSCs treated

with depolarizing potassium chloride at 0 h (control), 1 h, 2 h, and 4 h. Annotated
statistics from Kolmogorov–Smirnov tests (one-sided) are provided in Supple-
mentary Data 5. Boxplots depict median value, box bounds denote interquartile
range (IQR),whiskers denote valueswithin ±1.5 x IQR, and points outside ofwhisker
range denote outliers with values ≥1.5 x IQR. Source data are provided as a Source
Data file.
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increases in predicted activity. Although significant shifts in predicted
activity were observed for all cell types (p < 0.05), the activity score of
post-mitotic neurons displayed a stronger response to KCl compared
to mitotic progenitors. The most responsive neuron types were the
mature striatal neurons and pallial neurons (striatal: D1hr = 0.69,
D2hr = 0.58, D4hr = 0.50, p1hr/2hr/4hr < 2.22 × 10−16), (pallial: D1hr = 0.75,
D2hr = 0.67, D4hr = 0.64, p1hr/2hr/4hr < 2.22×10−16) (Fig. 3c, Supplementary
Data 5). Notably, all cell clusters except neural progenitors and septal
neurons followed a similar temporal pattern of predicted activity
modestly declining at 2 h relative to peak activity at 1 h, with a further
decline at 4 h (i.e., D1hr > D2hr > D4h). Despite the steady decline in
predicted activity after 1 h, none of the neuron clusters completely
returned to basal activity by 4 h, the final time point in the experiment.
The temporal trends of predicted activity are indicative of synaptic
depression33, suggesting NEUROeSTIMator is sensitive to detecting
short term plasticity mechanisms.

Together, these analyses suggest our model can robustly assign
higher estimates of activity to cells subjected to chemical exposures
that are expected to elicit strong and generally ubiquitous transcrip-
tional responses to stimulation.

Activity score as a generalizable classifier of neuronal
stimulation
Next, we asked if our model could detect neuronal activation bymore
subtle forms of stimuli, such as sensory experience. We applied
our model to a dataset containing visual cortex neurons from mice
housed in darkness for seven days prior to light exposure for 0, 1,
or 4 h34 (Fig. 4a). We observed a significant increase in predicted
activity for neurons from mice exposed to light, relative to controls.
To elucidate temporal patterns of activity, we tested differences in
activity score distributions between pairs of each time point. Activity
score was significantly increased at 1 h for all cell types, in particular
for excitatory cortical neurons (layer 2/3: D =0.56, p < 2.22 × 10−16),
(layer 4: D =0.60, p < 2.22 × 10−16), (layer 6: D = 0.54, p < 2.22 × 10−16).
At 4 h of light exposure, predicted activity began to show
diverging trendswhich were foreshadowed by predicted activity at 1 h.
Although trending towards a return to baseline, activity scores
of neurons at 4 h were not significantly different from neurons at
1 h, while several glial cell types returned to baseline (Fig. 4a,
Supplementary Data 6).

As we observed similar trends in temporal activity predictions
between the unstimulated (0h) and 1 h group, we investigated
the degree to which the activity score derived from our model could
be used as a classifier of experimental group. The degree to which
activity score is predictive of experimental group in a particular cell
type is expected to represent the robustness of the response in that
cell type. Using the visual cortex dataset (VIS) mentioned above,
we constructed receiver-operator curve (ROC) plots for neuronal and
non-neuronal cell types (Fig. 4b). For both excitatory neuron and
interneuron subtypes, the activity score demonstrated varying
degrees of predictive power. For example, the activity score alone
was able to almost perfectly separate stimulation groups when con-
sidering excitatory cortical layer cell types (layer 2/3: AUC =0.84),
(layer 4: AUC =0.89), (layer 6: AUC=0.823), as well as certain inter-
neuron cell types (Sst-2: AUC: 0.97), (Vip: AUC=0.90). Despite the
model being trained on purely neuronal cell type populations, the
activity score was able to separate stimulation groups for astrocytes
(AUC=0.84) and endothelial cells (AUC =0.72) with comparable
accuracy to neurons.

Utility in data modalities beyond scRNA-seq
Next, we asked whether our model could identify spatial signatures of
learning in brain slices of mice following spatial object recognition
(SOR) training - a widely used behavioral paradigm to investigate
spatial memory mechanisms35. Using spatial transcriptomic data from

