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Purpose: Nascent geographic atrophy (nGA) refers to specific features seen on OCT B-scans, which are
strongly associated with the future development of geographic atrophy (GA). This study sought to develop a deep
learning model to screen OCT B-scans for nGA that warrant further manual review (an artificial intelligence [AI]-
assisted approach), and to determine the extent of reduction in OCT B-scan load requiring manual review while
maintaining near-perfect nGA detection performance.

Design: Development and evaluation of a deep learning model.
Participants: One thousand eight hundred and eighty four OCT volume scans (49 B-scans per volume)

without neovascular age-related macular degeneration from 280 eyes of 140 participants with bilateral large
drusen at baseline, seen at 6-monthly intervals up to a 36-month period (from which 40 eyes developed nGA).

Methods: OCT volume and B-scans were labeled for the presence of nGA. Their presence at the volume
scan level provided the ground truth for training a deep learning model to identify OCT B-scans that potentially
showed nGA requiring manual review. Using a threshold that provided a sensitivity of 0.99, the B-scans identified
were assigned the ground truth label with the AI-assisted approach. The performance of this approach for
detecting nGA across all visits, or at the visit of nGA onset, was evaluated using fivefold cross-validation.

Main Outcome Measures: Sensitivity for detecting nGA, and proportion of OCT B-scans requiring manual
review.

Results: The AI-assisted approach (utilizing outputs from the deep learning model to guide manual review)
had a sensitivity of 0.97 (95% confidence interval [CI] ¼ 0.93e1.00) and 0.95 (95% CI ¼ 0.87e1.00) for detecting
nGA across all visits and at the visit of nGA onset, respectively, when requiring manual review of only 2.7% and
1.9% of selected OCT B-scans, respectively.

Conclusions: A deep learning model could be used to enable near-perfect detection of nGA onset while
reducing the number of OCT B-scans requiring manual review by over 50-fold. This AI-assisted approach shows
promise for substantially reducing the current burden of manual review of OCT B-scans to detect this crucial
feature that portends future development of GA.
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Geographic atrophy (GA) is a late, vision-threatening
complication of age-related macular degeneration (AMD).
Once identified on color fundus photography (CFP) or
fundus autofluorescence, there is already substantial loss of
outer retinal tissue.1 Slowing or preventing the onset of GA
in the early stages of AMD is thus needed to prevent
irreversible vision loss from this late-stage disease. How-
ever, large and lengthy interventional trials2,3 have often
been required to detect a clinically meaningful effect of an
intervention in the early stages of AMD. The feasibility of
such trials could be improved by identifying early signs or
ª 2023 by the American Academy of Ophthalmology
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predictors of GA onset, so that they could be used to
identify high-risk individuals to enrich clinical trial pop-
ulations. They could also serve as biomarkers of AMD
progression, or potentially act as an earlier endpoint in trials
aiming to prevent the onset of atrophy.

On OCT imaging, specific features of photoreceptor loss
that have been termed nascent GA (nGA)4e7 have shown
promise as one such biomarker for providing a strong pre-
dictor of GA onset.7,8 These features include (1) subsidence
of the inner nuclear layer (INL) and outer plexiform layer
(OPL) and/or (2) a hyporeflective wedge-shaped band
1https://doi.org/10.1016/j.xops.2023.100428
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within Henle’s fiber layer. A recent study reported that in
individuals with bilateral large drusen, eyes that developed
nGA showed a 78-fold increased risk of developing GA
compared with those that did not have nGA.7 The accurate
identification of nGA could thus substantially improve the
feasibility of evaluating preventative treatments for the
onset of GA.

However, the manual grading of numerous individual B-
scans in an OCT volume scan is labor intensive and time
consuming, and as such is an expensive undertaking in
clinical trials. This is especially the case when a large
number of B-scans are acquired per OCT volume scan to
provide a high spatial resolution when imaging the retina.
This challenge is analogous to one faced in the population-
based screening of retinal diseases, where the large number
of CFPs requiring assessments has motivated the develop-
ment of artificial intelligence (AI)-based methods for iden-
tifying referable cases.9e12 Artificial intelligence models can
provide a fully autonomous assessment, or they could be
used to identify a small subset of cases requiring secondary
assessment by human graders. The latter approach could
thus provide a means for substantially improving the
feasibility of detecting nGA through substantially reducing
the number of OCT B-scans requiring manual evaluation.

