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Abstract: Although the formation control of multi-agent systems has been widely investigated
from various aspects, the problem is still not well resolved, especially for the case of distributed
output-feedback formation controller design without input information exchange among neighboring
agents. Using relative output information, this paper presents a novel distributed reduced-order
estimation of the formation error at a predefined time. Based on the proposed distributed observer, a
neural-network-based formation controller is then designed for multi-agent systems with connected
graphs. The results are verified by both theoretical demonstration and simulation example.
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1. Introduction

In recent years, the formation control problems of multi-agent systems have been
extensively studied in various fields; see [1] and the references therein. Recently, typical
perspectives on formation control include the time-varying formation control of multi-
agent systems [2–5], the rigid formation of multiple robots [6–8], the fractional-order-
based controller for multi-agent formation [9], event-based formation control [10,11] circle
formation control [12], and game-based formation [13]. For the formation problem of
multi-agent systems, the main task is to design an appropriate distributed controller to
drive the agents form the predefined formation shape.

The distributed formation controllers are based on the feedback of either the formation
error or the formation error estimation. Compared with the formation error feedback
controller, the observer-based control is more practical since it does not require full state
measurement of the controller. Most of the existing observer-based formation controllers
rely on the exchange of the observer or input information among neighboring agents,
which causes high demand for communication channels. To overcome this limitation, the
unknown input observer [14] is introduced to formulate the distributed pure relative output
feedback observer and generate the distributed attack-free protocols for the consensus
problem of multi-agent systems [15]. To realize better performance, it is preferable to
design appointed-time observers rather than asymptotical convergent ones. In view of
this, the distributed appointed-time observers are introduced in [16], and the pairwise
structure [17,18] is borrowed therein, which consumes double the calculation costs. Another
method to construct the appointed-time observers is the time-varying transformation
approach presented in [19], and the corresponding distributed appointed-time observer
is proposed in [20]. Although the distributed appointed-time observer in [20] reduces the
computational cost compared with those in [16], the order reduction in the distributed
appointed-time observers is far from being completely resolved.
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Motivated by the discussions above, this paper focuses on the reduced-order appointed-
time observer and the corresponding formation controller design for nonlinear multi-agent
systems. The transformation for the pairwise reduced-order appointed-time observer used
in [16] is introduced, which makes it possible to further reduce the order of the designed ob-
server. Following the observer design procedure, a novel transformation-based distributed
reduced-order observer is presented, which can realize the appointed-time estimation of
the formation error. Based on the proposed appointed-time observer, the distributed forma-
tion controller is then designed, where the neural network approximation is introduced
with adaptive weighted gain designed to tackle the unknown nonlinearities of the agent
dynamics. Theoretical analysis shows that the proposed distributed formation controller
can realize the preset formation shape.

The contributions of the paper are at least twofold. Firstly, compared with existing
formation results [4–8,10,11], this paper, for the first time, designs an output-feedback
formation controller based on only relative output information, where no observer in-
formation transmission is needed during the whole process. Such a design structure
has the advantages of reducing communication cost and being free from network attack.
Secondly, compared with existing distributed appointed-time observers for multi-agent
systems [16,20], the appointed-time observer designed in this paper is of a lower order,
which decreases the computational cost.

The rest of the paper is organized as follows. Section 2 formulates the problem.
Section 3 gives the main result of the paper, and Section 4 presents a simulation example to
illustrate the efficiency of the proposed controller. Section 5 concludes the paper.

Notations. The symbols R and C represent the sets of all real numbers and complex
numbers, respectively. The symbol Rn is the set of n-dimensional real vectors. ∥M∥
represents the 2-norm of the matrix M. Rank(M) is the rank of matrix M.

2. Problem Formulation

Consider a distributed formation control problem of a networked system, containing
N agents. The dynamics of the multi-agent systems are given as

ẋi(t) = Axi(t) + B(ui(t) + fi(t)),

yi(t) = Cxi(t), i = 1, · · · , N,
(1)

where xi(t) ∈ Rn is the state of the ith agent, yi(t) ∈ Rm is the output of the ith agent,
ui(t) ∈ Rq is the input of agent i, and fi(t) is the unknown nonlinear term satisfying the
following assumption.

Assumption 1. The unknown dynamics fi(t) can be approximately described by

fi(t) = Wi φi(t) + ϵi(t),

where Wi ∈ Rp×q is the unknown neural network constant weight matrix; φi(t) ∈ Rq is the known
neural network activation function vector; and ϵi(t) is the residual error vector with relatively
small upper bound, i.e., ∥ϵi(t)∥ ≤ Πi. Moreover, the neural network activation functions φi(t) are
also bounded.