brain slices of SOR-trained and homecage control (HC) male mice, we
applied our model to predict activity for each spot (Supplementary
Fig. 5a) and clustered all spots into anatomical regions. The 22
resulting clusters were annotated with brain region naming conven-
tions from the Allen Mouse Brain Atlas (Fig. 5a). In baseline homecage
samples, we noted weak activation signatures, primarily covering
regions of the striatum and hypothalamus as well as subregions of the
hippocampus (Fig. 5b, left). Following SOR training, we noted region-
specific increases in predicted activity (Fig. 5b, right). To identify a
spatial activation signature of SOR for the entire brain slice, we tested
for differences in predicted activity for each brain region cluster
(Fig. 5c). We observed significant increases in predicted activity for
several cortical and subcortical regions. Multiple layers of the iso-
cortex and the retrosplenial area showed increases in activity following
SOR (Fig. 5d), with the greatest increases observed in layers 2/3
(β =0.17, padjusted = 3.16 × 10−4) and the retrosplenial cortex (β =0.17,
padjusted = 1.00 × 10−6). The caudoputamen area of the dorsal striatum,
subregions of the hippocampus, and the olfactory/piriform areas also
showed significant increases in activity, of comparable magnitude
(caudoputamen: β =0.12, padjusted = 8.01 × 10−4). Subregions of the
hippocampus were variably activated following SOR, with the stron-
gest induction observed in the CA1 subregion (β = 0.12,
padjusted = 9.14 × 10−5), while the dentate gyrus subregion did not show
significant activation (β = 0.03, padjusted = 0.07). Other regions pre-
dicted to be least activated by SOR include the thalamus, hypothala-
mus, and fiber tracts (Supplementary Data 7).

Visium samples contain signal from multiple neuronal and non-
neuronal cells. Cortical layers and CA1 showed profound increases in
activity but are also known to have relatively high neuron density.
Therefore, we considered the extent to which regional neuron density
influences coefficient estimates in Fig. 5d. We performed cell type
deconvolution on each Visium spot, using neuronal and non-neuronal
cell type expression profiles from the Allen Cell Types Database. For a
subset of genes with high variability across cell classes, we fit a linear
model to each Visium spot as a function of GABAergic, glutamatergic,
and non-neuronal expression profiles. Coefficient estimates for each
cell class were rescaled across samples to a range of zero to one, and
then adjusted for each sample to sum to one, thus providing a proxy
measure of cell class density (Supplementary Fig. 6a). We found a
significant positive relationship between estimated regional neuron
abundance and log-estimated regional effect of learning on activity
(β =0.87, p =0.01), (Spearman correlation = 0.54, p =0.009) (Supple-
mentary. Fig. 6b). We used the residuals of the linear model in Sup-
plementary Fig. 6b as a neuron density-corrected view of the effect of
learning (Supplementary Fig. 6c). Cortical layers, retrosplenial cortex,
CA1, and caudoputamen regions show greater learning-induced
increases in activity score than expected based on neuron density
estimates alone, suggesting that neurons in these regions exhibit a
more potent transcriptional response to learning, or that there are
other cell types contributing to the activity signature. The dentate
gyrus and regions of the hypothalamus, amygdala, thalamus showed
lower activity induction than expected.

To validate the finding that the CA1 region was preferentially
activated by spatial learning over the dentate gyrus, we performed
RNAscope36 on coronal brain slices from SOR-trained (1 h post-train-
ing) and homecage control mice (Supplementary Fig. 5b). We selected
three NEUROeSTIMator target genes, Egr1, Egr3, and Nr4a1 as probes.
For each brain slice, we quantified mean fluorescent intensity (MFI) of
each probeand then averaged the MFI of all three probes for each
hippocampal subregion. A two-way ANOVA revealed a significant
interaction between hippocampal subregions and training groups. In
line with the spatial transcriptomic data (Supplementary Fig. 5c), we
found that CA1 showed a preferential increase in average probe
intensity following spatial learning (Sidak’s test, CA1: padjusted = 0.0075,
dentate gyrus: padjusted = 0.5553) (Supplementary Fig. 5d).
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NEUROeSTIMator outperforms competing methods in
discriminating experimental stimulation groups
TheNEUROeSTIMator approach toquantifying activity uses anencoding
neural network to infer transcriptome-wide coexpressionwith a set of 22
activity-dependent target genes. We investigated whether the added
complexities of our model are necessary to produce a metric that suc-
cessfully discerns stimulated samples from unstimulated. We compared
NEUROeSTIMator to seven alternative models. The first competing
method is a scaled additive model, a simple and easily implementable
approach that scales normalized expression of NEUROeSTIMator’s 22
target genes across samples to range of [0,1], and then sums scaled
values within samples. The second method, the PC1 model, scores

sampleswith target gene loadings derived from the first component of a
PCA on the NEUROeSTIMator training dataset. The third method uses
MAGIC for graph-based imputation before applying the scaled additive
approach to the imputed expression values. The fourth method, the
transcriptome-naïve model, is a neural network trained with identical
parameters to NEUROeSTIMator, but without access to non-target gene
expression inputs. The fifth approach, the transcriptome reconstruction
approach, is a neural network trained with identical parameters to
NEUROeSTIMator but reconstructs the entire transcriptome with the 22
target genes having equal total loss weight to all other genes. The sixth
and seventh approaches, the 2 & 3-unit bottleneck models, are neural
networks trained with identical parameters to NEUROeSTIMator, but
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Fig. 5 | Spatial transcriptomic patterns of neuronal activation after spatial
learning. a Spatial anatomical clustering of RNA-sequencing spots. RSP retro-
splenial area, HY hypothalamus, AMY amygdala, med: medial, lat lateral. b Activity
score per spot, averaged within experimental groups of homecage controls (left)
and 1 h after SOR training (right). Yellow color indicates low activity and red indi-
cates high activity. c Brain region-specific induction of activity following SOR
training. Differences tested using a linearmixed effects model (two-sided), colored
by the SOR coefficient estimate per region (n = 3 biologically independentmice per
group). Dark purple colors represent greater differences between groups.