While deep learning models have recently been devel-
oped to automatically detect GA on fundus auto-
fluorescence,13,14 CFP,15,16 and OCT scans,17e20 such a
model for detecting nGA has yet to be developed. This
study thus sought to develop a deep learning model that
could effectively screen OCT volume scans for the presence
of nGA to identify a subset of B-scans for manual assess-
ment, which we describe as “AI-assisted” detection of nGA.
We sought to determine what extent of reduction in the
number of OCT B-scans could be achieved with this
approach while maintaining a near-perfect performance for
detecting nGA. We also sought to examine the performance
of the deep learning model used in isolation (i.e., a fully
automated AI approach).

Methods

This study included a subset of participants21e23 in the sham
treatment arm of the Laser Intervention in the Early Stages of
AMD (LEAD) study24,25 (clinicaltrials.gov identifier:
NCT01790802) who had � 1 follow-up visit and who did not
have nGA at baseline based on the independent masked grading of
the OCT imaging data only (as previously described in detail7).
The LEAD study was conducted according to the International
Conference on Harmonization Guidelines for Good Clinical
Practice and the tenets of the Declaration of Helsinki.
Institutional review board approval was obtained at all sites and
all participants provided written informed consent.

Participants

This study included participants that had bilateral large drusen at
baseline (meeting the definition of intermediate AMD based on the
Beckman Clinical Classification System of AMD26), and had a
best-corrected visual acuity of 20/40 or better in both eyes. Any
participant with late AMD, or any other ocular, systemic or
neurological disease that could have an impact on the assessment
of the retina, were excluded. Late AMD was defined by the
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presence of neovascular AMD, GA on CFP, or nGA or greater
lesion on OCT imaging.21e23

All participants underwent pupillary dilation, then OCT imag-
ing was performed by obtaining a volume scan covering a
20 � 20� region with 49 horizontal B-scans (25 frames averaged
per scan) using the Spectralis HRA þ OCT (Heidelberg Engi-
neering). All retinal imaging was performed at the baseline visit
and each 6-monthly follow-up visit, for up to 36-months.

Data Labeling

As previously described,7 all OCT volume scans were initially
assessed by a senior grader (Z.W.) for the presence of nGA,
defined as the presence of subsidence of the INL and OPL, and/
or a hyporeflective wedge-shaped band within Henle’s fiber
layer.4e7 Note that the features used to define nGA do not require
the presence of choroidal signal hypertransmission � 250 mm with
an associated zone of retinal pigment epithelium (RPE) attenuation
or disruption � 250 mm (meeting the definition of complete RPE
and outer retinal atrophy [cRORA]).27 However, these signs could
be present and it is thus possible for nGA lesions seen on OCT
imaging to also meet the definition of cRORA. It is also possible
that nGA lesions could correspond to GA visible on CFP, but
this distinction was not performed (or required) in this study. All
visits of any eye deemed to have questionable or definite nGA
were then concurrently reviewed by 2 further experienced
graders (R.H.G. and Z.W.). For all OCT volume scans labeled as
having nGAdwhich includes lesions that could also meet the
definition of complete RPE and cRORA27dthe same 2 graders
then also concurrently labeled each B-scan for the presence of
nGA. Any disagreements were immediately resolved by open
adjudication.

Deep Learning Model Development

A multi-instance deep learning model was trained to classify OCT
volumes using volume-wise nGA labels. The intermediate logit for
each instance is used to identify B-scans requiring manual
assessment for the AI-assisted approach described in the next
section.

The model architecture is shown in Figure 1A; a late-fusion
method with ResNet-1828 backbone was applied for the 3-
dimensional OCT volume scans. B-scans from the OCT volume
were fed into a B-scan classifier, where they were first
preprocessed (resized to 512 � 496, then rescaling the intensity
range to [0, 1]). Data augmentation, including small rotations,
affine transformations, horizontal flips, and additions of Gaussian
noise and blur were randomly applied to improve the invariance
of the model to those transformations. The B-scans were then
passed through the ResNet-18 backbone pretrained on the Image-
Net dataset. The ResNet backbone produces activation maps of
512 � 16 � 16, and a max-pooling layer and an average pooling
layer are concatenated to generate a feature vector of 1024. Then a
fully connected layer was applied to generate the classification
logit for each B-scan. In such a setting, during the training process,
the loss from volume label and volume classification (average of B-
scan logits) back-propagates and encourages the network to iden-
tify as many B-scans that contribute to the final prediction of the
presence of nGA at the OCT volume scan level. This framework
can thus be considered as a form of simplified multi-instance
learning that learns instance labels from only bag labels,29 where
the B-scans are the “instances” and OCT volume scans as “bags”
(i.e., a set of training instances). During model training, the
Adam optimizer was used to minimize focal loss. The L2 weight
decay regularization was used to improve the generalization of
the model.