The constant matrices A, B, and C are the dynamic matrix, the input matrix, and the
output matrix, respectively.

Assumption 2 ([16]). The matrices A, B, C satisfy

(i) rank(CB) = rank(B) = q;

(ii) rank
[

A − sIn B
C 0m×q

]
= n + q, ∀s ∈ C.
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Remark 1. Assumption 2 indicates that the rank of the output matrix C is no less than that of
input matrix B, and there is no transmission zero for the agent dynamics. Under Assumption 2,
the distributed observer is designed in [16] without using relative input information, where the
consensus error of multi-agent systems is successfully estimated at an appointed time. Note that
in [16], the pairwise observer structure [17] is used, and the proposed appointed-time observer
is of order 2n, which greatly increases the computational cost. To release the calculation burden,
the time-varying transformation structure [19] is introduced to formulate the n-order distributed
transformation-based appointed-time observer for networked systems [20].

The communication graph among the N agents is described by an undirected graph
G = (V , E), where V = {1, 2, · · · , N} is the node set and E ⊂ V × V is the edge set.
An edge is denoted by a pair of nodes (j, i) ∈ E corresponding to an information link
from agent j to agent j, and node i can have access to the relative output information
yi(t)− yj(t) via its local sensors. For the undirected graph, (j, i) ∈ E also means (i, j) ∈ E .
A path from node i1 to node ik is an edge sequence (ik, ik−1), (ik−1, ik−1), · · · , (i2, i1) with
(il , il−1) ∈ E , l = k, k − 1, · · · , 2. An undirected graph is connected if for each pair of nodes
i, j there exists path from node i to node j. The adjacency matrix A = [aij]N×N is defined as
aii = 0, aij = 1 if (i, j) ∈ E and 0 otherwise. The Laplacian matrix L = [lij]N×N is defined
as lii = ∑N

j=1 aij and lij = −aij when i ̸= j.

Assumption 3. The undirected communication graph is connected.

Under Assumption 3, one has the following useful lemma.

Lemma 1. For the connected graph G, the Laplacian matrix L is semi-positive definite with 0 being
a simple eigenvalue.

For the multi-agent system (1), let the formation error of agent i be

ηi(t) =
N

∑
j=1

aij[xi(t)− xj(t)− pij],

where pij is the formation configuration between agents i and j. It is obvious that the
formation is achievable if pij = −pji, pij + pjk = pik, ∀i, j, k and there ūi exists such that

Apij = B(ūi − ūj), i, j = 1 · · · , N. (2)

Under condition (2), the dynamics of the formation error are given as

η̇i(t) = Aηi(t) + B

[
N

∑
j=1

aij[(ūi − ūj) +
N

∑
j=1

aij[(ui(t)− uj(t)) + fi(t)− f j(t)]

]
. (3)

The objective of this paper is to design an appropriate distributed formation controller
based on output information to realize the formation of the N agents. Note that the
formation is realized if and only if the formation error ηi(t) reaches zero. To realize this
objective, this paper intends to (1) design a reduced-order observer with order less than n
to estimate the formation error ηi(t) to further reduce the computational cost; (2) propose
an appropriate distributed controller based on the formation error estimation.

3. Main Results

In this section, the reduced-order appointed-time observer is firstly designed to es-
timate the formation error ηi(t), and the distributed neural-network-based formation
controller is then proposed for each agent.
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3.1. Reduced-Order Appointed-Time Observer Design

Since the relative input information and the nonlinearity are unknown, a transfor-
mation is needed on the formation error to eliminate the second term in the right hand
of (3).

Choose matrices B0 ∈ Rn×(n−q) and C0 ∈ Rm×(m−q) such that both
[
B0 B

]
and[

C0 CB
]

are of full rank. Let

[
B0 B

]−1
=

[
T
S

]
,
[
C0 CB

]−1
=

[
V
U

]
,

where T ∈ R(n−q)×n, S ∈ Rq×n and V ∈ R(m−q)×m, U ∈ Rq×m. By the definition of T,
one has TB = 0(n−q)×q, UCB = Iq and VCB = 0(m−q)×(m−q). Then, it is not difficult to
derive that

In =B0T + BS

=B0T − BUCB0T + BUC(In − BS) + BS

=(In − BUC)B0T + BUC.

