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Abstract: Aflatoxin B1 (AFB1) is a subsidiary poisonous
metabolite, archetypally spawned by Aspergillus flavus
and A. parasiticus, which are often isolated in warm or
tropical countries across the world. AFB1 is capable of dis-
rupting the functioning of several reproductive endocrine
glands by interrupting the enzymes and their substrates that
are liable for the synthesis of various hormones in bothmales
and females. In men, AFB1 is capable of hindering testicular
development, testicular degeneration, and reduces reproduc-
tive capabilities. In women, a direct antagonistic interaction
of AFB1 with steroid hormone receptors influencing gonadal
hormone production of estrogen and progesterone was
responsible for AFB1-associated infertility. AFB1 is poten-
tially teratogenic and is responsible for the development
of malformation in humans and animals. Soft-tissue anoma-
lies such as internal hydrocephalus, microphthalmia, car-
diac defects, augmented liver lobes, reproductive changes,
immune modifications, behavioral changes and predisposi-
tion of animals and humans to neoplasm development are
AFB1-associated anomalies. Substances such as esculin, sele-
nium, gynandra extract, vitamins C and E, oltipraz, and
CDDO-Im are potential therapies for AFB1. Thus, this review
elucidates the pivotal pathogenic roles of AFB1 in infertility,
fetal deformities, and potential therapies because AFB1 toxi-
city is a key problem globally.
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1 Introduction

Aflatoxin B1 (AFB1) is a subsidiary poisonous metabolite,
archetypally spawned by Aspergillus flavus as well as A.
parasiticus [1–4]. These species of molds are routinely iso-
lated in warm or tropical countries across the world [1,5].
This type of fungi is extremely pathogenic to animals and
humans [6]. The name B, “blue,” was adopted based on the
blue light of ultraviolet (UV) radiation [6]. AFB1 has been
isolated in various types of foods, such as cereals (corn,
wheat, millet, and rice), oleaginous plants (soya, sunflower,
and cotton), spices (chilly, black pepper and coriander), nut
fruits (pistachio, coconut, almond, etc.), dried fruits and
vegetables, milk, and other meat products [7,6,8–12].

It is worth noting that approximately 4.5 billion of the
world’s population is exposed to aflatoxins [9,10]. Underdeve-
loped and poor countries in Africa and Asia have registered
acute toxicity of AFB1 in humans, and chronic toxicity has
been observed in people who consume food with minute con-
centrations of AFB1 contained in organisms [5,8–10]. Thus, the
American Food and Drug Administration and the European
Union have legally regulated normal or abnormal concentra-
tions of aflatoxins in animal as well as human foods [13,14].
Notably, AFB1-contaminated food is often ingested via mouth
into the gastrointestinal system through which the toxins gain
access to targeted organs via the blood stream.

AFB1 has been implicated as a pathogenic factor in child
underweight, neurologic injuries, hypoimmunity, cancer such as
hepatocellular as well as high mortality [15,16]. Globally, human
fertility is diminishing, a state that cannot be ascribed exclu-
sively to an upsurge in contraception [9,17]. It was observed
that in about 30% of infertility, pathology originated from men
alone, and in another 20%, the pathology often originated from
both men and women [18]. Thus, the male factor is accountable
for infertility in about 50% of patients who present at the clinic
[18]. However, there is currently no data suggesting that AFB1
affects males than females or vice versa in the clinic.

Also, regression in semen quality has a substantial negative
influence on male fertility and is thus a public health concern.
Also, follicle growth and atresia in the ovaries and fallopian
tubes, resulting in severe infertility, are alsomajor public health
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concerns. Environmental factors have been implicated as a
major cause of regression in semen quality, follicle growth,
and atresia of the ovaries and fallopian tubes, although the
precise triggers are still a matter of debate [9,19]. Thus, this
review elucidates the pivotal pathogenic roles of AFB1 in infer-
tility, fetal deformities, and potential therapies.

The “Boolean logic” was used to search for articles on the
subject matter in PubMed and PubMed central as well as
Google scholar with search terms like AFB1 and associated dis-
eases in humans and animals, AFB1 and infertility in humans
and animals, AFB1 and reproductive hormones, AFB1 and defor-
mities, and potential therapies to AFB1. Studies involving both
humans and animals were included. Also, findings from both
clinical research and basic research were critically reviewed.

2 AFB1 induces diseases in humans
and animals

Interestingly, AFB1 has been linked to hepatotoxic, nephro-
toxic, genotoxic, mutagenic, and immunotoxic [20,21]. Also,
AFB1 triggered an immunosuppressive effect, resulting in a
decrease in the natural and acquired resistance to diseases
when ingested at very low levels [22,23]. Notably, AFB1 has
been detected in the blood during the acute phase of illness
after exposure, as well as in the liver of affected children
[24–27]. Nevertheless, use of aspirin or phenothiazines was
also assumed to be associated with the etiology [28]. Further-
more, AFB1 has been isolated in the blood of pregnant
women, in neonatal umbilical cord blood, and in breast
milk in African countries, with cyclical disparities [25,29].
Also, the highest concentrations of AFB1 ever observed in
human tissue and fluids were detected in the umbilical cord
blood at birth [24], which signify that AFB1 crosses the pla-
centa and could trigger fetal deformities.

Intriguingly, AFB1 has been implicated as the etiolo-
gical factor in encephalopathy and fatty degeneration of
viscera, analogous to Reye syndrome in countries with a
hot and humid climate [24,30]. Also, patients presented
with pale, fatty liver, enlarged kidneys, and severe cerebral
edema [24]. Notably, aflatoxicol was detected in the serum,
liver, urine, and stools of children with kwashiorkor and
marasmic kwashiorkor compared to marasmus and con-
trol children, where this metabolite was not detectable
[24]. Moreover, as high as 80% of AFB1 was detected in
the serum and 46% in the urine of infants with kwa-
shiorkor and marasmus [31].