http://clinicaltrials.gov


Figure 1. A, Deep learning architecture of the nascent geographic atrophy diagnostic model, which is trained to classify 3-dimensional (3D) OCT volumes.
B, The flow for artificial intelligence (AI)-assisted approach where only a small subset of B-scans are identified by the trained B-scan classifier for manual
review.
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The class imbalance present in our dataset can present a sig-
nificant challenge to achieving high levels of classification per-
formance, especially for the minority class (OCT volumes with
nGA in this study, which was also the positive class), with the deep
learning model.30 To minimize the impact of the imbalance in the
dataset, we utilized focal loss and over-sampling strategies during
the model training. Focal loss has been shown to improve the
performance of deep learning models in multiple applications.31e33

The focal loss down-weights the loss contribution from easy ex-
amples in comparison to the traditional cross-entropy loss, and this
modification helps the model to focus more on challenging ex-
amples, which are typically from the minority class. Over-sampling
strategy ensures the model receives sufficient exposure to the
positive samples. In addition, we applied transfer learning and the
image augmentation techniques during the model training to
enhance the performance of the model when dealing with a rela-
tively small dataset.30,34 The data augmentation we performed
include rotation and affine transformation to account for typical
variations in head positioning when acquiring scans, horizontal
flips to remove the impact of eye laterality, and additions of
Gaussian noise and blur to simulate scans of different signal-to-
noise ratios. Due to the high imbalance and limited size of the
dataset, model performance was evaluated on the entire dataset
using fivefold cross-validation, with a split at the individual level
and stratified based on the presence of nGA to avoid information
leak and skewed distribution. The use of cross-validation helps
mitigate the impact of random data splits and provides more robust
results. We follow the nomenclature for data splitting35 with a
training set (64%), a tuning set (16%), and a validation test set
(20%). As such, the validation test set was never used for tuning
the model. Hyperparameters were tuned optimizing the F1-score
on the tuning set to find the best value of learning rate, weight
decay, and for early stopping. Thereafter, the model that was
trained with the optimal hyperparameter was tested on the vali-
dation test set.

Given an OCT volume and a trained model, our objective was
to identify nGA B-scans. A confidence score of a B-scan
containing nGA is estimated as S(l/n) when l > 0 and S(l) when
l < 0, where S is the sigmoid function, l is the individual B-scan
classification logit, and n is the number of B-scans in a volume.
This reverse leaky rectified linear unit operation on logits empiri-
cally normalizes the logits to [�1, 1] range, so that the confidence
score is distributed more uniformly. B-scans whose confidence
scores were higher than a threshold are considered as containing
nGA lesions, and the threshold was chosen based on either the
sensitivity or specificity of the model from the training and tuning
sets (the details on thresholding are described in the next section).

Evaluation of Model Performance

The performance of the approaches utilizing the deep learning
model for detecting nGA at the OCT volume scan level was
examined in 2 scenariosdfirst, when evaluating all the OCT vol-
ume scans in this study, and second, when evaluating all the OCT
volume scans up until the visit of nGA onset (or until the last visit
if nGA did not develop in an eye). The former thus included OCT
volume scans of subsequent visits following the onset of nGA. The
latter was used to evaluate the performance of the approaches
within a clinically relevant contextdsuch as within a randomized-
controlled trial of an intervention in the early stages of AMDd
where it is critical that the approaches accurately identified the
onset of nGA, and that they avoid falsely considering that an
endpoint has been reached.