(4)

Let ζi(t) = Tηi(t). Then, one can obtain that

ηi(t) = (In − BUC)B0ζi(t) + BUyηi (t), (5)

where

yηi (t) = Cηi(t) =
N

∑
j=1

aij(yi(t)− yj(t)− Cpij)

is the information that can be used in the observer design. Then, the appointed-time
estimation of the formation error ηi(t) is achievable if the appointed-time observer for ζi(t)
can be designed.

The dynamics of ζi(t) can be described as

ζ̇i(t) =TAηi(t)

=TA(In − BUC)B0ζi(t) + TABUyηi (t).
(6)

Let yζi (t) = VCB0ζi(t). Then, one has

yζi (t) =VCB0Tηi(t)

=VC(I − BS)ηi(t)

=Vyηi (t).

(7)

That is, yζi (t) can be used in observer design.
It is known from [16] that under Assumption 2, (TA(In − BUC)B0, VCB0) is observ-

able. Then, by borrowing the time-varying transformation structure [19,20], one can design
the distributed appointed-time observer as follows:

˙̄ζi(t) =−(TA(In − BUC)B0 + FVCB0)
T ζ̄i(t)

+[((VCB0)
T−G(t)F)V+G(t)TABU]yηi (t),

ζ̂i(t) =(G(t))−1ζ̄i(t),

η̂i(t) =(In − BUC)B0ζ̂i(t) + BUyηi (t),

(8)

where ζ̄i(0) = 0, F is the gain matrix such that Ā = −(TA(In − BUC)B0 + FVCB0) is stable,
and G(t) is the time-varying transformation, which is calculated by

G(t) =
∫ ∞

0
eĀTτ(VCB0)

TVCB0eĀτdτ
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with G(0) = 0.
Note that G(t) is the observability Gramian of the pair (Ā, VCB0), and the derivative

of G(t) can be described as

Ġ(t) = ĀTG(t) + G(t)Ā + (VCB0)
TVCB0.

Since (TA(In − BUC)B0, VCB0) is observable, one has that G(t) is invertible. Therefore,
the observer designed in the previous subsection exists under Assumption 2.

The following result shows the efficiency of the designed observer.

Theorem 1. Under Assumption 2, the distributed observer η̂i(t) in (8) estimates the formation
error ηi(t) at any appointed time in the sense that η̂i(t) ≡ ηi(t), ∀t > T0, with T0 being any preset
time instant.

Proof. Let θi(t) = G(t)ζi(t). Then, the dynamics of θi(t) can be written as

θ̇i(t) =Ġ(t)ζi(t) + G(t)ζ̇i(t)

=ĀTθi(t)−(G(t)F−(VCB0)
T)yζi (t)

+G(t)TABUyηi (t).

(9)

Let θ̃i(t) = ζ̄i(t)− θi(t). Then, one has

˙̃θi(t) = ĀT θ̃i(t). (10)

Note that θ̃i(0) = ζ̄i(0) − G(0)ζi(0) = 0, which implies θ̃i(t) ≡ 0. Therefore, one can
conclude that η̂i(t) ≡ ηi(t), ∀t > 0.

Remark 2. The key point of realizing observer reduction is the introduction of the transformation
T. Specifically, by introducing the variable ζi = Tηi, one only has to estimate the variable ζi since
ηi can be reformulated by ζi and the output yηi ; see (5). Then, the observer ζ̄i is designed to estimate
the variable Gζi, and thus ζ̂i can estimate the variable ζi, which leads to the convergence of η̂i − ηi.

Remark 3. The observer presented in (8) relies on the relative output information only, which
overcomes the limitation of input transmission via communication topologies. Such a design
structure decouples the observer design and the formation controller design, which facilitates the
formation controller design. Compared with distributed n-order appointed-time observer based on
the time-varying transformation structure designed in [20], the proposed appointed-time observer is
of order n − q, which has the advantage of reducing the calculation cost.

3.2. Distributed NN-Based Formation Controller Design

Based on the appointed-time formation error estimation, the following distributed
formation controller is designed:

ui(t) = −Ŵi φi(t) + cKη̂i − ūi +
dKη̂i

∥Kη̂i∥+ εi(t)
,

˙̂Wi = BT Pη̂i φ
T
i (t),

(11)

where Ŵi is the estimation of the unknown neural network weight matrix, and P is a
positive definite matrix with Q = P−1 satisfying the following LMI:

QAT + AQ − 2BBT < 0, (12)

K is the feedback gain matrix designed as K = −BT P, and εi(t) is the damping
signal satisfying

ε̇i = −kiεi, (13)
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with ki > 0 and εi(0) > 0.
We have the following result to design the parameter c.