Remarkably, children with kwashiorkor and marasmic
kwashiorkor who were fed an AFB1-free diet, had a very
slow elimination of AFB1 during clinical investigations [32].

Also, AFB1 was isolated in the brain and lungs of children
who had died from kwashiorkor, as well as children who
had died from diverse diseases [24,27,33]. Furthermore, AFB1
was detected in the lungs of all children who suffered from
pneumonia, regardless of the presence of kwashiorkor [24].
This may be due to a decrease in the eliminatory ability of
the lungs in pulmonary diseases and/or due to contact via
the respiratory route [24].

Interestingly, a correlation study on the existence of
AFB1 in the serum and urine of children and the prognosis
of acute lower respiratory infection did not yield any asso-
ciation [34]. Also, AFB1 was detected in the lungs of some
textile workers and farmers who died from pulmonary
interstitial fibrosis [24,35]. Furthermore, acute human afla-
toxicosis was associated with liver failure and gastrointest-
inal bleeding in Southeast Asia and Africa [24]. Notably, AFB1
was connected to a specific AGG to AGT amino acid transver-
sion mutation at codon 249 of the p53 gene in human hepa-
tocellular carcinoma, specifying mechanistic evidence to a
causal link between exposure and disease [36].

Interestingly, AFB1 was capable of triggering acute hepatic
injury, resulting in the elevation of serum enzymes, such as
lactate dehydrogenase, aspartate aminotransferase, glutamate
dehydrogenase, gamma-glutamyltransferase, and alkaline
phosphatase [37]. Furthermore, bilirubin, which indicates
liver damage, and other biochemical factors like protei-
nuria, ketonuria, glycosuria, and hematuria were elevated
in AFB1-triggered acute live injury [37]. Moreover, about 72%
of kids had perceptible concentrations of AFB1-lys in their
plasma at 24 months of age. However, no relation was estab-
lished between the low AFB1 ingestions and growth impair-
ment [38].

Moreover, the focal severe distraction of the renal
cortex, which was not only limited to the renal tubules
but also stretched into the renal corpuscles, resulting in a
wide gap in the urinary spaces, has been associated with
AFB1 [24]. It is worth noting that augmented collagen
deposition and focal mononuclear cell infiltration were
detected in renal system after AFB1 administration [39].
Furthermore, it was observed that AFB1 triggered focal
necrosis and degeneration, predominantly at the renal
tubules [40]. Also, AFB1 was capable of triggering lympho-
cytic infiltration, necrosis, and steatosis in the liver of
ducklings [41].

Intriguingly, AFB1 was capable of triggering aberrations
in the mitochondrial DNA of brain cells, resulting in mal-
functioning oxidative phosphorylation [42,43]. The defective
oxidative injury resulted in disruptions in key cellular
macromolecules, such as DNA, lipids, and proteins [42,43].
Also, cellular fatty acids are freely oxidized by reactive
oxygen species (ROS) induced by AFB1 to generate lipid
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peroxyl radicals, which in turn proliferate into malondialde-
hyde (MDA), and the resultant MDA interrelates with cellular
DNA to form DNA–MDA, which influences the generation of
energy in the brain [42,43]. Notably, AFB1 has been impli-
cated to influence ovarian secretory cells via the hypotha-
lamus–hypophysis–ovary axis [44].

Studies on the effect of AFB1 and key reproductive hor-
mones mediated by brain regions are insufficient. Also, it is
worth noting that via the above organs and associated dis-
eases, AFB1 may migrate to productive organs to induce
infertility. Thus, correlation studies between the above dis-
eases and infertility are warranted.

3 Isolation of AFB1 in reproductive
organs

Notably, mice fed with AFB1 diet showed histological altera-
tions like germ cell loss in their testis, while aflatoxicosis
was associated with reduction in sperm production and
augmented sperm abnormalities in male mice [45–47]. Also,
AFB1 exposure in the testis of male mouse triggered a reduc-
tion in sperm concentration as well as motility and an
upsurge in aberrations leading to reduced fertility in the
mice [46]. Notably, AFB1 associated spermatogenesis, with
almost total absence of spermatids engaging in spermiogen-
esis, accompanied by the loss of immature germ cells leading
to decreased sperm count, was detected histologically [46].
Interestingly, these pathological changes triggered by AFB1
in the testis were observed in the Leydig cells mice. Also,
major histopathological changes in the epididymis were asso-
ciated with AFB1 in the testis of mice [48]. Thus, a direct
toxicity of AFB1 to the spermatogenic compartment is the
key mechanism of action of AFB1 in the stimulation of
abnormal sperms. Remarkably, AFB1 was associated with
substantial upsurge in oxidative stressmarkers and reduction
in anti-oxidant enzymes in the testicles of rats [49].

Notably, isolated AFB1 in the ovaries triggered damage
in the ovary and increased the risk of ovarian disease;
moreover, zearalenone has a dual effect on ovarian toxi-
city induced by AFB1 [50]. In the rat ovaries, the detected
AFB1 inhibited follicle growth and atresia in the ovaries
resulting in severe infertility [51]. Interestingly, the detected
AFB1 triggered multiple signaling pathways in the ovary and
induced oxidative stress, affecting genes associated with
sterol, amino acid, and lipid synthesis during transcriptomic
analysis [50]. Interestingly, the detected AFB1 in the ovaries
inhibited the growth of oocytes, reduced the ovary size and
weight, reduced oestradiol-17β concentration, and increased

progesterone concentration in blood after AFB1 administra-
tion in female rats [44,52]. It is well established that myco-
toxins are capable of crossing the placental barrier and have
already been isolated in human umbilical cord samples
[53,54]. Interestingly, injection of a single dose of AFB1 in
the pre-implantation period affected uterine growth and
triggered failure of fetal development [55].

