
ARTICLE

Single-cell transcriptome analysis of epithelial,
immune, and stromal signatures and interactions in
human ovarian cancer
Chaochao Chai1,2,3,7, Langchao Liang1,2,3,7, Nanna S. Mikkelsen4, Wei Wang5, Wandong Zhao1,2,

Chengcheng Sun1,2, Rasmus O. Bak 4, Hanbo Li 2,3, Lin Lin 4,6, Fei Wang 2,3,4,8✉ &

Yonglun Luo 2,3,4,6,8✉

A comprehensive investigation of ovarian cancer (OC) progression at the single-cell level is

crucial for enhancing our understanding of the disease, as well as for the development of

better diagnoses and treatments. Here, over half a million single-cell transcriptome data were

collected from 84 OC patients across all clinical stages. Through integrative analysis, we

identified heterogeneous epithelial-immune-stromal cellular compartments and their inter-

actions in the OC microenvironment. The epithelial cells displayed clinical subtype features

with functional variance. A significant increase in distinct T cell subtypes was identified

including Tregs and CD8+ exhausted T cells from stage IC2. Additionally, we discovered

antigen-presenting cancer-associated fibroblasts (CAFs), with myofibroblastic CAFs

(myCAFs) exhibiting enriched extracellular matrix (ECM) functionality linked to tumor pro-

gression at stage IC2. Furthermore, the NECTIN2-TIGIT ligand-receptor pair was identified to

mediate T cells communicating with epithelial, fibroblast, endothelial, and other cell types.

Knock-out of NECTIN2 using CRISPR/Cas9 inhibited ovarian cancer cell (SKOV3) prolifera-

tion, and increased T cell proliferation when co-cultured. These findings shed light on the

cellular compartments and functional aspects of OC, providing insights into the molecular

mechanisms underlying stage IC2 and potential therapeutic strategies for OC.
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Ovarian cancer (OC) is a malignant gynecological tumor
with a high mortality rate1. In 2022, there were 57,090
new OC cases reported in China, which is twice of cases

reported in the United States in the same year2. In 2023, OC is
estimated to account for 5% of cancer-related deaths among
women in the United States3. High-grade serous ovarian cancer
(HGSOC) is the most common histological subtype of OC,
accounting for 75% of all OC cases. The five-year survival rate of
OC is higher in the early stages, unfortunately, approximately
75% of the patients are diagnosed in the later stages4. Advanced
OC patients typically have more metastatic sites, resulting in a
higher cancer recurrence rate and a lower five-year survival rate5.
Currently, screening methods for OC, such as detecting serum
CA125 concentration and ultrasonography, have a high rate of
false negatives and false positives in the general population and
are not universally applicable6. However, some new biomarkers
have been reported in combination with CA125, showing a cer-
tain effect in malignancy risk algorithms7. Thus, investigating the
cellular and molecular mechanisms of OC in all clinical stages can
advance our understanding of the pathogenesis of OC, help dis-
covering new biomarkers, and support early screening and
treatment of OC.

OC is a malignancy with an unclear etiology and has intratu-
moral heterogeneity. Single-cell RNA sequencing (scRNA-seq)
has been widely used to dissect the cellular compositions and
heterogeneity in the tumor microenvironment (TME) in various
types of cancer8–10. For OC, Xu et al. recently reported the
complex changes in TME using scRNA-seq, including the
decreased attraction of macrophages to immune cells and the
variance in the interaction between cancer-associated fibroblasts
(CAFs) and cancer cells11. Understanding the cellular and
molecular changes during OC progression is beneficial for dis-
covering the dynamic changes of OC, particularly for identifying
potential biomarkers for diagnosis and treatment12. OC has a
complex TME and exhibits higher intratumoral heterogeneity
compared to other gynecological tumors13,14. Single-cell studies
have shown that cancer cell subsets have both patient-specific
features14,15, and functional features16, but the functional differ-
ences in epithelial cells in OC stages are still unclear. CAF is an
important component of the TME in OC and plays a vital role in
tumor pathogenesis17. The interaction between cancer cells and
primary myCAF can promote the epithelial-mesenchymal tran-
sition (EMT) process in tumors11, and co-activation of certain
signaling pathways in CAFs and cancer cells in OC ascites pro-
motes drug resistance9,18. However, the variety of interactions
between CAFs and other cell types during OC progression
remains poorly understood.

OC is characterized as an immunogenic tumor, showcasing a
spontaneous antitumor immune response. Tumor-infiltrating
lymphocytes have been demonstrated to strongly correlate with
a favorable prognosis in the OC microenvironment19. Anadonet
et al. explored the distribution of CD8+ T cells in OC and found
that effector T cells constitute a small portion of CD8+ T cells,
with tumor-infiltrating lymphocytes mainly acting as bystanders
in the TME20. T-cell exhaustion is characterized by the stepwise
and progressive loss of T-cell effector functions and homeostatic
self-renewal capacity during tumor outgrowth21–23. Under-
standing the properties and pathways to T-cell exhaustion has
crucial implications for the success of checkpoint inhibitors and
adoptive T-cell therapies. A few studies showed that T-cell
exhaustion features could be a predictor for the prognosis and
treatment of OC patients19,24. However, the features and dynamic
lineage changes of T cell exhaustion during OC progression are
still unclear, making it necessary to further explore the gene
expression differences and the cellular interaction relationships
during the OC progression.

In this study, we report the integration of single-cell tran-
scriptomic datasets of OC encompassing all clinical stages,
comprising data from 84 OC patients with a total of
505,102 single cells. We performed an integration analysis and
identified eight major cell types in OC. We identity many sub-
types of epithelial cells, T cells, and fibroblasts in OC. The epi-
thelial cell subtypes exhibited distinct cell functions, copy number
variation (CNV), and gene expression changes during OC pro-
gression. Additionally, we thoroughly classified T cell subtypes,
investigated the differentiation trajectory of CD8+ T cell sub-
types in OC, and explored the changes in the proportion of T cell
subsets during OC progression. Among the different cell types,
fibroblasts exhibited the most interaction with epithelial cells and
T cells. Interestingly, we observed a clear increase in the
expression of ECM-related genes in myCAF along the progres-
sion of the tumor stages. Finally, we compared the changes in
cellular communication probability from fibroblast to epithelial
cells, as well as fibroblast to T cells across different stages of OC.
Our findings revealed an increasing interaction of the COL-
LAGEN and LAMININ pathways in the fibroblast-to-epithelial
cell communication as the disease advances. Furthermore, most
cell types exhibited immunosuppressive effects on T cells through
the NECTIN2-TIGIT ligand-receptor pair interaction pathway.