Two approaches were examined in this studyda fully auto-
mated AI approach and an AI-assisted approach. The former relies
entirely on the output of the deep learning model to determine the
presence of nGA in an OCT volume, and we thus examined its
sensitivity for detecting nGA at sufficiently high levels of speci-
ficity (or low false-positive rates) using volume-wise nGA labels.
This was achieved by identifying a threshold for the probability
output of the model that provides a fixed level of specificity (99%,
98%, and 95%) from the training and tuning sets, and this threshold
was then applied in the validation test sets and its performance
(sensitivity and specificity) for detecting nGA was determined. For
3
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the latter AI-assisted approach (Fig 1B), the same deep learning
model was used to identify a subset of OCT B-scans with a
higher probability of having nGA lesions from an OCT volume
for further manual review. This manual review of the identified
subset of B-scans is assumed to provide the same labels of the
presence of nGA as the ground-truth (i.e., labels provided by the
2 experienced graders in this study, rather than an assessment from
further independent grading). We thus sought to identify a
threshold of the B-scan confidence score (described in previous
section) in the training and tuning sets that would provide a
sensitivity of 99% for the detection of nGA (a near-perfect level of
detection), and this threshold was then applied to the validation test
sets. The sensitivity of this AI-assisted approach, and the propor-
tion of B-scans requiring manual review, was then determined
using the B-scan wise nGA labels. Note that the performance
measure of the 2 approaches evaluated, described earlier, differed
as each approach has its own specific requirements for it to have
clinical utility. The sensitivity of the fully automated AI approach
was evaluated at high levels of specificity, which is required to
avoid falsely identifying nGA. In contrast, the extent of reduction
in the proportion of B-scans requiring manual review by the AI-
assisted approach was set to achieve a high level of sensitivity,
which is required for a screening tool. The 95% confidence in-
tervals (CIs) of the performance measures of sensitivity and
specificity of the fully automated AI approach, and the sensitivity
of the AI-assisted approach in the validation test sets, were then
calculated using a bootstrap resampling procedure (n ¼ 1000
resamples at the individual level).

To further illustrate what was learned by the model, we utilized
Gradient-weighted Class Activation Mapping technique.36 This
method visualizes the regions in the input image that contribute
the most to the model’s prediction by computing the gradient of
the target class. The saliency map generated by Gradient-
weighted Class Activation Mapping helps identify the abnormal
regions associated with nGA.
Results

A total of 280 eyes from 140 participants with bilateral large
drusen at baseline that were seen at 6-monthly intervals up
to 36 months were included in this study. From a total of
1910 visits, 26 visits were excluded due to the development
of neovascular AMD in 9 (3%) eyes. For the remaining
1884 visits, 118 (6%) visits from 40 (14%) eyes were
labeled as having nGA. Fig S2 shows our data split strategy.

Performance of the Fully Automated AI
Approach

The fully automated AI approach had an overall sensitivity
of 0.76 (95% CI ¼ 0.67e0.84) and specificity of 0.98 (95%
CI ¼ 0.96e0.99) for detecting nGA when evaluating all
OCT volume scans in this study, based on a threshold that
achieved 0.99 specificity in the training and tuning sets.
Based on the same threshold, the model had a sensitivity of
0.53 (95% CI ¼ 0.40e0.65) for detecting the onset of nGA
when evaluating all OCT volume scans up until the visit of
nGA development (or until the final visit if nGA did not
develop), at a specificity of 0.98 (95% CI ¼ 0.96e0.99).
The core performance metrics of the fully automated AI
approach for these 2 previously mentioned analyses for
other thresholds are summarized in Table 1. Additional
4

performance metrics are summarized in Table S2 and
Fig S3.

Performance of the AI-Assisted Approach

The AI-assisted approach achieved a sensitivity of 0.97
(95% CI ¼ 0.93e1.00) for detecting nGA when evaluating
all OCT volume scans in this study while requiring manual
review of only 2.7% of OCT B-scans selected by deep
learning model AI from all B-scans in OCT volumes. For
the task of detecting the onset of nGA, the AI-assisted
approach had a sensitivity of 0.95 (95% CI ¼ 0.87e1.00)
when requiring manual review of only 1.9% of the OCT B-
scans selected by AI. A plot of the sensitivity against the
proportion of OCT B-scans requiring manual review for
both scenarios is shown in Figure 4. Since manual review
corrects false positive cases, the specificity of AI-assisted
approach is by default 1.00.

Longitudinally, for the 30 eyes that have ‡ 1 follow up
visit after nGA onset, 100% of the AI prediction stays
positive consistently. Typical examples are presented in
Fig S5.

In addition, we present the probability distributions of
B-scans in Fig S6 to provide more insights into the
performance of our methodology. All B-scans across the
entire dataset were split into 3 groups based on labels of
corresponding OCT volumes: non-nGA, nGA onset, and
after nGA onset.