4 Biotransformation of AFB1 in
the body

Biotransformation or metabolism is the means by which a
chemical substance is altered or transformed from one
chemical state to another via successions of enzymatic or
chemical response(s) inside the body and subsequently
excretion of the byproducts or metabolites mostly via renal
excretion [56–58]. In toxicology, biotransformation is very
crucial in the defense mechanism via the excretion of toxic
xenobiotics and body wastes in which they are trans-
formed into less detrimental and polar substances that
are easily excreted [56–58].

The process of elimination, which often encompasses
metabolism and excretion of chemical substances from the
body, comprises two principal phases [56,59]. Phase I involves
the metabolism of chemical substances via the addition of
small polar groups comprising of both positive and negative
charges to xenobiotics of aflatoxins via the process of acetyla-
tion, oxidation, reduction, and hydrolysis, which render it
harmless [56,59]. Phase I is mainly intermediated via the
cytochrome P450 (CYP450) enzyme systems [56,59].

In contrast, phase II metabolism often encompasses
glucuronide, glutathione, sulfate, and amino acid conjuga-
tion reactions [57,60]. The whole metabolic process permits
Phase I products to “fit” into Phase II enzyme cascades
where they are capable of combining with another sub-
stance to yield a polar or water-soluble substance that
can certainly be excreted via the kidneys [57,59]. Never-
theless, in some instances, some of the chemical substances
may be transformed into reactive or harmful products [56].
Microsomal enzymes metabolize AFB1 to distinctive meta-
bolites via hydroxylation, hydration, demethylation, and
epoxidation in the liver [61] and may migrate to the repro-
ductive organs to induce infertility.

Interestingly, cytochrome P450-mediated metabolism is
the primary focus of the biotransformation of AFB1 [56]. Never-
theless, AFB1 bioactivation via prostaglandin H synthase and
lipoxygenasemay bemore essential than P450-catalyzed bioac-
tivation in certain experimental systems [62,63]. Notably, AFB1
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is bioactivated via epoxidation of the terminal furan ring
double bond, producing an electrophilic intermediate, AFB1-
8,9-epoxide, a stereoisomer that consists of both the exo and
the endo configurations [64–66].

Interestingly, AFB1-exo-epoxide was proficient in alky-
lating nucleic acids and proteins, while the AFB1-endo-
epoxide was a very weak mutagenic [64]. Furthermore,
AFB1-exo-epoxide was easily crystallized in high quantities
and steady in aprotic non-nucleophilic solvents [62,67].
Moreover, AFB1-exo-epoxide was capable of reacting with
an extreme concentration of DNA, resulting in the forma-
tion of 98% of AFB1-DNA adducts although it had a half-life
of approximately 1 s in an aqueous buffer [62,67].

AFB1 was also capable of stimulating 8-hydroxy-20-
deoxyguanosine (8-OHdG) configuration in livers of rats
and ducks during in vivo treatment [68–70]. Additionally,
AFB1 triggered the elevation of 8-OHdG levels following the
treatment of cultured woodchuck hepatocytes [62,69]. It
was established that the most commonly detected muta-
tion stimulated by AFB1 was DNA alkylation via AFB1-exo-
epoxide followed by the AFB1-N7-Gua formation leading to
G-T transversions [62,69].

Interestingly, AFB1-triggered ROS formation involves
metabolism via cytochrome P450 to form AFB1-exo-epoxide
and/or the hydroxylated metabolite AFM1 and requires
both the participation of iron-catalyzed reactions and
Kupffer cells in the rat livers in vivo and in rat hepatocytes
[62,71,72]. Also, oxidative damage was capable of triggering
AFB1 toxicity, resulting in a reduction in the anti-oxidant-
capable parameters related to apoptosis [73,74]. Remark-
ably, AFB1 augmented apoptotic cells in spleen, broilers
jejunum, and bursa fabricius [75–77]. Also, AFB1 augmented
the secretion of fundamental liver apoptotic markers like
Bcl-2-associated X protein (Bax), caspase-3, and p53 as well as
reduced the secretion of key anti-apoptotic markers like B-
cell lymphoma 2 (Bcl-2) [73]. Moreover, MDA was markedly
elevated while superoxide dismutase (SOD) and the total
anti-oxidant capacity (T-AOC) were much lower in AFB1-
treated mice [16].

Notably, the MDA tissue content often reflects the degree
of oxidative damage because it is a peroxide generated via
free radicals [78]. Markedly, AFB1 stimulated oxidative stress,
which was observed via the peroxidation of lipids and MDA
in the serum [16]. Furthermore, AFB1 triggered the expression
of free radicals, particularly superoxide anions, in kidney
tissue where numerous T-AOC factors, such as SOD in the
serum, were conscripted into the tissue, leading to downre-
gulation of T-AOC and SOD in serum [16]. Thus, the effects of
AFB1 on these factors are coherent with their stimulation of
oxidative reactions in the mice [16].

It is worth noting that SOD is a typical anti-oxidant
enzyme in diverse organisms, which translates superoxide
anion radicals to hydrogen peroxide and safeguards organ-
isms from oxidative injury. However, T-AOC is marker of
total antioxidative activity and it reflects the activity of all
the anti-oxidants in an organism [79]. Interestingly, proline
dehydrogenase (ProDH) mRNA and protein were expres-
sively elevated in AFB1-treated mice, and cell apoptosis in
kidney tissues was similarly expressively stimulated and
was associated with varying secretions of Bcl-2, Bax, and
caspase-3 [16].