Results
An integrated single-cell transcriptome atlas of human
ovarian cancer. Several previous studies have reported the ana-
lysis of cellular heterogeneity and functions in human OC with
scRNA-seq, but differ in terms of clinical stages. We first sought
to generate an integrated and curated single-cell transcriptome
atlas, which will benefit the systematic analysis of the cellular
compositions and heterogeneity of OC. We collected and re-
processed 109 scRNA-seq datasets (Supplementary Data 1.1) and
filtered out the low-quality data using the methods described (see
Methods section). Ultimately, we obtained a total of 505,102
high-quality cells from 9 OC clinical stages for subsequent ana-
lysis (Fig. 1a, Table 1, detailed in methods). Initially, we per-
formed an integration analysis on different samples, tissues, and
clinical stages of OC using harmony25 (Fig. 1b, Supplementary
Fig. 1a). Based on expression of canonical markers, we identified
eight major cell types, including B cells (CD79A, IGHM), endo-
thelial cells (VWF, CLDN5), epithelial cells (KRT18, WFDC2),
fibroblasts (DCN, COL1A1), mast cells (KIT, MS4A2), myeloid
cells (LYZ, APOE), pericytes (TAGLN, RGS5), and T cells
(PTPRC, CD3D) (Fig. 1c, Supplementary Fig. 1b). To validate the
accuracy of the cell type annotation, we performed differentially
expressed genes (DEGs) analysis for each cell type and conducted
Gene Ontology (GO) enrichment analysis (Fig. 1d, Supplemen-
tary Data 1.2, 1.3), which further confirmed correct cell type
annotations.

We then investigated the proportions of each major cell type in
different source studies and tissues. CD45-positive immune cells
from the OvC0926 study mainly comprised T cells, myeloid cells,
and B cells. In line with this, the OvC1120 study focused on
T cells, and over 90% of our annotation results were also
identified as T cells (Fig. 1e), further validating the accuracy of
our cell-type annotation. When considering different metastatic
tumor foci, we observed that the normal ovarium primarily
consisted of pericytes. However, in ovarium tumors, the
proportion of epithelial cells increased, and this proportion was
further elevated in relapse tumors. Notably, the fractions of both
epithelial cells and T cells were increased in each metastasis
compared to their respective normal tissues, such as omentum
versus (vs.) normal omentum, and peritoneum vs. normal
peritoneum. These findings suggest that the immune
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Fig. 1 Dissection of ovarian cancers with scRNA-seq. a Workflow depicting the collection and processing of ovarian cancer for scRNA-seq. Illustration of
female reproductive system and female icons were created with BioRender.com with licensed for use in journal publications. b The UMAP plot shows cell
literature source, tissue and stage by color. c The UMAP plot demonstrates the major cell types in ovarian tumor and metastatic tumor foci. d The
expression heatmap of top10 marker genes for major cell type and the GO enrichment term of marker genes. e Stacked bar graph of the proportion of
major cell types in each literature source in scRNA-seq profiles. f Stacked bar graph of the proportion of major cell types in each metastatic tumor foci in
scRNA-seq profiles.
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microenvironment of metastatic carcinoma foci resembles that of
primary carcinomas (ovarium vs. normal ovarium) in terms of
changes in the proportion of major cell types. In ascites, we
observed a high number of epithelial cells and fibroblasts. This
data was derived from the OvC0127 dataset, in which the original
study had adopted a strategy of eliminating CD45+ immune cells
(Fig. 1f).

In summary, our analysis integrated scRNA-seq datasets of
OC, particularly HGSOC. We encompassed primary tumors,
relapse tumors, fallopian tubes, and metastatic carcinoma foci,
covering all stages from healthy, cancer-free individuals to stage
I–IV patients, totaling 84 patients. Additionally, we have created
an interactive website (https://dreamapp.biomed.au.dk/
OvaryCancer_DB/) for the visualization of the datasets.

Epithelial cell subtypes and clinical stage-related functional
differences in ovarian cancer. To identify molecular signatures
of epithelial cells in OC, we subset and performed single-cell
analysis on a total of 87,847 epithelial cells. Using consensus non-
negative matrix factorization28, we generated transcriptional gene
modules and divided the cell clusters based on the gene expres-
sion matrix. We assessed the stability and error of the module
quantity and ultimately identified the optimal 9 gene modules to
reduce the data dimension (Supplementary Fig. 2a). The epithelial
cells were categorized into a total of 12 clusters (Epi0-Epi11), and
we named functional clusters by DEGs (Supplementary Data 2.1).
Epithelial cells exhibit a large degree of tissue heterogeneity and
demonstrate a better integration effect between OC stages in
UMAP dimensions (Fig. 2a, Supplementary Fig. 2b–d). Each of
the 12 clusters corresponded to one or more functional modules.
Clusters such as Epi0, Epi3, Epi4, and Epi7 corresponded to a
single module, while clusters Epi1 and Epi2 corresponded to
multiple modules (Fig. 2b). Each cluster exhibited specific DEGs,
with clusters corresponding to the same module, such as Epi1 and
Epi7, displaying relatively consistent DEGs (Fig. 2c). We per-
formed GO enrichment analysis on the top 200 contributing
genes of each gene module. Tumor cell function gene sets, which
are provided by the CancerSEA database29, were scored with gene
set variation analysis (GSVA) using the gene contribution scores
of each gene module (Supplementary Data 2.2, 2.3). Modules 3, 6,
and 9 represented gene modules of normal epithelial cells, enri-
ched in functions such as inflammation, cilium formation, and
steroid metabolism, which aligned with the tissue source of the
corresponding clusters. Modules 2, 4, and 7 are enriched in basic
cell functions and related signaling pathways such as
mitochondrion-related functions and ATP biosynthetic processes.
Module 5 exhibited a higher enrichment score for hypoxia and
metastasis gene sets, while module 8 displayed higher scores for
replication-related gene sets and proliferation gene sets. Module 1
was present in both cancer-free fallopian tube epithelium and
tumor cells, displaying higher scores of EMT and invasion gene
sets, and primarily enriched in ECM-related signaling pathways
(Fig. 2b, c, Supplementary Fig. 2b–d, e-f, Table 2).