Cluster-wise differential activity statistics are summarized in (d) and provided in
Supplementary Data 7. Dots represent estimated coefficients of SOR on activity
score; linear fit. Brackets indicate standard error of the coefficient. Asterisks indi-
cate a significant difference in activity score between homecage and SOR groups—
false discovery rate (FDR)-adjusted p-values are *FDR ≤0.05, **FDR ≤0.01,
***FDR ≤0.001, and ****FDR ≤0.0001. Exact p-values, FDR, coefficients, and the
number of cells per group, per brain region are provided in Supplementary Data 7.
Source data are provided as a Source Data file.
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using two and three bottleneck units, respectively. We evaluated each
model by scoring activity in stimulated and unstimulated samples from
six datasets (Supplementary Data 1) and determined separability of the
experimental groups using area under the curve (AUC). This approach
was applied to datasets featured in Figs. 3, 4, and 5, as well as a novel
single nuclei dataset from mouse dorsal hippocampus following SOR.
For each method, dataset, and neuron type we computed AUC and
summarized the performance differences between NEUROeSTIMator
and competing methods (ΔAUC). (Supplementary Figs. 7, 8, Supple-
mentary Data 8). NEUROeSTIMator demonstrated higher performance
than each of the competing methods (AUCNEUROeSTIMator =
0.732, AUCscaled.additive = 0.651, AUCMAGIC =0.587, AUCPC1 = 0.661,
AUCtranscriptome.naive = 0.671, AUCtranscriptome.reconstruction =0.702,
AUCNEUROeSTIMator.2units = 0.725, AUCNEUROeSTIMator.3units = 0.717), (mean
ΔAUCscaled.additive = +0.081, ΔAUCMAGIC = +0.145, ΔAUCPC1 = +0.071,
ΔAUCtranscriptome.naive = +0.061, ΔAUCtranscriptome.reconstruction = +0.030,
ΔAUCNEUROeSTIMator.2units = +0.007, ΔAUCNEUROeSTIMator.3units = +0.015).
Across all competing methods, datasets, and sample groupings, NEU-
ROeSTIMator increased AUC in 77.9% of 763 comparisons. For com-
parisons where NEUROeSTIMator outperformed the competing
method, the average increase in AUC was +0.077. For the remaining
22.1% of comparisons where NEUROeSTIMator did worse than the
competing method, the average decrease in AUC was −0.031. Together,
these results suggest that the neural network architecture and NEU-
ROeSTIMator’s use of broader transcriptomic signals underlie its
enhanced performance compared to alternative approaches.

Discussion
We introduce NEUROeSTIMator, a versatile tool that estimates neu-
ronal activity from transcriptome-wide single-cell gene expression
data. Our method generates an activity score that reflects whole-
transcriptome response to stimulation, facilitating the rapid identifi-
cation and prioritization of neurons displaying stimulus response.
NEUROeSTIMator’s performance and generalizability are demon-
strated through capturing electrophysiological (e-phys) features and
detecting activation signatures across various stimulation protocols,
neuron subtypes, species, and sequencing technologies, including
spatial transcriptomics.

Our analysis reveals that activity-predictive signals are distributed
broadly across the transcriptome and are enriched for genes related to
external stimulus response, synaptic plasticity, MAP kinase activity,
and circadian rhythm. Moreover, we demonstrate a significant link
between NEUROeSTIMator’s predictions and increased neuronal
excitability, utilizing a unique single-cell Patch-seq dataset containing
gene expression and e-phys readouts from individual GABAergic
murine neurons23. These results were further confirmed through a
significant association between the activity score and measures of
excitability in human excitatory neurons37.

We showcase NEUROeSTIMator’s flexibility and generalizability
through secondary analyses of several diverse published datasets,
detecting potent pharmacologically induced neuronal activity and
generalizing across species and cell types. Importantly, ourmodel also
detects physiologically relevant activation in response to sensory
experiences and uncovers unexpected activity in non-neuronal cells
(e.g., astrocytes), suggesting potential applicability to other cell types
and stimulus responses.

In a novel application, we use NEUROeSTIMator to analyze spatial
transcriptomic data from mice subjected to a spatial learning task,
revealing a brain-wide map of learning-induced activation. This high-
lights the method’s adaptability to spatial transcriptomics (and other
varieties of bulk RNA-seq data) and suggests potential for uncovering
distinct spatial signatures of transcriptional activation related to cog-
nitive processes.

While our model demonstrates a significant link between tran-
scriptional response and e-phys features in murine interneurons and

human excitatory neurons, its applicability to e-phys features in
broader cell types is limited by the few available Patch-seq datasets.
Additionally, our model does not inherently differentiate stimulation
types (e.g., pharmacological vs. naturalistic), and we observed some
sensitivity to activity signatures in non-neuronal cell types (a poten-
tially desirable feature, depending on the application). Further, the
activity score is limited to detecting activation linked to immediate
early gene expression; other potential mechanisms that may be linked
to neuronal activation and that act independently of this well-
established mechanism may not be detected by our tool. Despite
these limitations, NEUROeSTIMator delivers key insights across sev-
eral neuroscience research domains.