Theorem 2. Suppose that Assumptions 1–3 hold. The formation of the N agents is achieved by the
distributed NN-based formation controller (11) if the parameters satisfies

c >
1

λ2(L)
, d ≥ max

i∈V
{Πi},

where λ2(L) denotes the smallest nonzero eigenvalue of Laplacian matrix L.

Proof. Choose pk, k = 1, · · · , N such that pij = pi − pj, ∀i, j. Then, one has Api = Būi. Let
x̄i = xi − pi, and one has ηi = ∑N

j=1 aij(x̄i − x̄j). By Theorem 1, η̂i(t) ≡ ηi(t) for t > T0 with
arbitrarily small T0. Then, the dynamics of x̄i can be written as

˙̄xi =Ax̄i + cBKηi − BW̃i φi(t) + B
[

d
∥Kηi∥+ εi(t)

Kηi + ϵ(t)
]

, (14)

with W̃i = Ŵi − Wi. And the compact form of x̄ = [x̄T
1 , · · · , x̄T

N ]
T is given by

˙̄x =[I ⊗ A + cL⊗ BK]x̄ − (I ⊗ B)W̃φ(t)

+ (dIN ⊗ B)m + (I ⊗ B)ϵ(t),
(15)

where W̃ = diag(W̃1, · · · , W̃N), φ(t) = [φT
1 (t), · · · , φT

N(t)]
T , m = [ 1

∥Kη1∥+ε1(t)
(Kη1)

T , · · · ,
1

∥KηN∥+εN(t) (KηN)
T ]T , ϵ(t) = [ϵT

1 (t), · · · , ϵT
N(t)]

T .
Consider the Lyapunov function candidate

V1 =x̄T(L⊗ P)x̄ +
N

∑
i=1

[
tr(W̃T

i W̃i) +
2Πiεi

ki

]
. (16)

The time derivative of V1 is given by

V̇1 =x̄T [L⊗ (PA + AT P)− cL2 ⊗ 2PBBT P]x̄

− 2ηT(IN ⊗ PB)W̃φ(t) + 2ηT(I ⊗ PB)ϵ(t)

+ 2ηT(dIN ⊗ PB)m −
N

∑
i=1

2Πiεi

+
N

∑
i=1

2tr(W̃T
i BT Pηi φ

T
i (t)).

(17)

Note that

− 2ηT(IN ⊗ PB)W̃φ(t) = −
N

∑
i=1

2ηT
i PBW̃i φi(t)

=−
N

∑
i=1

2φT
i (t)W̃

T
i BT Pηi = −

N

∑
i=1

2tr(W̃T
i BT Pηi φ

T
i (t)).

Then, we have

V̇1 =x̄T [L⊗ (PA + AT P)− cL2 ⊗ 2PBBT P]x̄

+
N

∑
i=1

2ηT
i PBϵi(t)−

N

∑
i=1

2d
ηT

i PBBT Pηi

∥Kηi∥+ εi(t)
−

N

∑
i=1

2Πiεi.
(18)

By Assumption 1, one has
2ηT

i PBϵi(t) ≤ 2Πi∥BT Pηi∥.
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Thus,
V̇1 ≤x̄T [L⊗ (PA + AT P)− cL2 ⊗ 2PBBT P]x̄

− 2
N

∑
i=1

[
dηT

i PBBT Pηi

∥BT Pηi∥+ εi(t)
+ Πiεi − Πi∥BT Pηi∥

]
=x̄T [L⊗ (PA + AT P)− cL2 ⊗ 2PBBT P]x̄

− 2
N

∑
i=1

(d − Πi)η
T
i PBBT Pηi + Πiε

2
i (t)

∥BT Pηi∥+ εi(t)
.

(19)

By noting c ≥ 1
λ2(L)

and d ≥ Πi, ∀i ∈ V , one can derive

V̇1 ≤x̄T [L⊗ (PA + AT P − 2PBBT P)]x̄ ≤ 0, (20)

where the last inequality is obtained from the LMI (12).
Therefore, one can know from (20) that V1(t) is bounded, and so are η and W̃i. Follow-

ing the well-known Barbalat’s Lemma [21], it is not difficult to derive that the formation
error ηi converges to zero, i.e., the formation is achieved under the controller (11).