To investigate the correlation between CNV in epithelial cells
and cancer progression, we randomly selected 30,000 epithelial
cells for inferCNV analysis (https://github.com/broadinstitute/
inferCNV). We compared the CNV profiles of epithelial cells
across different stages, and the results revealed significant
(P < 0.001, Wilcoxon rank-sum test) CNV differences between
normal epithelial cells and tumor cells. While there was only a
slight difference in CNV between stage I and normal tissue, stages
II to IV exhibited higher levels of CNV compared to stage I. This
observation suggests that OC stage I has a lower degree of
malignancy compared to the later stages (Fig. 2d, e, Supplemen-
tary Fig. 2g). Additionally, we evaluated the SCENT cellT
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differentiation potential of epithelial cells by randomly estimating
the entropy value of 3000 cells. During the transition from
normal tissue to stage I and subsequently to stages II to IV, the
cell entropy value showed a significant increase (P < 0.001) at
stage IC2 and gradually decreased in the later stages (Fig. 2f).

To compare the differences in tumor cell functions in the OC
stages, we calculated the scores of tumor cell function gene sets
for each stage. We observed 4 distinct trends across 14 gene sets.
Trend 1 showed low function scores in stages before stage IC2
and high scores in later stages. Trend 2 represented high function
scores in cancer-free cells and low scores in tumor cells. Trend 3
was the opposite of trend 2, indicating that compared to cancer-
free cells, cancer cells exhibited enhanced hypoxia and prolifera-
tion functions, and cancer-free cells remained relatively quiescent
and exhibited inflammation. During the transition from stage IC1

to IC2, tumor cells exhibited elevated apoptosis, DNA damage,
and metastasis functions (Fig. 2g). The percentage differences in
cell clusters during stage progression were consistent with
functional scoring results. Cluster Epi3, associated with inflam-
mation, was predominately presented in the cancer-free cell
group, while cluster Epi5, consisting of proliferating cells, was
exclusively found in the cancer stages. Cluster Epi4 enriched for
apoptosis and metastasis, appeared in stages after stage IC1
(Fig. 2g, Supplementary Fig. 2d).

Furthermore, we used Mfuzz30 to assess the gene expression
differences in epithelial cells during OC stage progression
(Supplementary Fig. 2h). Among the 20 gene change trend
clusters, clusters 4, 5, 10, and 11 exhibited an upward trend from
stage IC1 to IC2. Notably, these gene clusters included the OC
early screening gene MUC16 (CA-125), WFDC2 (HE4), and

Fig. 2 Epithelial cell subtypes and clinical stage-related functional differences. a The UMAP plot shows epithelial cell sub cluster by color. b Dot plot
shows gene module contribution of epithelial cell sub cluster. c The expression heatmap of top10 marker genes for epithelial cell sub cluster. d Heatmaps
shows large-scale CNVs for individual epithelial cells. e The violin plot shows the cell entropy value of epithelial cells in each stage (Total 23,564 single
cell). *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. f The violin plot shows the CNV score of epithelial cells in each stage (Total 2,488 single cells).
g The heatmap shows the tumor cell function gene sets score of each stage. h The bar chart shows the GO enrichment term of up regulated genes in
stage IC2.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-024-05826-1 ARTICLE

COMMUNICATIONS BIOLOGY |           (2024) 7:131 | https://doi.org/10.1038/s42003-024-05826-1 | www.nature.com/commsbio 5

www.nature.com/commsbio
www.nature.com/commsbio


PAX8 (Supplementary Data 2.4). These genes were enriched in
signaling pathways related to the major histocompatibility
complex class-II (MHC-II) antigen presentation pathway.
Increased expression of tumor-enriched MHC-II has been
associated with a favorable prognosis and increased numbers of
tumor-infiltrating CD8+ T lymphocytes31,32. However, it has
also been reported that tumor cell MHC-II molecules may engage
with ligands to induce immunosuppression33 (Fig. 2h, Supple-
mentary Data 2.5). These results suggest that the transition from
stage I to stage II may represent a critical time node in the
progression of OC, wherein CNV levels, differentiation potential,
and cell function of cancer cells undergo robust changes. The
genes exhibited an upward trend between stage IC1 and IC2
including previously reported OC screening genes, while the
remaining genes showing an uptrend represented potential
candidates for OC screening.

The trajectory of T cell subtypes during ovarian cancer pro-
gression. Immunotherapy targeting inhibitory immune check-
points in immune cells has shown remarkable efficacy in treating
various solid tumors34,35. T cells, as the crucial immune cells, play
a pivotal role in tumor development and treatment. To investigate
the changes in T cells across different stages of HGSOC, we
performed a detailed classification and annotation of T cell sub-
types and presented the proportions of T cell subtypes from
different sources, clinical stages, tissues, and patients (Supple-
mentary Fig. 3a). Specifically, CD4+ T cells (CD4), CD4+ reg-
ulatory T cells (Tregs) (CD4, IL2RA, FOXP3), CD8+ naive T cells
(CD8A, CCR7, SELL, TCF7), CD8+ memory T cells (CD8A,
GPR183, IL7R), CD8+ effector T cells (CD8A, GNLY, GZMB2,
PRF1), CD8+ exhausted T cells (CD8A, PDCD1, TIGIT,
HAVCR2, CTLA4), and CD8+ proliferating T cells (CD8A,
TOP2A, MKI67) were identified (Fig. 3a, b). Interestingly, we
observed that CD8+ proliferating T cells exhibited both pro-
liferation characteristics and exhaustion features. This finding is
consistent with the study by Carmen et al.20. and has also been
reported in renal carcinoma8. The UMAP plot demonstrated that
CD8+ proliferating T cells were positioned at the end, suggesting
that they may represent the final lineage stage of CD8+ T cells.
To validate this observation, we performed a pseudo-time ana-
lysis of CD8+ T cells, revealing that CD8+ proliferating T cells
were derived from CD8+ naive T cells through two potential
routes: 1. CD8+ naive T cells→ CD8+memory T cells→ CD8+
effector T cells→ CD8+ exhausted T cells→ CD8+ proliferating
T cells; 2. CD8+ naive T cells → CD8+ exhausted T cells →
CD8+ proliferating T cells (Fig. 3c). It is also demonstrated by
the expression changes of the classical marker genes in CD8+ T

cell subtypes along the pseudo-time trajectory. Notably, the naive
genes for T cells are highly expressed in the early stage, effector
genes are highly expressed at the middle stage, exhaustion genes
are highly expressed at the middle and late stages, and pro-
liferation genes are highly expressed at the end of the pseudo-time
trajectory (Fig. 3d). Interestingly, our findings differ from those of
Carmen et al., who observed that CD8+ proliferating T cells
precede CD8+ exhausted T cells20. Further experimental ver-
ification is required to reconcile these discrepancies.