As the first robust and generalizable method for estimating neu-
ronal activation from transcriptomic data, NEUROeSTIMator has
broad implications for molecular neuroscience research and chal-
lenges the single-gene paradigm of measuring neuronal activity. Our
method enables the estimation of cellular activity state, a fundamental
variable in gene expression research, paving the way for its integration
into single-cell and spatial transcriptomics analyses.

Methods
Dataset for model training and evaluation
To train the model, we utilized publicly available datasets provided by
the Allen Institute for Brain Science, including a single-cell RNA-
sequencing (scRNAseq) dataset of over a million cells isolated from
mouse cortical and hippocampal tissue18, and a single-nuclei RNA-
sequencing (snRNAseq) dataset of 76,000 nuclei isolated fromhuman
cortical tissue. Hereafter, these datasets will be referred to as the Allen
Mouse and Allen Human datasets. Both datasets used the 10X Geno-
mics Chromium system for droplet capture. The Allen Mouse dataset
was prepared using the Chromium Next GEM Single Cell 3’ v3 reagent
kit, while the Allen Human dataset used v2.

Datasets for model application—publicly available
We downloaded multiple datasets from Gene Expression Omnibus
(GEO) to demonstrate the utility of our model. The following GEO
accessions were included in analyses: GSE10282738, GSE10667813,
GSE13665631, and GSE13776329.

Gene identifier mapping
We used the R package biomaRt (version 2.46.3) to map gene identi-
fiers from various annotations used in public datasets, and between
species, to a common set of reliably mapped genes39,40. Ensembl gene
identifiers (Ensembl IDs) were used as the primary identifier for map-
ping genes, and gene symbols were used as secondary identifiers in
cases of ambiguous mapping. The Ensembl release 93 archive (July
2018 release) was used for cross-species gene mapping41. Genes with
one-to-one orthology between mouse and human, as well as mouse
and rat, were selected to facilitate cross species utility. All datasets
lacking Ensembl ID annotation contained gene symbols, which were
then queried against multiple Ensembl archives to determine which
archivemaximized identifiermapping rate. For instances, when a gene
symbol mapped to multiple Ensembl IDs, identifiers present in the
cross-speciesmapping tablewere preferentially selected.Weprovide a
helper function formapping gene identifiers to the feature set used by
our model, and we further demonstrate usage in the associated
tutorial.

Choice of neural network target genes
To identify robustmarkers of neuronal activity for use as targets of the
neural network, we intersected lists of stimulus-responsive genes from
three published RNA-sequencing experiments. Each publication was
from a different group of authors, focused on different brain regions,
and used different forms of neuronal stimulation (Supplementary
Data 1). One publication categorized stimulus-responsive genes into
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three groups—rapid primary response genes (rPRGs), delayed primary
response genes (dPRGs), and secondary response genes (SRGs)21. As
SRGs are thought to demonstrate higher celltype-specificity relative to
PRGs1, only rPRGs anddPRGswere considered from this publication. In
another publication, approximately 600 genes upregulated in
response to kainic acid treatment in the hippocampus were
considered20.

In a third publication, two sets of KCl-responsive genes were
available, one from a brain region enriched in glutamatergic neurons
andone enriched forGABAergic neurons19. For this study,we sought to
intersect the results of both the glutamatergic andGABAergic analyses
into one list of genes. Published p-value distributions suggested dif-
ferences in statistical power between these two analyses, and only
statistically significant results were published. To expand the list of
genes overlapping between these analyses, we reanalyzed the data
using GEO2R to obtain two sets of transcriptome-wide statistics. Using
significance rankings from the GEO2R reanalysis, we jointly deter-
mined p-value thresholds for each analysis based on rank-rank
hypergeometric overlap (RRHO, see Supplementary Fig. 9) and iden-
tified genes with p-values below these thresholds in both sets with
concordant direction of effect42. Because this approach used uncon-
ventional p-value thresholding, we additionally required intersecting
genes to have an estimated fold change greater than or equal to 0.5 in
both analyses.