Examples of Findings in This Study

Six examples of cases are presented in Figure 7 to illustrate
the findings of this study. The saliency maps generated by
Gradient-weighted Class Activation Mapping are presented
in Figure 8 to provide visual insights of the model’s
prediction. The first 2 cases (Fig 7A, B) represent cases
with nGA that were correctly identified with both the fully
automated AI (based on a threshold that provided a 0.98
specificity in the validation test set) and AI-assisted ap-
proaches. The next 2 cases (Fig 7C, D) represent cases where
the fully automated AI approach did not consider nGA to be
present in the OCT volume scan, but � 1 B-scans were
identified as requiring manual review and then confirmed to
have nGA based on the AI-assisted approach. The final 2
cases (Fig 7E, F) represent cases where the fully automated
AI approach had incorrectly considered nGA to be present,
while B-scans identified as requiring manual review with
the AI-assisted approach in these cases were then deemed
not to have nGA. For the first of these 2 cases (Fig 7E), the
fully automated AI approach may likely have considered
subsidence of the OPL and INL to be present between 2
large regions of drusen-associated RPE elevations (that
elevated the OPL and INL, thus giving the impression that
subsidence occurred between these 2 elevated regions). For
the second of these 2 cases (Fig 7F), it is unclear what the
fully automated AI approach would have considered in its
identification of this B-scan as having nGA. It is possible
that the deep learning model learned about other OCT
features that are often, but not always, present in regions of
nGAdsuch as choroidal signal hypertransmission, RPE
disruption or attenuation, or disruption of the external



Table 1. Performance of the Fully Automated AI Model for Detecting nGA in the Combined Validation Test Sets

Training and Tuning Specificity*

All Visits At First Developmenty

Sensitivity Specificity Sensitivity Specificity

0.99 0.76 (0.67e0.84) 0.98 (0.96e0.99) 0.53 (0.40e0.65) 0.98 (0.96e0.99)
0.98 0.86 (0.77e0.93) 0.97 (0.95e0.99) 0.75 (0.62e0.87) 0.97 (0.95e0.99)
0.95 0.91 (0.83e0.98) 0.94 (0.91e0.97) 0.87 (0.77e0.97) 0.94 (0.91e0.97)

All values are presented as the estimate (95% confidence interval). AI ¼ artificial intelligence; nGA ¼ nascent geographic atrophy.
*Based on threshold determined from the training and tuning sets.
yIncluding all OCT volume scans up until the visit of nGA development, or until the final visit if nGA did not develop in an eye.
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limiting membrane or ellipsoid zonedand considered these
in its assessment of nGA presence in this B-scan.
Discussion

Our study demonstrated that an AI-assisted approach for
detecting nGAdwhereby a deep learning model identifies
selected OCT scans for manual evaluationdreduces the
number of B-scans requiring manual review by more than
50-fold (i.e., only 1.9% of OCT B-scans required manual
review) while maintaining a near-perfect level of detection
of nGA onset. In contrast, the fully automated AI approach
(relying solely on the output of the deep learning model)
correctly detects approximately half of the eyes with nGA at
its onset at a sufficiently high specificity of 0.98. These
findings underscore the value of an AI-assisted approach for
substantially reducing the burden of manual assessments in
the detection of nGA.

This is the first study, to our knowledge, that has
developed a deep learning model for detecting nGA on OCT
imaging, performed in a longitudinal cohort of individuals
Figure 4. Performance of the artificial intelligence-assisted models for detectin
nGA first developed (B), when requiring manual review of a subset of OCT B
with bilateral large drusen at baseline. A recent study15