CD8+ exhausted T cells and Tregs increased from stage IC1 to
IC2. We then examined the cell proportions of different T cell
subtypes in OC at different stages (Fig. 3e). Notably, data from the
OvC09, OvC10, and OvC11 studies were excluded here, as these
three studies primarily focused on some subtypes of T cells and
would impact the overall T cell proportions. We observed that
there was clear difference in the proportion of T cell subtypes
between the OC stages of cancer-free, stage IA, and stage IC1.
However, from stage IC2 onwards, there was a clear increase in the
proportions of CD8+ exhausted T cells and Tregs, while the pro-
portion of CD8+ naive T cells was decreased. Furthermore, at the
molecular level, the expression of classical markers associated with
exhaustion and Tregs was increased after stage IC2, while classical
naive markers were decreased (Fig. 3e). We further validated these
findings by using the Tregs differentiation and exhaustion gene sets
scoring, which showed the increased gene scoring for Tregs and
exhausted T cells from stage IC2 onwards, consistent with cellular
proportion and molecular features (Supplementary Fig. 3b, c,
Supplementary Data 3.1, 3.2). Patients with cancer-free, stage IA,
and stage IC1 were divided into group1, and those with stage IC2
onwards were grouped into group2. Statistical significance tests
were performed on the cell proportions of patients in both groups,
confirming the significant changes in cell proportions for Tregs
(P < 0.0001), CD8+ exhausted T cells (P < 0.05), CD8+ naïve
T cells (P < 0.05), and CD8+ proliferating T cells (P < 0.05)
between these two groups (Fig. 3f). We also performed clustering
analysis based on the temporal patterns of genes with high varia-
tion, which further confirmed these findings. Moreover, we iden-
tified additional genes that show prominent expression changes
from stage IC1 to stage IC2 (Supplementary Fig. 3d, Supplementary
Data 3.3). These results suggest that the obvious features of the
immunosuppressive TME with the accelerated T cell exhaustion
and the involvement of Tregs after stage IC2 of HGSOC, which
indicated the potential contributions to cancer progression and
metastasis at the late stage of HGSOC. We also examined the
differences in T cell subtypes between primary tumors, metastatic
tumor sites, and their corresponding normal tissue. We observed
that the proportion of CD8+ exhausted T cells and Tregs was
increased in the tumor samples, while CD8+ effector T cells and
CD8+ memory T cells were decreased in the tumor compared to
normal tissue (Supplementary Fig. 3e). These findings were con-
sistent in both primary and metastatic tumors. Additionally, it is
challenging to diagnose HGSOC in the early stages, and is prone to
abdominal disseminated metastasis after stage II36. These changes
observed at the single-cell and molecular levels in stage IC2 imply
the potential applications for the early clinical detection of HGSOC.

Antigen-presenting CAF was identified in ovarian cancers. We
next sought to investigate the functional phenotypes of CAFs,
which are crucial for tumor occurrence and progression. We
performed cell receptor and ligand interaction analysis and
observed that fibroblasts had a higher number and intensive
interactions with T cells and epithelial cells. This finding indicates
that fibroblasts played an important role in TME (Fig. 4a). To
further reveal the fibroblasts phenotypes, we performed high-

Table 2 Summary of the function of each epithelial cell
subgroup.

Cluster module function

Epi0 module 1, module 2,
module 4

EMT, Invasion, basic cell
functions

Epi1 module 1 EMT, Invasion
Epi2 module 1, module 3 EMT, Invasion, inflammation
Epi3 module 3 Inflammation
Epi4 module 4 basic cell functions
Epi5 module 5 Hypoxia, Metastasis
Epi6 module 6 Cilium organization
Epi7 module 1 EMT, Invasion
Epi8 module 8 Proliferation
Epi9 module 7 basic cell functions
Epi10 module 9 Steroid metabolic process
Epi11 module 8 Proliferation
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Fig. 3 The pseudo-time trajectory of T cell subtypes and cell proportion change. a The UMAP plot demonstrates the T cell subtypes in ovarian tumor and
metastatic tumor foci. b Dot plot shows the average expression level and expression percentage of classic marker genes in T cell subtypes. c The UMAP
plot shows the pseudo-time differentiation trajectory of CD8+ T cell subtypes with colors indicates pseudo-time. d The heat map shows the variation of
CD8+ T cell subtype classical marker gene expression with pseudo-time. e Changes in the proportion of T cell subtypes and marker gene expression of
naive, exhaustion and Treg with stage in ovarian tumors. f The boxplot shows the difference in the cell proportion of Treg, CD8+ exhausted T cells, CD8+
naïve T cells and CD8+ proliferating T cells in group1 and group2. Each point indicates one patient (Total 30 patients, including 7 patients in group1, 23
patients in group2). *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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Fig. 4 Antigen-presenting CAF was identified and enhanced ECM function in myCAF from stage IC2. a The number and strength of cell interactions
among the major cell types of ovarian cancer. b The UMAP plot shows the fibroblast sub-clusters in ovarian tumor and metastatic tumor foci. c The UMAP
plot color coded for the expression of marker genes for the fibroblast subtypes. d The bar chart shows the GO enrichment term of marker genes in Fib8.
e The dot plot shows variation of ECM gene expression in myCAF with stage. f The violin plot shows change of ECM score in myCAF with stage (Total
7,438 single cell). *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001. g Kaplan–Meier OS curves of patients with TCGA HGSOC grouped by the top10
marker gene of myCAF. P values were calculated by a log rank test.
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resolution clustering for fibroblasts and identified myCAF (Fib0:
MMP11, COL11A1), inflammatory CAF (Fib2: C7, CFD, DPT),
proliferating CAF (Fib10: MKI67, TOP2A), immune regulatory
CAF (Fib7: CXCR4, CCL5), and antigen-presenting CAF (Fib8,
HLA-DRA, HLA-DRB) (Fig. 4b, c). Notably, the antigen-
presenting CAF was not identified by previous studies conduct-
ing the scRNA-seq of OC samples, although this cell type has
been found in human lungs and livers and mouse pancreas and
mammary glands10,37–40. Our integrative strategy of this large
amount of scRNA-seq data helps with revealing the rare fibroblast
phenotypes. Antigen-presenting CAF were found in various
metastatic tumor foci (Supplementary Fig. 4a), which exhibited
high expression of HLA-DRA, HLA-DRB, and other MHC genes
(Fig. 4c, Supplementary Data 4.1), potentially contributing to
anti-tumor immunity. In line with this, GO enrichment analysis
of marker genes in Fib8 showed the enrichment of “antigen
processing and presentation”, “antigen processing and presenta-
tion of peptide or polysaccharide antigen via MHC class II”, and
“antigen processing and presentation of peptide antigen”, which
further validated Fib8 as the antigen-presenting CAF (Fig. 4d,
Supplementary Data 4.2).