Moreover, proline levels were low in kidney tissue
obtained from AFB1-treated mice, which was possibly due
to ProDH upregulation [16]. Furthermore, ProDH siRNA was
utilized to determine whether ProDH was a direct target of
AFB1 [16]. In this experiment, it was established that the
secretion of pyrroline-5-carboxylate synthase (P5CS), pyrro-
line-5-carboxylate reductase (P5CR), and proapoptotic factors
were not distinctive in AFB1-treated and small interfering
RNA (siRNA)-treated cells, and in cells that were treated
with ProDH siRNA alone [16]. Thus, downstream apoptotic
factors, such as Bcl-2, Bax, and caspase-3, were influenced by
ProDH siRNA treatment [16].

It was established that AFB1 was capable of changing the
metabolism of tryptophan in the brain, which decreases the
levels of serotonin [80,81]. It was also observed that recurrent
exposure to AFB1 resulted in the reduction of striatal dopa-
mine and serotonin levels by 37% and 29%, respectively,
signifying that AFB1 influenced dopaminergic and serotoni-
nergic pathways, probably via selective triggering of the
translation of tyrosine to biogenic catecholamine neurotrans-
mitters [80,82]. Furthermore, acute AFB1 exposure reduced
brain acetylcholinesterase, while the chronic exposure aug-
mented adenohypophyseal acetylcholinesterase [80,83]. Thus,
this indicates that neurotransmitters are influenced by AFB1,
which leads to hormonal imbalance and maybe infertility.
Further studies are needed in this direction.

5 AFB1 and reproductive hormones

AFB1 was capable of disrupting the functioning of several
endocrine glands by interrupting the enzymes and their
substrates that are liable for the synthesis of diverse hor-
mones. Notably, AFB1 and generated ROS were capable of
causing cancers in endocrine glands, such as pituitary
gland, granulosa cell tumors of the ovary as well as ade-
nomas and adenocarcinomas of the adrenal gland, ovaries,
testes, kidneys, thyroid gland, parathyroid glands, and pan-
creas [84,85]. Interestingly, AFB1 is capable of inducing
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cancer as result of its capacity to generate several altered
forms of DNA adducts. Thus, AFB1 was capable of adversely
influencing the reproductive capacity of male and female
animals [84,85].

Notably, AFB1 was capable of inducing a reduction in the
sizes of ovaries and uterus as well as augmentation in the
rates of fetal resorption, implantation loss, and intra-uterine
death in AFB1-exposed female rats (Figure 1) [86]. Further-
more, AFB1 was capable of influencing sexual maturation,
follicular growth and maturation, hormonal levels, preg-
nancy, and growth of fetus (Figure 1) [86]. Interestingly, in
male mammals, 17β-estradiol is produced by Leydig cells as a
result of a feedback reaction to luteinizing hormone (LH) and
by Sertoli cells as a result of a feedback reaction to follicle-
stimulating hormone (FSH) (Table 1) [87].

Also, in male mammals, testosterone biosynthesis tran-
spires in the Leydig cells of the testis as a result of a feed-
back reaction to LH produced by the pituitary gland (Table
1) [88]. Cholesterol is a substrate for steroidogenesis and it
is transported into mitochondria via steroidogenic acute
regulatory (StAR) proteins [89]. Cholesterol is converted into

pregnenolone by cytochrome P450, a side-chain-cleaving enzyme
in the mitochondria [89]. Subsequently, pregnenolone is trans-
ported into the smooth endoplasmic reticulum where it is con-
verted into testosterone [88].

Remarkably, diminished steroidogenesis is a key phe-
nomenon in AFB1-mediated reproductive toxicity [90,91].
Further studies on the exact mechanism via which AFB1-
mediated reproductive toxicity occurs during steroidogen-
esis are warranted. Interestingly, an upsurge in cholesterol
levels in the testis of AFB1-treated mice was observed [91].
Remarkably, the upsurge in cholesterol levels in the testis
of AFB1-treated mice could be as result of inadequate uti-
lization of cholesterol or impaired steroidogenesis (Table
1) [91].

Moreover, a reduction in serum testosterone concen-
trations in rats following exposure to AFB1 was observed
(Table 1) [92,93]. The diminished serum testosterone con-
centration was probably due to a decreased sensitivity of
Leydig cells to LH and/or direct blockade of testosterone
production in rats exposed to AFB1 (Figure 1) [92,93]. Mark-
edly, a substantial upsurge in serum concentrations of FSH

Figure 1: Influence of the ingested AFB1 by various ways in both male and female reproductive organs, resulting in infertility and/or fetal instability
during pregnancy. X = inhibitory. Note: human symbols denote both humans/animals.
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with reduced testosterone levels in AFB1-treated rats was
detected compared to controls (Table 1) [87]. It is worth
noting that a decreased concentration of circulatory testos-
terone with higher concentrations of FSH and LH signifies
an intact pituitary–testicular axis in AFB1-treated rats (Table
1) [88,92,93].

Intriguingly, FSH was capable of stimulating Sertoli
and Leydig cells, resulting in the regulation of spermato-
genesis and steroidogenesis, respectively (Figure 1) [94,95].
It is worth noting that an upsurge in the serum FSH con-
centration signifies an inhibition of spermatogenesis in
AFB1-treated rats and suggests germ cell loss or impair-
ment of Sertoli cells, resulting in impaired feedback regu-
lation of FSH secretion (Figure 1 and Table 1) [88,96].
Furthermore, LH was also capable of stimulating Sertoli
and Leydig cells, resulting in the regulation of spermato-
genesis and steroidogenesis, respectively (Figure 1 and
Table 1) [88,95].

Also, it was observed that chronic exposure to AFB1 was
capable of triggering endocrine disruption in the human foe-
toplacental component because it was capable of influencing
the secretion of aromatase enzymes, such as P450 or CYP
enzymes (Figure 1) [97]. Thus, AFB1 was a hypothetical endo-
crine disruptor, which was capable of influencing steroid
ovarian hormones levels, either directly or indirectly [97].
Furthermore, AFB1 was capable of augmenting the secretion
of CYP19A1 in human placenta cells [97,98].