Intersecting the three lists of stimulus response genes provided41
candidate target genes. From these 41, four genes were excluded due
to ambiguous or failed cross-species gene identifier mapping. We also
excluded an additional eight genes that were detected in less than 1%
of cells in more than one out of the four species-by-class groups (i.e.,
mouse-GABA, mouse-glut, human-GABA, human-glut) to mitigate the
potential for the model to learn spurious target correlations to cell
class markers or species markers. We performed principal component
analysis (PCA) on the reaming 29 candidate target genes to assess
dimensionality and found that PCs beyond PC1 added very little to the
variance explained (Supplementary Fig. 1a). All but one gene had a
positive loading on PC1, and several genes had a loading near zero. We
identified genes that had extreme positive loadings by comparing
them to an outlier threshold for PC1 loadings from a shuffled, null PCA.
A scaling factor, the ratio of variance from the observed PC1 to the null
PC1, was used tomake the loadings comparable. The outlier threshold
was defined as the median null loading plus or minus three times the
median absolute deviation of the null loadings. We found that 22 of 29
genes had loadings considered to be outliers under the null expecta-
tion (Supplementary Fig. 1b). We then did 1000 bootstrap permuta-
tions of this analysis, each using random samples of 10,000 cells, and
counted the number of permutations where each gene’s loading sur-
passed the outlier threshold. The same 22 genes surpassed the
threshold in at least 5%of thepermutations,while theother 7 genes did
not (Supplementary Fig. 1c). With evidence of robust coexpression,
those 22 genes were selected as the final set of targets for our neural
network:Arc,Btg2,Coq10b,Crem,Dusp1,Dusp5, Egr1, Egr3, Fbxo33, Fos,
Fosl2, Gadd45g, Gmeb2, Grasp, Junb, Nr4a1, Nr4a2, Nr4a3, Per1, Rgs2,
Sertad1, and Tiparp.

Sample filtering, downsampling, and partitioning
Cells were filtered out if they had less than 5000 total counts, greater
than 50,000 total counts, less than 1000 genes detected, more than
10% reads originating from mitochondrial genes, or more than 10%
reads originating from the most highly expressed gene. Non-neuronal
cells and ultra-rare neuron subclasses with less than 1000 cells were
removed, and imbalances among species, neuron type, quality control
metrics and naively estimated activity were alleviated using weighted
downsampling with hierarchically readjusted weights. Cells were
grouped hierarchically by species, class, brain region neighborhood,
subclass, and finally, by two-dimensional binning of one source of

technical variation (log10 of total counts), and one source of biological
variation (PC1 of target genes). Each group at the leaf nodes of the
hierarchy were assigned equal weights summing to one. At each level
of the hierarchy, moving from leaves to root, weights were readjusted
to sum to one for each group. Using these weights, we downsampled
the dataset and calculated Shannon’s entropy tomeasure imbalance at
different values ofN (Supplementary Fig. 2a)We chose to downsample
to 500,000 cells to strike a balance between dataset size and diversity.
The effects of downsampling are demonstrated for four subclasses in
Supplementary Fig. 2b. The R package groupdata2 (version 1.4.1) was
used to create five training folds (91.3%, 456,725 samples) and one test
split (8.7%, 43,275 samples). We used the groupdata2 function ‘fold’
with the parameters ‘cat_col’ set to the species-class group and
‘num_col’ set to the target gene PC1 values in order to keep these
balanced across folds, but also set the ‘id_col’ parameter to the sub-
class label so each subclass was present in some folds but not others.
This was done to discourage the undesirable learning of subclass-
specific bias in cross-validation.

Dataset augmentation
The Allen Cell Types Database has higher average total counts per cell
compared to many publicly available datasets. To increase repre-
sentation of lower quality cells, we created augmented samples by
synthetically downsampling raw counts using the R package scater43

(version 1.18.6). For each combination of species and neuron subclass,
an equal number of cells were randomly assigned a value of either 103,
103.25, or 103.5 total counts to be downsampled to. All genes were con-
sidered for downsampling.

Feature normalization and preprocessing
Log-normalization, as implemented in Seurat, was used to normalize
input gene expression. Total counts for each cell were calculated by
summing only the 10,017 features used by the model. Normalized
expression levels for each gene were centered and scaled based on
mean and standard deviation estimated from the training data. For
cross validation, mean and standard deviation were estimated without
the held-out fold.

Model architecture
The architecture of the model was adapted from DCA44 (see Supple-
mentary Fig. 10). Briefly, input gene expression is supplied to encoder
branches; a series of three fully connected dense layers with ELU
activations and batch normalization. ELU activations were chosen over
RELU to increase learning speed and performance. The first three
hidden layersof the encoders contained 16, 8, and4units. The encoder
then connects to the information bottleneck, a single-unit dense layer
with sigmoid activation. Variations of the single unit bottleneck (i.e.,
two and three unite bottlenecks) were also investigated. Downstream
of the bottleneck, a decoder layer outputs the expression values of the
target genes, i.e., the estimated mean parameter µ of the zero-inflated
negative binomial (ZINB) model. A separate parallel encoder branch
outputs estimates of the dispersion and dropout parameters. To
restrict the bottleneck from capturing biases in the training data, we
directly supplied auxiliary inputs (neuron subclass, dataset, andquality
control variables) to the decoder. Auxiliary inputs were passed
through two hidden layers, producing a six-unit dense layer which was
then concatenated with the bottleneck activation as well as the output
branch for dispersion and dropout parameters to form penultimate
decoder layers. The ZINB loss function was used as implemented in
DCA, with the only difference being that our implantation only com-
putes loss for the target genes rather than all inputs to themodel. This
reconstruction loss is based on the maximum likelihood estimate of
the ZINB count model, a common model assumed to underlie the
count distributions of single cell RNA-seq datasets. A binary cross
entropy loss was added to the bottleneck layer to monitor
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classification accuracy. For model applications, the model outputs are
not used, but the sigmoidal bottleneck activation value is the metric
extracted to index neuronal activity (see Supplementary Fig. 10). Two
additional variations of the model architecture were also investigated.
One alternative model was restricted to using information from only
the 22 target genes. Another alternative model reconstructed two
separate output branches, each contributing equally to the total loss:
one to reconstruct the 22 target genes, and one to reconstruct the
whole transcriptome (i.e., all genes supplied at the inputs).