Enhanced ECM function in myCAF from stage IC2. MyCAFs
are a class of CAFs with strong ECM deposition characteristics and
are the main proportion of CAF in OC tumors (Fig. 4b, c). Inter-
estingly, we observed an increase in the expression of ECM genes
from stage IC2 (Fig. 4e), indicating a potential association between
increased tumor cell growth/metastasis and the CAF activation and
ECM formation from myCAFs. To further validate this finding, we
calculated the ECM score using all genes involved in the ECM
process (GO: 0031012) and observed a significant increase in ECM
score from stage IC2 (P < 0.05) (Fig. 4f). Moreover, the fraction of
myCAF was clearly elevated in each metastatic tumor foci compared
to their corresponding normal tissues, such as omentum vs. normal
omentum, and peritoneum vs. normal peritoneum (Supplementary
Fig. 4a). Notably, the proportion of myCAF also increased clearly
after stage IC2 (Supplementary Fig. 4b). To explore the potential of
myCAF genes as prognostic biomarkers for HGSOC, we calculated
the GSVA scores for the top 10myCAFmarker genes and conducted
survival analysis using TCGA HGSOC data. Strikingly, we found
that there was a significant correlation (long-rank test, P value=
0.0082) between the high expression of these top marker genes and
the poor prognosis of patients (Fig. 4g), indicating their potential as
therapeutic targets in OC.

Interactome between fibroblasts, epithelial cells, and T cells
over OC progression. The large number of ligand-receptor pairs
between fibroblasts and T cells/epithelial cells indicate a high
probability and importance of cellular communications between
cell types in OC progression (Fig. 4a). This prompts us to explore
the ligand-receptor pairs involved in the OC microenvironment,
immunosuppression, tumor cell growth, and metastasis. We
performed ligand-receptor interaction analysis for cells in five
clinical stages of primary OC (cancer-free, stage I, stage II, stage
III, and stage IV). This analysis revealed an increase in both
numbers and intensity of cell interactions from cancer-free to
stage I, which however gradually decreased over later tumor
progression (Fig. 5a). These findings suggest that the increased
cell-cell interactions during the early stage of cancer progression
indicate the strong cellular and tissue remodeling within the
establishment of TME, whereas immunosuppression (reduced
cellular interactome, e.g., immune suppression) is essential for the
advanced progression of OCs.

We investigated the interactions of fibroblasts to epithelial cells
and fibroblasts to T cells. Our results showed that the extracellular

matrix receptor interactions with COLLAGEN and LAMININ
pathways exhibited the largest number of interactions (Fig. 5b, c,
Supplementary Data 5.1). Both collagen and laminin have been
reported to be associated with promoting OC metastasis41–43. The
ligands of the COLLAGEN pathway primarily include collagen 1,
collagen 4, and collagen 6, while the receptors were mainly integrin,
SDC4, and CD44. The probability of cell communication was
strongly enhanced in the progressive tumor stages compared with
cancer-free fibroblasts to epithelial cells, but there were no evident
changes for fibroblasts to T cells. Laminin belongs to the extracellular
matrix glycoprotein family and is the main non-collagenous
component of the basement membrane44. Its main receptors are
integrin, DAG1, and CD44. In fibroblasts to epithelial cells
interactions, various LAMININmolecules play a key role in different
stages of tumor development, and the Laminin-CD44 interactions in
fibroblasts to T cells exhibited a clear downward trend with tumor
development. CD44 is usually expressed by activated T cells and is
essential for the potency of T cell effector function45. These results
suggested that fibroblast cells may interact with epithelial cells
through COLLAGEN and LAMININ pathways in the progressive
tumor stages, leading to tumor cell metastasis. In addition, fibroblast
cells also regulate T cells through laminin-CD44, making T cell
activity and efficacy decrease with the tumor progression.

After that, we focused on identifying the specific cell types
within the OC TME that express immune checkpoint ligand
genes, leading to the inhibition of T cell functions. Thus, we
examined the immune checkpoint-related ligand-receptor inter-
actions, and TIGIT stood out as the most obvious interactome.
PVR-TIGIT, NECTIN2-TIGIT, and NECTIN3-TIGIT were not
expressed in the cancer-free stage, but the obvious cell interaction
appeared from stage I, indicating that immunosuppression had
already appeared at the beginning of stage I. Additionally, TIGIT
ligands are produced by various cell types, including endothelial
cells, epithelial cells, fibroblasts, myeloid cells, and pericytes.
Therefore, not only malignant epithelial cells but also other cell
types may play a crucial role in producing T cell-inhibiting
ligands during the onset of OC (Fig. 5d, Supplementary Data 5.2).
Importantly, these cells all act through NECTIN2-TIGIT. To
further validate the NECTIN2-TIGIT ligand-receptor pair as a
mediator of T-cell-induced immunosuppressive microenviron-
ment in OC, we disrupted the NECTIN2 gene expression in
human OC cell line (SKOV3) utilizing CRISPR/Cas9 targeting the
coding exon 2 of the gene. The high CRISPR knock-out efficiency
of NECTIN2 was achieved (97%), with the major indel of 1-base
pair insertion (94%) and a minor indel of 7-base pair deletion
(3%), which was consistent with the high transduction efficiency
of EGFP-mRNA in SKOV3 cells with our recent selection-free
gene editing approach46. Additionally, the morphology of SKOV
cells with NECTIN2 knockout exhibited subtle changes, display-
ing a blunt phenotype (Supplementary Fig. 5a–e). To investigate
the functional effect, we measured the proliferation in NECTIN2
knockout SKOV3 cells, as well as effect on T cell proliferation/
exhaustion. The NECTIN2 knockout SKOV3 cells exhibited
significant reduced proliferation rate compared to the wild-type
cells (P < 0.0001) (Fig. 5e). Most importantly, when the activated
T cells were co-cultured with NECTIN2 knockout SKOV3 cells,
we observed two-fold increase in T cell proliferation from 72 h to
240 h in two of three donors as compared to that co-cultured with
wild-type SKOV3 cells (Fig. 5f, g). These results suggest that
NECTIN2-TIGIT as a checkpoint mediator can inhibit T cell
immune response to cancer cells. Furthermore, we performed a
Kaplan-Meier survival analysis of NECTIN2 using TCGA
HGSOC data, showing that high expression of NECTIN2 was
associated with poor prognosis in patients (long-rank test, P
value= 0.029, Fig. 5h). In summary, our findings offer valuable
insights into potential immune checkpoint therapy for OC.
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Discussion
At present, there are few studies on the clinical stages of OC, and
there are some limits such as incompleteness of stage and less
metastatic tumor focal. Our study collected most of the published
single-cell RNA data on OC, and endeavored to achieve whole-
stage, whole-tissue types. Furthermore, we developed an open-