Furthermore, AFB1 was capable of influencing key
genes in endocrine regulation in placental cells after being
metabolized into aflatoxicol [97]. Also, AFB1 influenced pla-
cental steroid hormone production, metabolism, and conju-
gating enzymes, which triggered abnormalities in the foeto-
placental hormonal homeostasis [98]. Moreover, CYPs have
been implicated in steroid hormones production and the
upsurge of the secretions of these enzymes by AFB1 in the
placenta was capable of triggering an upsurge in proges-
terone synthesis (Figure 1) [97].

It was established that modifications in oestradiol-17β
and/or progesterone levels during the luteal phase and/or
the orchestrated oestrus had unfavorable influences like
shortened cycles, lower fertility, negative influence on fol-
licle maturation, ovulation, or the existence and/or the
signs of the oestrus cycle on succeeding reproductive life-
cycle of the animals (Figure 1) [44]. Moreover, blood oes-
tradiol-17β and progesterone were expressively lower and
higher, respectively, in rats exposed to AFB1 (Figure 1 and
Table 1) [44]. Thus, AFB1 had a direct influence on ovarian
secretory cells or on the hypothalamus–hypophysis–ovary
axis [44].

Interestingly, after exposing AFB1 to male rats for 48
days, it was observed that the levels of blood serum LH,
testosterone, and oestradiol-17β were expressively lower in
the group of rats exposed to the highest dose of AFB1 (Figure 1
and Table 1) [87]. Thus, AFB1 had direct influence on testes

Table 1: Various types of hormones influenced by AFB1 and their mechanisms

Hormone Effect of AFB1 on the
hormone

Mechanism of action References

Estrogen Downregulation Direct antagonistic interaction of AFB1 with steroid hormone
receptors influencing the gonadal hormone production of
estrogen, as a result of structural similarity of AFB1 and steroid
hormones

[50,86,104]

Luteinizing hormone (LH) Downregulation Diminished serum testosterone concentration triggered a
decreased sensitivity of Leydig cells to LH and/or direct blockade of
testosterone production in rats exposed to AFB1

[87,91,92,94]

Follicle-stimulating
hormone (FSH)

Upregulation Decreased levels of circulatory testosterone with higher
concentrations of FSH during AFB1 exposure

[86,87,91,92,95]

Testosterone Downregulation Upsurge in cholesterol levels in the testis of AFB1-treated mice
could be a result of inadequate utilization of cholesterol or
impaired steroidogenesis

[87,90–92,108]

Progesterone Upregulation AFB1 in the placenta was capable of triggering an upsurge in
progesterone synthesis

[50,97,104]

Direct antagonistic interaction of AFB1 with steroid hormone
receptors influencing gonadal hormone production of
progesterone, as a result of structural similarity of AFB1 and
steroid hormones

Hepatic
alphafetoprotein (AFP)

Upregulation AFB1 adversely influences AFP production, which in turn inhibited
the gonadal function resulting in a reduction in the concentrations
of hormonal promoters

[98]
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secretory cells or on the hypothalamus–hypophysis–testis
axis [87]. Notably, AFB1 adversely influenced hepatic alpha-
fetoprotein (AFP) production, which is identified to inhibit
gonadal function, resulting in the reduction in the concen-
trations of hormonal promoters above (Table 1) [99].

6 AFB1-associated infertility in
humans

The disruptive abilities of AFB1 have been observed in the
reproductive system in both male and female human beings
after consumption of AFB1-contaminated foods [37]. Testi-
cular damage has been reported in infertile men as a result
of early accumulation of AFB1 in human systems [9]. Patients
who are exposed to chronic AFB1 develop a lower percen-
tage of sperm morphology even with the very low cut-off
value for sperm morphology, as recommended in the new
edition of the World Health Organization (WHO) semen
analysis [9].

AFB1 was capable of hindering testicular development,
testicular degeneration, reduced reproductive capabilities,
morphological regressive modifications in the testis, and
blockage of Leydig cell function in men (Figure 1) [9,100].
AFB1 was isolated in the blood and semen of infertile men
[47]. Interestingly, isolated AFB1 was 25% in the semen of
infertile patients as compared to 2.1% in controls [9].
Furthermore, detection of abnormal semen parameters,
such as severe decrease in the sperm count, decreased
motility, high percentage of abnormal morphology, and
high viscosity in the semen of the infertile group compared
to that in the fertile group as well as the WHO reference
values for normal semen parameters (Figure 1) [9].

Notably, a similar study observed a prevalence rate of
AFB1 in 40% of infertile men compared to 8% in fertile men
[101]. Remarkably, 50% of the infertile men with high AFB1
semen levels also exhibited abnormalities in semen para-
meters. Also, AFB1 was capable of damaging chromosomes,
genes, and forming aflatoxin–DNA complex, which triggered
key anomalies in human sperms [102,103]. Furthermore, AFB1
was capable of generating ROS in the form of free radicals,
which triggered the anomalies in human sperms [9].

ROS were able to influence macromolecules like protein,
DNA, lipid of the sperm and testicular tissues, resulting in
cellular/tissue damage after exhaustion of natural anti-oxi-
dants [9]. However, selenium and/or vitamin E supplements
in cases of idiopathic male infertility were capable of aug-
menting the quality of semen and boosting the production
and protective effects on spermmotility [104]. Also, circulating

ROS generated by aflatoxins in cases of idiopathic male infer-
tility were neutralized by these above potent anti-oxidants [9].