developed a deep learning model to detect the presence of
GA on CFPs of > 4500 individuals who were also
reviewed longitudinally in the Age-Related Eye Disease
Study. When evaluating nearly 60 000 CFPs of eyes that
spanned the entire spectrum of the disease (from not having
AMD to having advanced AMD), their model had a sensi-
tivity of 0.69 for detecting GA at a 0.98 specificity, with the
performance varying based on the GA area present. For
instance, it had a sensitivity of 0.21 for detecting definite
GA lesions with a total area that was smaller than a 354-mm
diameter circle (being twice the size of the minimum
diameter used to define GA37), but a sensitivity of 0.78 for
detecting GA lesions with a total area larger than half a disc
area.15 These findings underscore the challenge of detecting
early signs of atrophic changes generally, which is
noteworthy when considering the task of detecting nGA
on OCT imaging in this study, as these features represent
early signs that portend the onset of GA.4e7 This chal-
lenge of detecting early signs of atrophic changes is also
reflected in the findings of this study, where we observed a
lower performance of the deep learning model for detecting
g nascent geographic atrophy (nGA) at all visits (A), or at the visit when
-scans determined by a deep learning model. CI ¼ confidence interval.
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Figure 7. Examples of cases in this study, with a selected OCT B-scan shown on the top of each case (with region of interest indicated by the orange arrow),
and a plot of the confidence scores of having nascent geographic atrophy (nGA) at each of the 49 B-scans from the OCT volume scan shown on the bottom
(with the selected B-scan shown on the top indicated by the red arrow, and the threshold for identifying B-scans requiring manual review that resulted in a
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nGA at its first onset compared to its detection across all
study visits. These findings are unsurprising as the features
used to define nGA often become more pronounced over
time as the atrophic lesion progresses, likely accounting for
the improved performance of the deep learning model for
detecting nGA across all visits in this study compared to the
detection of nGA onset. Another study17 developed a deep
learning model to detect the presence of GA (which
included cRORA) on OCT imaging, using data from the
Age-Related Eye Disease Study 2 Ancillary Spectral-
Domain OCT Study. This study included 1284 OCT vol-
ume scans from 311 participants, where a quarter of the
scans had GA and the remaining three-quarters did not. The
deep learning model had a sensitivity of 0.83 for detecting
GA on OCT imaging at a specificity of 0.95,17 which was
similar to the sensitivity of 0.86 for detecting the onset of
nGA across all visits with the deep learning model in this
study at a higher specificity of 0.97. A fully automated
deep learning model has recently been developed to
segment and quantify GA lesions on OCT.19 The model
was developed using data from routine clinical care and
the validation results show that the model achieved com-
parable performance with human specialists. Another recent
study showed that a deep learning model developed using
fundus autofluorescence images and OCT en face images
predicted the GA growth rate more effectively than a
benchmark model that included parameters such as the
baseline GA area, distance of the lesion(s) from the fovea,
and lesion contiguity (e.g., unifocal or multifocal).14 This
model was developed and evaluated using data from the
phase III Chroma and Spectri trials and evaluated in
independent test sets, and underscores the value of deep
learning models for identifying eyes at higher risk of
faster GA progression. These studies collectively highlight
the promising role of deep learning models for monitoring
and predicting GA progression, and also motivate the
exploration of using deep learning models in nGA detection.

While the performance of our fully automated deep
learning approach would only miss the onset of nGA in 1 in
8 eyes at the visit of its development at a 6% false-positive
rate, this rate increases up to missing almost 1 in 2 eyes at a
2% false-positive rate. Such a level of specificity may be
necessary in certain settings to avoid falsely considering an
eye to have developed a very high-risk feature for the
subsequent development of GA.7,8 The AI-assisted
approach evaluated in this study therefore provides an
alternative strategy for avoiding such false-positives through
incorporating manual review. We demonstrated in this study
that it could enable near-perfect detection of nGA onset
(a sensitivity of 0.95) while requiring only < 2% of the OCT
B-scans to be manually reviewed. This AI-assisted approach
is analogous to the one taken to tackle the population-based
0.98 specificity shown as the horizontal red line). The first 2 cases (A and B) r
considered the volume scan to have nGA, and where the AI-assisted approach
examples where the fully automated AI model did not consider nGA as bein
approach led to the correct detection of nGA. The 2 final cases (E and F) rep
were correctly identified as not having nGA following manual review of the sele
region of interest in (A and B), they are nGA lesions located by manual review
see Fig 4); in (C and D), they are nGA lesions located by manual review only. In
human review.
screening of eye diseases using deep learning models to
identify a subset of referable cases for further asses-
sment.9e12 This approach is especially useful in settings
with a low prevalence or incidence of the outcome of in-
terest, and it is thus especially relevant in the longitudinal
assessment of individuals with the early stages of AMD. For
instance, the OCT volume scans at the time of onset from
the 40 eyes where nGA developed represents only 2% of all
the OCT volume scans over time in this study up until the
point of nGA development or until the last visit if it did not
develop. Note that since the AI-assisted approach was tuned
to achieve near-perfect levels of sensitivity for detecting
nGA, its sensitivity would remain unchanged when applied
in cohorts with a different prevalence of nGA, although the
proportion of B-scans identified as requiring manual review
would be expected to be higher in a cohort with a higher
prevalence of nGA than in this study (and vice versa).