access database for data visualization and exploration. After
completing the comprehensive single-cell atlas of OC, we anno-
tated each epithelial cell cluster using functional gene sets, we
found CNV, cell differentiation potential, cell function, and gene
expression clearly change at the OC progression of stage IC1 to
stage IC2. We found explicit quantity increases in T cells on both
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ovarian tumors and metastatic tumors, mostly CD8+ exhausted
T cells and Tregs. It suggested the immunosuppressive TME of
OC and similarities in the immune components between meta-
static and primary tumors. In addition, we explored the cell
interaction in OC and discovered that fibroblasts possessed a high
number of interactions and interaction strength with T cells and
epithelial cells. Therefore, we also performed a subpopulation
analysis of fibroblasts, uncovering an unnoticed CAF sub-
population in OC, called antigen-presenting CAF. We also found
that ECM functions in myCAF had significantly enhanced since
stage IC2. In our data, signaling communication between fibro-
blasts and epithelial cells mainly via COLLAGEN and LAMINI
pathways, these molecules had reported playing important roles
in tumor metastasis47, suggesting that myCAF may be promoting
tumor metastasis by COLLAGEN and LAMININ pathways.
NECTIN2 and TIGIT are the most widely expressed immune
checkpoint-related ligand-receptor pairs.

At the early stage of OC progress, the accuracy of existing
clinical detection methods is low, and 75% of patients start
showing clinical symptoms until the advanced stage6. Examining
molecular changes in the early stages of OC may contribute to
OC screening. Whole-stage data on ovarian tumors was a major
feature of our study. From stage IC1 to stage IC2, clear changes
occurred at the cellular and molecular levels including epithelial
cell differentiation potential significantly increased, the tumor cell
function such as apoptosis, DNA damage, and metastasis func-
tion evidently enhanced; CD8+ exhausted T cells and Treg cell
proportions were distinctly increased, and corresponding genes
expression level were up-regulated; the expression of ECM-
related genes in myCAF were also up-regulated. These results all
suggested changes in the microenvironment of stage IC2 ovarian
tumors, and stage IC1 to stage IC2 is a critical period of OC
carcinogenesis.

The immunosuppressive nature of the TME may be due to the
induction of inhibitory immune checkpoints and T cell exhaus-
tion. In this study, we observed a highly immunosuppressive
microenvironment in HGSOC and metastatic tumor foci, with
explicit increases in CD8+ exhausted T cells and Tregs, and
impairment of effector function. TIGIT is the highest expressed
co-suppressor receptor on CD8+ exhausted T cells. TIGIT has
previously been described as an inhibitor of Tregs48. Antibodies
targeting TIGIT have been reported to reduce the proportion of
Tregs and improve the survival rate of OC mice49. It’s reported
that TIGIT and PD-L1 joint- blocking antibodies can enhance the
effect of CD8+ T cells50. Xu et al. found that TIGIT blockade
could inhibit OC tumor growth in mouse models and sig-
nificantly suppressed the frequency of TIGIT+ CD8+ T cells in
tumors11. Our study identified NECTIN2, the ligand gene that
most interacts with TIGIT. Nectin-2 is an adhesion molecule, has
been reported as a potential antibody therapy target, suppressed
OC progression in mouse models51,52. In line with our NECTIN2
knockout SKOV cell results, these results collectively suggested
that nectin-2 is also a potential target of immune checkpoint
inhibitor therapy of OC. These results will provide valuable
insights into the development of immunotherapies in OC.

In summary, in this study, we analyzed the potentially critical
period of OC progression and identified some molecular changes
in this period. Despite the limitations of this study including a
small number of early-stage patients, further experimental work is
still required to validate our study. Our study provided valuable
molecular changes in the critical OC stage progression, providing
further evidence for early screening and treatment of OC.

Methods
Data collection and processing. 40 single cell RNA-seq literature
for OC was collected and all data were downloaded as far as
possible (Supplementary Data 1.1). We selected data from 10X
genomics platforms to avoid batch effects across platforms. After
obtaining the original single-cell expression matrix, we follow the
quality control criteria described in the original article and
nFeature_RNA > 500 & nFeature_RNA < 7000 & percent.mt <25
to filter the data. If the specific quality control conditions are not
mentioned in the article, we follow nFeature_RNA > 500 &
nFeature_RNA < 7000 & percent.mt <25 to filter (Table1).

Data integration and clustering. We used R package harmony25

(version 0.1.0) to remove batch effects between samples, using
parameters assay.use= “RNA”, max.iter.harmony= 10. Reduc-
tion= “harmony” and dims= 1:30 were used to reduce the
dimensions using the “RunUMAP” function of R package
Seurat53 (version 4.1.0). The “FindClusters” function was used to
identify clusters of cells by a shared nearest neighbor modularity
optimization-based clustering algorithm with resolution= 0.8.

Consensus non-negative matrix factorization analysis. We used
Python pipeline cNMF28 (version 1.3.4) to generate a gene
expression program from epithelial cells. We used parameters
n_iter= 20, num_highvar_genes= 2000, components=
np.arange (3,26) to generate separate files. We selected 9 as the
optimal k value and reduction= “NMF” and dims= 1:9 were
used to reduce the dimensions using the “RunUMAP” function of
R package Seurat (version 4.1.0). The “FindClusters” function was
used to identify clusters of cells by a shared nearest neighbor
modularity optimization-based clustering algorithm with
resolution= 0.15.