Model training
We trained the model using the R package keras, version 2.3.0.0, and
Tensorflow version 1.15.045. Training proceeded for 10 epochs using
the ADAM optimizer. Gaussian dropout was applied to input
expression to simulate uncertainty in measurements. Augmented
samples were given the same output as the original data to curtail the
learning of depth-dependent information, and augmented samples
appeared in the same training batches as the samples they were
derived from. We used basic hyperparameter tuning to evaluate the
impact of training epochs, learning rate, and regularization para-
meters such as dropout, L1, and L2 penalty. The final model was
selected based on the minimum cross-validation bottleneck layer
loss for labeled data (binary cross entropy). Although samples from
labeled datasets contributed to the ZINB reconstruction loss, the
bottleneck loss did not contribute to weight updates during training
to curtail the possibility of information leakage between the training
and test splits. Only test split samples were included in any down-
stream analysis presented in this paper.

Evaluating feature importance
To evaluate relative importance of each gene on predicted activity, we
implemented a strategy adapted from the integrated gradients22, a
popular feature attribution approach used in image classification.
Briefly, model gradients were calculated from input genes to bottle-
neck activation for the test set. For each gene we fit a generalized
additive model (GAM) with smoothing between the sample gradients
and bottleneck activation. We estimated global feature importance by
approximating the integral of the fit. We took the summation of the
GAM output for the full range of possible bottleneck activation values
[0,1], with a step size of 1 × 10−3. Gene set enrichment analysis was run
using the R package fgsea (version 1.16.0). We calculated enrichment
for gene ontology, Reactome, KEGG, and Wikipathways terms of size
between 100–200.

Comparison of Patch-seq and Smart-seq datasets
The SMART-seq and Patch-seq datasets were integrated, clustered, and
visualized using the R package Seurat24 (version 4.0.1). The sctransform
‘v2’ method was used for normalization46. Cell clustering results were
cross-referenced with provided neuron type annotations to identify
neuron types common to both datasets and harmonize labels. We used
the Kolmogorov–Smirnov test (KS test) to assess distributional differ-
ences in predicted activity of samples from the Smart-seq andPatch-seq
datasets at the neuron type level. Only neuron types with at least one
hundred samples in each dataset were considered. To derive
empirical p-values and determine whether dataset-specific biases is
transcriptome-wide expression levels contributed to observed differ-
ences in predicted activity, we ran 1000 permutations of the KS test
using activity score predictions from within-sample shuffled gene
expression values. Empirical p-values were calculated from the fre-
quency of permutation D statistics that were more extreme than those
observed in the actual data.

Modeling activity score with electrophysiological features
The whole-cell Patch-seq electrophysiology recordings from neurons
of mouse visual cortex provided by the Allen Institute for Brain

Sciences were downloaded as NWB files from the DANDI (ID: 000020,
September 2021 update)23. The dataset included electrophysiological
recordings of 4284 specimens from 1040mouse subjects. The Python
package IPFX (version 1.0.5) was used to perform quality control and
compute electrophysiological features from the NWB files. We built a
generalized linearmodel with lasso regularization using the R package
glmnet (version 4.1-6) to predict output of NEUROeSTIMator using
only electrophysiological features. Cells included in the glmnet train-
ing belonged to major neuron types (e.g., Vip, Sst) with at least
200 cells, and minor neuron types (e.g., Sst Rxfp1 Prdm8) with at least
10 cells. Features with missing values in five hundred or more cells
were removed, and cells with any missing values for the remaining
features were discarded. We engineered additional features from the
IPFX output, including time and voltage changes between various
action potential landmarks (e.g., voltage change between action
potential threshold andpeak).Minor neuron typewas regressed out of
the activity score and electrophysiological features. Cells with feature
values more extreme than three standard deviations of the mean were
considered outliers and removed. Significanceof non-zero coefficients
from the glmnet model was evaluated with 10,000 bootstrap permu-
tations. In each permutation, a vector ofweights is shuffled andused in
fitting the glmnet model. For each input feature, we computed the
mean bootstrap coefficient. The confidence interval was defined as
the mean estimate plus or minus 1.96 times the standard deviation of
the bootstrapped coefficients. Feature significance is indicated by the
confidence intervals not reaching or overlapping zero. To validate
the electrophysiology findings, we did a Pearson’s correlation test
between NEUROeSTIMator output and input resistance for Patch-seq
neurons from the AIBS dataset ‘Multimodal Analysis of Human Layer 5
PyramidalNeurons’37. Canonical correlation analysis (CCA)was used to
explore gene expression profiles with shared relationships to pre-
dicted activity and three electrophysiological features. Inputs to the
generalizable CCA included the NEUROeSTIMator output matrix, the
matrix of three significant electrophysiological features, and the gene
expression matrix. One canonical component was calculated for each
input matrix, with the tau parameter set to 0 to maximize correlations
between all sets of variables. Gene set enrichment analysis was per-
formed as described above using the gene loadings for the gene
expression canonical component.