The deep learning model developed in this study could
thus be useful for application in clinical trials of the early
stages of AMD, where it could be used to help reduce the
burden of manual grading to identify the onset of nGA if it
is used as a study endpoint (as was the case in the LEAD
study25,26). It could also be used to help automatically
screen for individuals with nGA to potentially target them
for inclusion in treatment trials aiming to slow progression
to GA. This deep learning model could also be used as a
clinical decision-support tool for screening for the pres-
ence of nGA, in order to guide risk stratification and
counseling patients.38

A key limitation of this study is the lack of an inde-
pendent dataset from a similar population of individuals
with intermediate AMD and a matching imaging protocol,
to validate the model, which necessitated instead the use of
fivefold cross-validation. During each round of the fivefold
cross-validation, the validation test set was strictly reserved
for evaluation purposes only. It was not used for model
training or tuning, ensuring that the evaluation results
remain unbiased and accurately reflect the model’s perfor-
mance on unseen data. It is essential to emphasize that the
findings of this study serve as proof-of-principle and we
encourage further external validation once more relevant
datasets become available in the future. Another limitation is
that only B-scans from 1 type of scan protocol of only 1
OCT device was used, and thus the generalizability of the
findings of this study to OCT scans obtained from other
devices remains to be determined. The performance of the
model would likely be improved through including a larger
cross-sectional sample of eyes with and without nGA, and
this would be especially important if the model is to be used
as a fully automated means for detecting nGA. However, a
strength of this study is that the model was trained on a
clinically important label, namely nGA, which we have
epresent cases where the fully automated artificial intelligence (AI) model
also identified nGA as being present. The next 2 cases (C and D) show

g present, but the manual review of selected B-scans with the AI-assisted
resent cases deemed to have nGA by the fully automated AI model, that
cted B-scans with the AI-assisted approach. The orange arrows indicate the
and also highlighted by AI (Gradient-weighted Class Activation Mapping,
(E and F), they are suspicious nGA lesions suggested by AI, but rejected by

7



Figure 8. Gradient-weighted Class Activation Mapping saliency map for the cases presented in Figure 7. The saliency is overlaid as green. AI ¼ artificial
intelligence; nGA ¼ nascent geographic atrophy
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previously shown in this dataset to be associated with a 78-
fold increased rate of GA development and that explained
91% of the variance in the time to develop GA.7 We have
also more recently shown that the development of nGA is
more strongly associated with GA development than the
presence or development of incomplete RPE and outer
retinal atrophy, which is why we focused on the
development of a deep learning model to screen for nGA
in this study.39 Nonetheless, we have previously shown
that there was 1 case in this cohort where nGA was not
detected prior to, or when, GA developed (as this case
was characterized by having an unusual RPE
detachment).39 Note finally that the deep learning model
in this study was only developed and tested in eyes with
non-neovascular AMD, but future studies could extend the
findings of this study to develop a deep learning model that
could be used to identify OCT B-scans potentially with
signs of neovascular AMD or nGA that require manual re-
view with an AI-assisted approach. Such a model would
have an even greater level of clinical utility, as both neo-
vascular and atrophic AMD changes are important clinical
endpoints when evaluating disease progression in the early
stages of AMD. Regarding clinical utility, as with any other
computer-aided methods, there might be confirmation bias,
i.e., human reviewers may tend to grade the AI-identified
cases as positive. In this study, we only evaluated the
proposed AI-assisted approach using the already annotated
B-scans. The findings of this study are thus only considered
proof-of-principle but it encourages further prospective
examination.

While thesefindings suggest that theremaybeatypical cases
that do not conform to the more common transition from nGA
toGA, the strong association between nGAwith GAonset still
underscores the value of accurately identifying nGA on OCT
scans. As such, replication of the promising findings of this
study in the future is now warranted to establish the clinical
applicability of the approaches developed.

In conclusion, this study demonstrated that a deep
learning model developed for an AI-assisted approach for
detecting the onset of nGA could help to dramatically
reduce the number of OCT B-scans requiring manual re-
view by over 50-fold while maintaining near-perfect
sensitivity. This approach has the potential to substan-
tially reduce the current manual burden of reviewing OCT
B-scans in both clinical trials and practice for detecting
nGA.
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