GO enrichment analysis. We used the R package org.Hs.eg.db
(version 3.16.0) to convert the symbol and entrezid. Then GO
enrichment analysis was performed using the clusterProfiler54

(version 4.6.0) “enrichGO” function with the parameters
ont= “BP” and p valueCutoff= 0.05. Finally, ggplot2 (version
3.3.5) was used for visualization.

Identification of DEGs. We performed the “FindMarkers”
function of package R Seurat to find markers (DEGs) for identity
classes with logfc.threshold= 0.25, min.pct= 0.25, only.pos= T,
return.thresh= 0.05.

Fig. 5 Interactome between fibroblasts, epithelial cells, and T cells over OC progression. a The bar chart shows the number and strength of cell
interactions in ovarian cancer at different stages. b COLLAGEN pathway ligand-receptor cell communication probability from fibroblast to T cell.
c LAMININ pathway ligand-receptor cell communication probability from fibroblast to T cell. d TIGIT ligand-receptor cell communication probability from
endothelial cell, epithelial cell, fibroblast, myeloid cell, and pericyte to T cell. The color represents the communication probability and the dot size
represents p value. e The inhibited cell proliferation by MTT assay in SKOV3 cells with NECTIN2 knock out using CRISPR/Cas9 (n= 9 technical replicates).
f Measurement of T cell proliferation when it was co-cultured with NECTIN2 knock out SKOV3 cells and wilt type SKOV3 cells after 72 h, 168 h, and 240 h.
T cells were derived from three individuals. g Fold changes of T cell proliferation when co-culturing with NECTIN2 knock out cells compared to wild-type
SKOV3 cells. h NECTIN2-high and NECTIN2-low Kaplan-Meier curves of patients from the TCGA cohort. P values were calculated by a log rank test.
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GSVA. We applied GSVA55 (version 1.46.0) for scoring analysis
of functional gene sets in tumor cells and the top 10 marker genes
of myCAF. We then used pheatmap (version 1.0.12) for
visualization.

Pseudo-time analysis. We used the Monocle256 (version 2.22.0) to
explore the underlying changes in epithelial cell function and
identify potential lineage differentiation. We provide the original
UMI count gene cell matrix as input to Monocle, and then use the
“newCellDataSet” function to create a Monocle object with low-
erDetectionLimit= 0.1, expressionFamily= negbinomial.size().
Then, we applied “reduceDimension” to reduce the data dimension
with method= “DDRTree” and max_components= 2. We per-
formed “diferentialGeneTest” to identify genes that differed sig-
nificantly over time.

We used monocle3 (version 1.2.9) to explore the differentiation
trajectory of CD8T cell subtypes. We use the “learn_graph”
function to learn the principal graph from the reduced dimension
space using reversed graph embedding. After that, we defined the
root node as CD8 naive T cells and assigned pseudo-time values
to the cells according to the projection on the master graph that
the cells learned in the “learn_graph” function. Next, we use
“graph_test” to test genes for differential expression based on the
low dimensional embedding and the principal graph. Finally, we
use “plot_cells” for visualization.

Single-cell copy number variation analysis. We used inferCNV
(version 1.10.1) R package to estimate CNV level in malignant
epithelial cell. We used an approach described on the website
tutorial (https://github.com/broadinstitute/inferCNV), used
parameter –cutoff 0.1, and selected average expression as
reference.

Assessment of cell differentiation potential. R package
SCENT57 (version 1.0.3) was used to estimate the epithelial cell
differentiation potency. We used the default parameters described
on the website tutorial (https://github.com/aet21/SCENT/blob/
master/inst/doc/SCENT.Rmd) to calculate cell entropy.

Identifying time-dependent transcriptional program in epi-
thelial cell, T cell, and fibroblast. We used Mfuzz30 (version
2.54.0) to identify time-dependent transcriptional programs in
epithelial cell, T cell, and fibroblast. First, the average expression
of each highly variable gene was calculated for each stage. Next,
we used the “filter.std(min.std= 0)” and “standardize()” func-
tions for preprocessing according to the tutorial. Then, “mesti-
mate()” functions were performed to estimate the most
appropriate value of m. Finally, we clustered the genes into 20
different expression programs.

Single cell gene set scoring. We used the “AddModuleScore”
function of the R package Seurat to calculate the average
expression levels of each program on a single cell level. Gene sets
were obtained by literature or GO database collation (http://
amigo.geneontology.org/amigo/term/). Other parameters are
used by default.

Survival analysis. The R package cgdsr (version 1.3.0) was used to
link to the cBioPortal database (http://www.cbioportal.org/) and
download the TCGA-OV data (ov_tcga_pan_can_atlas_2018). The
expression matrix of target genes was obtained by the “getProfile-
Data” function. The “getClinicalData” function gets the clinical
information of the case. The “surv_cutpoint” function of R package
survminer (0.4.9) was then used to determine the optimal cutpoint

of variables. Finally, “survfit” was used for survival analysis, and
“ggsurvplot” for visualization.

Ligand-receptor interaction analysis. We used CellChat58 (ver-
sion 1.5.0) to perform ligand-receptor interaction analysis.
ScRNA-seq gene expression matrix was used as input data.
“ChatDB.human” was set for our database. We ran “compute-
CommunProb” to infer the probability and strength of cell-cell
communication. Merge cellchat objects for each stage using the
“mergeCellChat” function. We compare the total number of
interactions and interaction strength using the “compareInter-
actions” function. We used “netVisual_bubble” to visualize
ligand-receptor strength for merged objects.

Guide RNA design and oligonucleotide synthesis. The CRISPR-
SpCas9 sgRNA targeting NECTIN2 was designed with the online
CRISPR design tool “CRISPRon” (https://rth.dk/resources/crispr/
crispron/)59. The sgRNA was synthesized by IDT (Integrated
DNA Technologies), and the oligonucleotides for PCR were
ordered from Merck KGaA, Darmstadt, Germany. Sequences for
all oligonucleotides can be found in Supplementary Data 6.

Nucleofection of SKOV3 cells with EGFP-mRNA and NEC-
TIN2 CRISPR-Cas9. EGFP mRNA was generated by in vitro
transcription (IVT)46 .