Interestingly, a substantial increase in the mean ovarian
volume in infertile females and a substantial reduction in the
mean follicular size was observed (Figure 1) [105]. It is worth
noting that two distinct adverse activities have been implicated
as causes of AFB1-related female fertility [105]. These two
actions are an indirect influence facilitated by AFB1-stimulated
hypovitaminosis A and a direct antagonistic interaction of AFB1
with steroid hormone receptors influencing gonadal hormone
production of estrogen and progesterone as a result of struc-
tural similarity of AFB1 and steroid hormones (Figure 1 and
Table 1) [105].

7 AFB1-associated infertility in
animals

AFB1 has been implicated in the disruption of reproductive
systems in both male and female animals after ingestion of
AFB1-contaminated foods [37]. Experimental studies in ani-
mals revealed that certain AFB1 was capable of influencing
the reproductive abilities of both sexes resulting in anom-
alous sperm, low sperm count, sterility, and/or affect hor-
mone activity leading to infertility [9,106]. Furthermore,
AFB1 was capable of reducing motility of sperms obtained
from ejaculation or epididymis (Figure 1) [9,106]. Thus,
AFB1 is capable of decreasing the number of primary sper-
matocytes, spermatids, and the morphology of sperm cells
produced (Figure 1) [107,108].

Notably, the concentration of plasma testosterone and
5α-dihydrotestosterone (5α-DHT) as well as absolute and
relative testicular weights of experimental male animals
exposed to AFB1 remained low in all age groups, and a
tardiness in the onset of sexual maturation during aflatoxi-
cosis (Table 1) [109]. Furthermore, AFB1 was capable of trig-
gering pathological modifications, such as degeneration and
necrosis of epithelial cells of sperm tubules and decrease in
the number of sperms (Figure 1) [110]. Also, AFB1 was capable
of decreasing the semen volume, testicular weight, sperma-
tocrit, plasma testosterone, and a decrease in the egg output
in poultry (Figure 1) [37,111].

Intriguingly, continuous feeding of male goats with
diets containing AFB1 triggered testicular degeneration
(Figure 1) [112]. Also, AFB1 was capable of delaying the
physiological, behavioral sexual maturation, and testicular
development in Japanese quail (Figure 1) [113]. Further-
more, AFB1 was capable of reducing the semen volume
and testis weight, which resulted in the interference of
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the germinal epithelium in mature male white Leghorn
chicks [114].

Moreover, degenerating alterations of diverse inten-
sity in the germinal epithelium of the seminiferous tubules
led to devastating dystrophic changes in the spermatogenic
epithelium alongside edematous alterations in the intersti-
tial tissue in adult male rats exposed to AFB1 diet for pro-
longed periods were observed (Figure 1) [90,115]. Similarly,
degeneration in the epithelium lining of seminiferous
tubules and congestion of testicular blood vessels with
intertubular edema in the rats exposed to AFB1 was
observed (Figure 1) [116].

Furthermore, coagulative necrosis of the whole epithe-
lium lining of several seminiferous tubules, which were
transformed into homogenous eosinophilic debris in their
lumina, was also observed [116]. Also, AFB1 was capable
of decreasing the number of Leydig cells, the height of
seminiferous tubules, the number and the index of sertoli
cells, the diameter of caput epididymis, and lumen caput
epididymis (Figure 1) [110]. Moreover, the number of
spermatogenesis, spermatocytes, and spermatids was
also decreased [110].

In female experimental animals, AFB1 was capable of
triggering pathological modifications in the form of coagu-
lative necrosis, particularly in the growing and mature
follicles, resulting in a reduction in the number and size
of graffian and growing follicles with augmented number
of atretic follicles and a slight portion of degenerative altera-
tions (Figure 1) [37,105]. Also, in laboratory and domestic
female animals, AFB1 was capable of triggering a decrease
in ovarian and uterine sizes, augmented fetal resorption,
implantation loss, and intra-uterine death in female rats
exposed to AFB1 (Figure 1) [37,105].

Interestingly, AFB1 wields all types of teratogenic effects
on growing and non-growing follicles, which result in the
reduction of ovulatory follicles in rats (Figure 1) [9,51].
Furthermore, infertility parameters like disturbances of
estrus cyclicity, blockade of lordosis, and decrease in con-
ception rates and litter sizes were detected in rats exposed
to AFB1 [117]. Also, mature domestic fowls exposed to AFB1
exhibited follicular atresia during histopathological exami-
nations of their ovaries, which resulted in the cessation of
egg production during the whole feeding period [111].

8 AFB1 and fetal deformities

AFB1 presents a potential hazard to animal and human
health in view of their teratogenicity [118,119]. Notably,

AFB1 could be accountable for the development of malfor-
mation in humans [120–122]. Several detrimental conse-
quences like low birth weight, small litters, fetal death
and resorption, bone and visceral deformities, reproduc-
tive changes, impact on immune capacity, and behavioral
changes, and predisposition to neoplasm development are
related to exposure to AFB1 during the prenatal period [5].
Specifically, fetal anomalies are observed when the preg-
nant animals are exposed to AFB1 via gavage or intramus-
cularly [123].

Notably, reduction in weight and absolute size of the
viscera, decreased size of the heart sinusoid capillaries, as
well as ventricular lumen, liver, and kidneys containing
vacuoles as well as congestion, atrophy, glomerular degenera-
tion, and disorganization of hepatocyte were detected in fetus
exposed to AFB1 during the prenatal period [119,124]. Also,
anomalies in organs like thymus presenting lymphoid deple-
tion and decrease in epithelial differentiation,moderate degen-
eration of the testicles with atrophy, and the decrease of germ
cells of seminiferous tubules were detected in fetus exposed to
AFB1 during the prenatal period [125].