Preparation of application datasets
Application datasets were downloaded from the Gene Expression
Omnibus (GEO). In datasets without provided labels, cell types
were identified by running the standard Seurat pipeline, identifying
cell clusters, and cross-referencing cluster marker genes to those
used in the source publications or the Allen Cell Types Database.
To prepare datasets for input to NEUROeSTIMator, gene expression
data was log-normalized sample-wise and scaled gene-wise
using mean and standard deviation values from the original training
dataset. Samples with at least 1000 counts were then input to the
model and activity score was the 1-unit bottleneck activation layer
output.

Testing differences in predicted activity
For all datasets analyzed inFigs. 2 and3,weused theKS test to evaluate
differences in activity score distributions. For statistical tests in Fig. 5,
we used the R package lmerTest to fit alinear mixed effect model with
donor as a random effect to test for differences in predicted activity of
experimental groups across the spatial transcriptomic clusters, deriv-
ing p-values and coefficient estimates of learning on predicted activity
per cluster. In Supplementary Fig. 6b, we adjusted the coefficient
estimates of learning on predicted activity for neuron density. We
estimated neuron density using a cell type deconvolution technique.
We derived gene signatures for GABAergic neurons, glutamatergic
neurons, and non-neuronal cell classes by averaging the median gene
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expression for their respective clusters and subclasses from the Allen
Cell Types Database.

For each sample in the Visium dataset, we constructed a linear
model, correlating the gene expression vector with a three-column
matrix that contained class-averaged expression signatures. We then
normalized the coefficient estimates across all Visiumsamples for each
cell class by scaling them toa0–1 range and then adjusting their sumto
one within samples. This process provided an estimate of abundance
for each cell class. We summed the estimated abundances of gluta-
matergic and GABAergic neurons to determine neuron abundance or
density for a specific Visium spot, Subsequently, we created a linear
model of brain region log coefficient estimates as a function of brain
region averaged neuron density estimates. The residuals of thismodel
represent the neuron density-corrected coefficient estimates.

Performance benchmarking
We compared the performance of NEUROeSTIMator to seven alter-
native approaches to quantify activity. Performancewasdefined by the
ability to separate labeled cells based on the stimulation status (i.e.,
experimental group) using area under the curve (AUC). The seven
alternative approaches were calculated as follows. The scaled additive
measure of activity is calculated by first scaling log-normalized target
expression values to a range between 0 and 1, and then summing the
scaled targets in each cell or sample. We also applied this scaled
additive approach to target expression levels imputed by MAGIC47, as
implemented in the R package Rmagic (version 2.0.3), with default
parameters. To calculate the PC1 measure, we first performed PCA on
target genes of the training set used to train NEUROeSTIMator. The
loadings for PC1 were then applied to the test set. The remaining four
approaches were alternative versions of NEUROeSTIMator. The
transcriptome-naïve model is a version of NEUROeSTIMator trained
with the same parameters, but information from the non-target input
genes is blocked by setting their input values and weights to the first
hidden layer to zero. The whole-transcriptome model reconstructed
the entire transcriptomeduring training, as opposed to reconstructing
only the targets. For this model, the 22 target genes and the broader
transcriptome were assigned equal weight in the loss function during
training. The final two models were trained with a bottleneck of either
two or three units. To summarize these multivariate bottleneck out-
puts to a univariate score for AUC calculation, we fit generalized linear
models to the binary stimulation group status as a function of the
bottleneckoutputs in the training data, and then applied themodels to
test data. To benchmark NEUROeSTIMator against alternative models
for binary outcome prediction of stimulation group status, we eval-
uatedmodel ability to separate stimulated fromunstimulated samples.
We computed the Area Under the Receiver Operating Characteristic
Curve (AUC-ROC) for each model across all combinations of source
dataset and sample groupings. We then determined the AUC differ-
ences between NEUROeSTIMator and the alternative models for each
sample grouping. To summarize the average AUC difference within
each dataset, we calculated the mean of the AUC differences for the
respective sample groups. This yielded a single value representing
themean AUC difference for each source dataset in the test set. Lastly,
we derived the final performance metric by computing the mean of
these mean AUC differences across all data sources, offering a com-
prehensive evaluation of the NEUROeSTIMator’s performance relative
to the alternative models.

Animals
The spatial transcriptomic and RNAscope experiments were per-
formed using male C57BL/6 J mice obtained from Jackson Laboratory
(#000664), aged between 2 and 4 months. The mice were housed in
groupsof up tofive individuals per cage,which contained soft bedding
material. They had access to food (NIH-31 irradiated modified mouse
diet #7913) and water ad libitum. A 12-h light-dark schedule was

maintained, with the start of the lights-on period designated as Zeit-
geber time zero (ZT0). Animals were housed in the Animal care facility
of the University of Iowa under a pathogen-free condition at the
temperature of 21–22 °C and relative humidity of 60–70%. The
experimental procedures followed the guidelines for animal care and
use set forth by the National Institutes of Health, and they were
approvedby the InstitutionalAnimalCare andUseCommittee (IACUC)
at the University of Iowa.