In brief, the EGFP plasmid was linearized by a reaction mixture
containing 15 μL nuclease-free water (Thermo Scientific), 2 μL
10X Fast Digest Green Buffer (Thermo Scientific), 2 μL EGFP
plasmid, and 2 μL Fast Digest restriction enzyme BbsI (Thermo
Scientific) at 37 °C for 3 h. Next, the linearized EGFP was
visualized on a 1% agarose gel and purified using a NucleoSpin
Gel and PCR Clean-up (Macherey) following the manufacturer’s
protocol. Finally, IVT was carried out using a MEGAscript kit
(Thermo Scientific) following the manufacturer’s protocol, with
an addition of 3 μL CleanCap AG (6 mM) (TriLink Biotechnol-
ogies) to enhance the stability of the mRNA and its translation
efficiency. The concentration of EGFP mRNA was measured by a
Nanodrop and stored at −20 °C. The synthesized sgRNAs (IDT)
were dissolved to be 3.2 μg/μL in nuclease-free water mixed by
vortexing and stored at −20 °C. Preparations for the nucleofec-
tion: The cells were gently washed twice in PBS, centrifuged at
500 x g for 5 min, and resuspended in 60 μL OptiMem (Gibco)
with 200,000 cells per group for three groups. The cells in three
groups were prepared with ① 1 μg EGFP-mRNA, ② RNP
complex, 1 μL NECTIN2 sgRNA (3.2 μg/μL)+ 6 μL spCas9
Nuclease V3 (IDT), ③ control group, and kept at room
temperature for 10–60 min. The cells were then nucleofected by
the 4D-Nucleofector X Unit (Lonza) with the nucleofection
program: CM138. After nucleofection, 150 μL prewarmed DMEM
medium with supplements was added to each well in the
nucelocuvette. Finally, the nucleofected SKOV3 was seeded in the
prepared 24-well plate with a total volume of 500 μL culturing
medium and incubated for 24 h in a 5% CO2 atmosphere at
37 °C. The EGFP fluorescence was visualized by a ZOE
Fluorescent Cell Imager (BIO-RAD) fluorescent microscope to
ensure efficient nucleofection after 24 h of incubation.

PCR, Sanger sequencing, and ICE analysis. Genomic DNA of
cells (NECTIN2 knockout SKOV3 and wild type SKOV3 cells) were
extracted with a 200 μL homemade lysis master mix 905 lysis buffer
CS (KCL 50mM, MgCl2 1.5mM, Tris/HCL pH8.5 10mM)+ 25
μL Tween20, 20% (Sigma)+ 50 μL NP-40 Surfact-Amps Detergent
(Thermo Scientific)+ 20 μL proteinase K (Roche), and incubated at
65 °C for 30min and 95 °C for 15min. The cell lysate was stored at
stored at −20 °C for PCR. The PCR reactions were conducted with
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DreamTaq DNA polymerase (Thermo Fisher). The PCR products
were purified with a Gel and PCR Clean-up Kit (Macherey-Nagel)
by following the manufacturer’s protocol. The products were pre-
pared for Sanger sequencing. The ICE analysis was then used to
evaluate the total indel profiles and knock-out efficiency (https://ice.
synthego.com/).

Cell Proliferation by MTT assay. The alterations of cell pro-
liferation for NECTIN2 knock-out SKOV3 cells compared to
wild-type SKOV3 cells were measured with Cell Proliferation Kit
I (MTT, Roche) according to the manufacturer’s instructions. In
brief, two groups of wild-type and Nectin 2 knock-out SKOV3
cells were seeded with the initial cell numbers of 1 × 104 and
2 × 104 for cell proliferation. After 24 h of culturing, the purple
formazan crystals were checked for total solubilization, and the
spectrophotometrical absorbance of the samples was measured
using a spectraMax ID3 plate reader.

PBMC and T cell isolation. Peripheral blood mononuclear cells
were isolated from de-identified buffy coats obtained from heal-
thy adult donors from the Aarhus University Hospital Blood
Bank by a Ficoll-Paque Plus (Cytiva, Thermo Fisher Scientific)
density gradient. Primary human CD3+ T cells were subse-
quently purified by immunomagnetic negative enrichment with
the EasySep Human T Cell Isolation Kit (STEMCELL Technol-
ogies) according to the manufacturer’s instructions.

Cell culture. SKOV3 cells, an ovarian adenocarcinoma cell line,
were cultured in DMEM, high glucose medium (Gibco) supple-
mented with 10% Fetal Bovine Serum (Merck), and penicillin-
streptomycin (100 units penicillin and 0.1 mg streptomycin/mL).
Primary human T cells were cultured in X-vivo 15 media (Lonza)
supplemented with 5% human serum (Sigma-Aldrich), 100 IU/
mL IL-2 (PeproTech), and 10 ng/mL IL-7 (PeproTech). T cells
were activated for 3 days with Human T-Activator CD3/CD8
Dynabeads (Thermo Fisher Scientific) at a 1:1 cell-to-bead ratio
before experiments.

Co-culture and T cell proliferation assay. Primary human
T cells were co-cultured with either WT or NECTIN2 knockout
SKOV3 cells at a 1:5 ratio in X-vivo 15 media. Additional media
were added as required during the co-culture period. T cell
proliferation was determined at 72H, 168H, and 240H using
CountBright Absolute Counting beads (Thermo Fisher Scientific)
according to the manufacturer´s instructions with slight mod-
ifications. Briefly, 60 μL cell suspension containing primary
human T cells were mixed with 5 μL counting beads, 2.5 μL 50 μg/
mL propidium iodide (PI), and adjusted to a total volume of
100 μL with FACS buffer (PBS, 2% FBS, 2 mM EDTA). Cells were
incubated for 5 min at room temperature in the dark and ana-
lyzed on a 4-laser Cytoflex S flow cytometer (Beckman Coulter)
with a fixed stop condition at 60 μL using the CytExpert acqui-
sition software. The live cell density was calculated as follows: live
cells/mL= (number of live cells counted/number of beads
counted) * (number of beads added to the sample/sample
volume), which were used to determine the total cell number
based on the total culture volume.

Statistics and reproducibility. Statistical analyses were per-
formed through the R package ggpubr (version 0.4.0). The Wil-
coxon rank-sum test was used to test the significance of most
cases. Statistical significance was defined as p < 0.05 (*p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001; ns, not significant).
Survival analysis was analyzed using the log-rank test. The
experiments were conducted with at least three repetitions.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The integrated single cell transcriptome data used for the analysis in this study is
available in this open access database with the url: https://dreamapp.biomed.au.dk/
OvaryCancer_DB/. Source data underlying Figs. 1d, 2c, 2h, 4d, 5b-d are presented in
Supplementary Data 1.2, 1.3, 2.1, 2.5, 4.2, 5.1, 5.2. Other data are available upon
reasonable request to the corresponding authors.
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