Interestingly, at the cellular level, AFB1 was capable
of augmenting the numbers of both apoptotic cells and
mitoses in the periportal regions; the nuclei of some cells
were distended; hyperchromatic, and pleomorphic with a
coarse chromatin pattern with cytoplasm’s that were mark-
edly melanocytosic [119]. Notably, AFB1 was capable of trig-
gering chromosome aberrations in bone marrow of rats
[126–128]. Remarkably, mutagenicity of AFB1 resulted in the
formation of covalent N7 guanine adducts, which interrupted
DNA replication, leading to anomalies in the chromosomes
[129,130]. Also, AFB1 was capable of stimulating chromosomal
aberrations, such as centromeric attenuations, chromatid
breaks, chromatid gaps, end-to-end associations, chromo-
somal fusions, ring chromosomes, dicentric chromosomes,
fragments, deletions, centric fusions, stickiness, and hypo-
ployploidy in the bone marrow cells of rats [119,131,132].

Markedly, AFB1 was capable of causing skeletal anoma-
lies with incomplete ossification of skull bones and failure of
ossification of small bones (Figure 2) [133,134]. These skeletal
defects were seen mostly in the ribs and soft-tissue anoma-
lies [133,134]. Furthermore, AFB1-associated deformities are
a result of the formation of phenotypic abnormalities due to
delayed metamorphosis [119]. Also, AFB1 triggered some
errors during transcription of developmental genes and
defects in homoeotic genes, which influenced the final ail-
ment of imaginal discs [135].

Interestingly, daily consumption of a mixture of AFB1
and AFG1 by pregnant white rats from the 8th to the 12th
day of gestation triggered a decrease in the number of
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implantation sites and fetal weight and augmented the
reabsorption of fetuses (Figure 2) [136,137] as well as the
absence of one or more coccygeal vertebrae and, in some
cases, compaction of the vertebral column [119]. Further-
more, AFB1-associated bone defects were usually linked to
ossification failures, alterations in bone size, and shape,
and the absence or modification of some bone issues
(Figure 2) [123].

Intriguingly, AFB1 was capable of influencing the tran-
scription of genes linked to bone development, affecting
activities like intramembrane mineralization and endochon-
dral ossification [55,123,134,138]. Also, animals exposed to
AFB1 during embryonic development were more prone to
minor malformations, like those affecting bone fates was
detected (Figure 2) [119]. These minor malformations were
mostly limb defects, such as the absence of some metacarpal
and metatarsal bones and some phalanges [119]. Further-
more, AFB1-triggered mineralization-associated defects were
linked to the direct effect of AFB1 on the osteoblasts, osteo-
clasts, and periosteal cells [119].

Notably, impairment in the mineralization of osteoid
tissues, such as bone matrix, affected bone maturation and
prevention of periosteal new bone formation parameters
like endochondral and intramembranous ossification [119,134].
Also, exencephaly and gastroschisis were observed in mice
fetuses exposed to AFB1 [139]. Furthermore, soft-tissue anoma-
lies, such as internal hydrocephalus, microphthalmia, cardiac

defects, and augmented liver lobes were observed (Figure 2)
[140]. Also, multilobulation of the liver in one fetus exposed to
a higher dose of AFB1 was detected [140].

Notably, localization of 14C-labeled AFB1 by the pig-
ment layer of fetal eye, liver, and heart, and continuous
exposure of AFB1 during the organogenesis period was
responsible for the manifestation of distinctive abnormal-
ities of these organs (Figure 2) [141]. Also, AFB1 was asso-
ciated with reproductive changes, immune modifications,
behavioral changes, and predisposition of animals and
humans to neoplasm development (Figure 2) [5,123].

9 Potential therapies for AFB1
Detoxification techniques generally used to destroy AFB1
are physical and chemical methods on contaminated foods
[142]. Physical approaches, such as heat and gamma rays
are the most typical techniques for neutralizing AFB1,
while chemicals such as acids, bases, oxidizing agents,
and reducing agents are the most typical techniques used
to destroy or extinguish AFB1 on contaminated foods
(Table 2) [142]. The use of plant extracts to degrade AFB1
and the inoculation of bacterial strains in food substrates
are two main biotechnological techniques used to reduce
the AFB1 levels in contaminated foods (Table 2) [142].

Figure 2: Main body organs that AFB1 was capable of triggering deformities during prenatal exposes. Note: human symbols denote both humans/
animals.
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However, novasil clay minerals have been proven to
possess high affinity and combine well with AFB1 in the
gastrointestinal tract [142]. Novasil clay minerals were cap-
able of absorbing AFB1 in vitro in both animal models and
human studies (Table 2) [142]. They were able to decrease
the bioavailability of blood toxins, and their usage in
humans did not influence the utilization of vitamins and
trace elements in the body during clinical trials [142]. Nat-
ural plant products are synthetic antibacterial agents with
biodegradability, biosafety, effectiveness, and regenerability
capabilities [143].

Interestingly, the anti-oxidant influence of Phyllanthus
amarus herbal extracts and black tea were capable of aug-
menting lipid peroxidation, which is often downregulated
by AFB1 in the liver (Table 2) [144,145]. Also, studies have
shown that substances, such as esculin, selenium, and
gynandra extract, which have anti-oxidant functions, are cap-
able of modifying AFB1-stimulated oxidative stress, resulting
in the relieving of the resultant histological anomalies (Table
2) [40,41,146].

Intriguingly, standard anti-oxidants like ascorbic acid
(vitamin C) were capable of neutralizing the harmful
effects of AFB1 on most hematological, biochemical, and
enzymatic parameters (Table 2) [147]. Additionally, sele-
nium had protective effect in the spleen and liver against
AFB1-stimulated toxicity by blocking oxidative stress and
associated extreme apoptosis (Table 2) [73,77].

Moreover, selenium was capable of decreasing mito-
chondrial swelling and mitochondrial DNA mutations in

ducklings that were exposed to AFB1 due to its anti-oxidant
capabilities [41]. Also, AFB1 was capable of augmenting oxida-
tive stress marker, MDA, in the kidneys and blood. In con-
trast, they also observed that AFB1 was capable of reducing
the anti-oxidant capacities of markers, such as nonenzymatic
(glutathione) and enzymatic (glutathione peroxidase, glu-
tathione reductase, and glutathione-S-transferase) [39].