Behavioral training for spatial transcriptomics
We generated a novel spatial transcriptomic dataset examining the
effects of spatial learning in mice. The dataset contains spatial RNA-
sequencing of whole brain slices from 1 h after SOR training or home
cage controls (HC). 10–12 weeks old C57BL/6 J male mice were trained
in SOR task as described previously35. Briefly, mice were handled for 5
consecutive days prior to the SOR training. On the day of the training,
animals were individually placed in an open field with a spatial cue and
was allowed to habituate for 6min. They were returned to their home
cage and the arena was wiped clean with ethanol. The animals were
again placed back into the open field with three objects at specific
spatial locations. The animals were allowed to freely explore the
objects in the arena for 6min. This training with objects comprised of
three trials of 6min each. One hour after the completion of the train-
ing, mice were euthanized and whole brains were flash frozen in iso-
pentane placed on dry ice.

Spatial transcriptomics
Mouse brain section per mouse was cut at 10 µm thickness and
mounted onto each Visium slide capture area. After H&E staining, each
bright-field imagewas taken asdescribed in the spatial transcriptomics
protocol. Tissue permeabilization was performed for 18min, as
established in the tissue optimization assay. The Visium Spatial Gene
Expression Slide & Reagent kit (10x Genomics) was used to generate
sequencing libraries for Visium samples. Libraries were constructed
according to the 10x Visium library construction protocol and
sequenced by Illumina NovaSeq6000. Raw data was then processed
using the 10x Genomics Space Ranger analysis pipeline. See Supple-
mentary Fig. 5a for images of predicted activity for each replicate.

In situ hybridization
In situ hybridization was performed on 20μm coronal brain sections
fromSOR-trainedandHCmiceusingRNAscope reagents (AdvancedCell
Diagnostics). Briefly, fixed frozen brains were sectioned on a cryotome
and mounted on Superfrost™ Plus microscope slides (Fisherbrand).
Slides then underwent serial dehydration in Ethanol, followed by
Hydrogen Peroxide treatment, target retrieval, and Protease III treat-
ment—all of which were done according to themanufacturer’s protocol.
Hybridization of probes was done at 40 °C for 2 h in an HybEZ oven
using a 50:1:1 cocktail of Egr1, Nr4a1, and Egr3 respectively. The probe
signals were amplified with Pre-amplifier 1 (Amp 1-FL) and counter-
stained with OPAL dyes (Akoya Biosciences) corresponding to different
excitation-emission wavelengths. Finally, the slides were mounted with
Vectashield® Antifade Mounting Medium with DAPI (Vector Labora-
tories). Slides were stored in 4 °C until they were imaged.

Confocal imaging and analysis
After performing the RNAscope assay, brain sections were imaged
using Olympus FV3000 confocal microscope with a 10X NA=0.4
objective at 800× 800-pixel resolution. High magnification images of
the hippocampus were obtained using a 40X NA= 1.30 oil immersion
objective at 800× 800-pixel resolution and 1.25 optical zoom. All
images (8 bit) were acquired with identical settings for laser power,
detector gain and pinhole diameter for each experiment and between
experiments. Images from the different channels were stacked and
projected at maximum intensity using ImageJ (NIH). Hippocampal
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subregion-specific Mean Fluorescence Intensity (MFI) of each RNA-
scope probe was evaluated using plugins in ImageJ. The average MFI
for all the 3 probes corresponding to each hippocampal subregionwas
compared between the two experimental groups. Two-way ANOVA
was used to assess significance of subregion-by-training interaction
(n = 4 for each subregion/training combination). A post-hoc Sidak’s
multiple comparisons test was applied to assess significance of indi-
vidual subregion differences.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Spatial RNA-sequencing data, including gene expression measure-
ments, tissue images, spot coordinates, and raw FASTQ files have
been deposited in the Gene Expression Omnibus (GEO) repository
under the accession code “GSE201610”. GEO datasets used in this
study can be accessed under the following accession codes
“GSE111899”, “GSE125068”, “GSE55591”, “GSE106678”, “GSE137763”,
“GSE136656”, “GSE102827”. Other datasets used in this study can be
accessed through the Allen Institute for Brain Science: “Allen Cell
Types Database [https://portal.brain-map.org/atlases-and-data/
rnaseq]”, “Mouse PatchSeq VIS [https://knowledge.brain-map.org/
data/1HEYEW7GMUKWIQW37BO/summary]”, “Human PatchSeq L2/3
[https://knowledge.brain-map.org/data/0R94W5U07IHCMVJ4TVK/
summary]”. Results used in the analyses of this publication have been
deposited to Zenodo under the accession https://doi.org/10.5281/
zenodo.10183210. Source data are provided with this paper.

Code availability
NEUROeSTIMator is available at https://research-git.uiowa.edu/
michaelson-lab-public/neuroestimator/ as a free R package with
installation instructions and a tutorial.
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