Interestingly, vitamin E was capable of neutralizing
AFB1 levels and restoring the parameter values above
nearly the control level (Table 2) [39]. It was established
that vitamin E was capable of sustaining integrity of long-
chain polyunsaturated fatty acids in the membranes of
cells, resulting in the preservation of their signaling mole-
cules that could be modified by oxidative stress [148].
Moreover, vitamin E was capable of ameliorating AFB1-
stimulated lipid peroxidation in the testis of mice as a
result of its higher enzymatic and nonenzymatic anti-oxi-
dant capabilities (Table 2) [91].

Furthermore, vitamin E was capable of influencing sig-
naling function in vascular smooth muscle cells, resulting in
its role beyond the antioxidative function (Table 2) [149].
Additionally, vitamin E had precise blockade effect on pro-
tein kinase C and a gene like collagenase [150]. Similarly,
vitamin E had stimulatory effects on one protein, phospha-
tase, and on other genes such as alpha-tropomyosin and
connective tissue growth factor [150].

Notably, antischistosomal drug oltipraz was capable of
decreasing the disease burden associated with AFB1 during
preliminary cancer prevention bioassays in AFB1-exposed

Table 2: Agent/chemical/drug and the modes of actions used in the treatment of contaminated food, exposed to animals and/or human beings

Agent/chemical/crug Treatment (mode) food/
animal/human

Mode of action of agent/chemical/drug Reference

Physical (heat and gamma rays) Contaminated food Neutralization of AFB1 [141]
Chemical (acids, bases, oxidizing
agents, and reducing agents)

Contaminated food Destruction or extinguish AFB1 [141]

Biotechnological (plant extracts and
bacterial strains)

Contaminated food Degradation of AFB1 [141]

Novasil clay minerals Animal and humans (oral) Absorption of AFB1 in vitro [141]
Phyllanthus amarus Humans (oral) Augmentation lipid peroxidation, leading to

downregulation of AFB1 in the liver
[143,144]

Black tea Humans (oral) Augmentation lipid peroxidation, leading to
downregulation of AFB1 in the liver

[143,144]

Gynandra extract Animals and humans (oral) Anti-oxidant [39,40,145]
Esculin Animals and humans (oral) Anti-oxidant [39,40,145]
Selenium Animals and humans (oral) Anti-oxidant [39,40,72,76,145]
Ascorbic acid (vitamin C) Animals and humans (oral) Anti-oxidant [146]
Vitamin E Animals and humans (oral) Anti-oxidant [38,90,148]
Oltipraz Animals (oral) Reduction of hepatic AFB1-derived DNA adducts [150–152]
CDDO-Im Animals and humans (oral) Multifunctional agent with anti-inflammatory,

antiproliferative, apoptotic, and cytoprotective
activities

[156–159]
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rats [151–153]. It was capable of substantial but inadequate
reductions in quantities of hepatic AFB1-derived DNA adducts
in these animals (Table 2). Also, the pharmacodynamic action
of the medicine was suggestive of augmented detoxication of
AFB1 (Table 2) [154,155]. Also, synthetic oleanane triterpenoid
1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oylimidazole
(CDDO-Im) was capable of blocking AFB1-stimulated tumori-
genesis in the rat (Table 2) [151].

The actions of CDDO-Im were obvious in the reduction
of the hepatic focal burden of the glutathione S-transferase
placental form (GST-P positive foci) of preneoplastic lesions
[156]. Interestingly, CDDO-Im was a potent stimulator of
Keap1-NF-E2-related factor 2 (Nrf2) signaling, which was
capable of triggering augmented conjugation of the 8,9-
epoxide of AFB1 with glutathione via the action of glu-
tathione S-transferases (GSTs), resulting in the reduction
of DNA adducts formed from this ultimate carcinogenic
electrophile [157,158].

Furthermore, studies established that the protection
offered by CDDO-Im in this model was attained mainly
via the interaction with signaling pathways facilitated by
the transcription factor Nrf2 [156,158]. Also, hepatic secre-
tion of Nrf2 target genes, such as aldo-keto reductase 7A1
and GSTs, which were implicated in AFB1 detoxication, was
elevated after CDDO-Im administration [151]. Thus, CDDO-Im
functions as a multifunctional agent with anti-inflamma-
tory, antiproliferative, apoptotic, and cytoprotective activ-
ities, influenced multiple targets and pathways (Table 2)
[159,160].

In our perspective, medications, such as esculin, sele-
nium, gynandra extract, vitamins C and E, oltipraz, and
CDDO-Im, which have anti-oxidant functions, are capable
of modifying AFB1-stimulated oxidative stress, resulting in
the relieving of resultant anomalies. Thus, these drugs
have to be re-purposed for the treatment of AFB1-asso-
ciated infertility. We also advocate clinical trials on these
medications for treatment of AFB1-associated infertility.
Thus far, future research on the treatment of AFB1-asso-
ciated infertility in both males and females should focus on
these medications, which are already in use and readily
available.

10 Conclusion

AFB1 is able to distract the reproductive systems in both
male and female animals. Also, AFB1 is capable of inter-
fering with the functions of several endocrine glands via
the disruption enzymes and their substrates that are liable
for the synthesis of hormones. Additionally, AFB1 is capable

of influencing the key genes in endocrine regulation in pla-
cental cells after being metabolized into aflatoxicol, resulting
in fetal anomalies. Moreover, AFB1 is potentially teratogenic
and it is responsible for the development of malformation in
humans and animals. Thus, AFB1 is one of the crucial markers
to investigate in couples with infertility.
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