Remark 4. To realize the asymptotic convergence of the formation error for networked systems in
the presence of unknown nonlinearities, the neural network approach is introduced, with the adaptive
gain Ŵi designed to estimate the unknown neural network constant weight matrix. Moreover, an
extra term is introduced in the controller to tackle the residual error.

Remark 5. Compared with existing formation results [4–8,10,11], the proposed output-feedback
formation controller depends on only relative output information, where no observer information
transmission is needed during the whole process. Such a design structure has the advantages of
reducing communication cost and being free from network attack.

Remark 6. Note that the Lyapunov function V1 involves the Laplacian matrix of the graph,
indicating that the proposed distributed formation controller is applicable to only undirected graphs.
For the case of the directed graph, it is much more difficult to present the distributed formation
controller for the networked systems with unknown nonlinearities, due to the asymmetric property
of the Laplacian matrix associated with the directed graph.

Remark 7. Note that the proposed distributed formation controller requires the accurate relative
output measurement. For the case in which measure errors exist, the estimation error of the formation
error cannot accurately converge to zero at appointed time. However, it is not difficult to derive that
the estimation error of the formation error is bounded if the measure error for each agent is bounded.
Then, the proposed distributed formation controller can ensure the boundedness of the formation
error for networked systems in the presence of measurement errors.

4. Simulation

In this section, a numerical simulation is presented to demonstrate the effectiveness
of the proposed controller. Consider the networked system consisting of five agents, the
Laplacian topology among which is depicted in Figure 1. System matrices are given
by (1) with

A =


0 1 0 1
0 −1 1 0
1 0 0 1
−1 0 2 1

, B =


0 0
1 0
0 0
0 1

,

C =

0 0 1 0
0 0 0 1
1 1 0 1

,
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which satisfy Assumption 2. The unknown nonlinearities are presented as fi(t) =
[

0
fi2(t)

]
with fi2 = sin( t−1

t+1 )− i cos( t
t+2 )− 2(i + 1) sin( 2(t−1)

t+1 ) + 2 cos( 2t
t+2 ) + cos(2i) + e1−t, where

the basic functions φi(t) = [sin( t−1
t+1 ), cos( t

t+2 ), sin( 2(t−1)
t+1 ), cos( 2t

t+2 )]
T ; the unknown con-

stant matrix Wi =

[
0 0 0 0
1 −i −2(i + 1) 2

]
; and the residual error ϵi(xi, t) =

[
0

cos(2i) + e1−t

]
with upper bound Πi = 1 + e.

1

2

3 4

5

Figure 1. The communication topology among the five agents.

Choose

B0 =


1 0
0 0
0 1
0 0

, C0 =

1
0
0

.

Then, one can obtain

T =

[
1 0 0 0
0 0 1 0

]
, S =

[
0 1 0 0
0 0 0 1

]
,

and

V =
[
1 0 0

]
, U =

[
0 −1 1
0 1 0

]
.

Further, choose F =

[
−4
3

]
, which gives

Ā =

[
1 4
−1 −3

]
.

Solving the LMI (12) gives

Q =


1.0750 0.0078 0.2377 −0.5300
0.0078 0.5077 0.1902 −0.1939
0.2377 0.1902 0.4540 −0.6289
−0.5300 −0.1939 −0.6289 1.0284

,

and

P =


1.4408 0.0104 1.7846 1.8360
0.0104 2.5179 −2.5876 −1.1023
1.7846 −2.5876 19.3099 12.2407
1.8360 −1.1023 12.2407 9.1966

,

which yields

K =

[
−0.0104 −2.5179 2.5876 1.1023
−1.8360 1.1023 −12.2407 −9.1966

]
.
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The formation configuration is set as

p14 =


3
3
−1
−3

, p21 =


1
1
1
−1

, p32 =


−3
−3
1
3

,

p43 =


−1
−1
−1
1

, p54 =


2
2
0
−2

,

which satisfies condition (2). Choose ūi as

ū1 =

[
−2
−4

]
, ū2 =

[
−2
−4

]
, ū3 =

[
2
4

]
, ū4 =

[
2
4

]
, ū5 =

[
0
0

]
.

Furthermore, choose c = 2, d = 5 and ki = 0.1. To facilitate the simulation illustration, set
the predefined time as T0 = 0.1, and let u = 0 before the predefined time T0. Moreover,
to avoid the singularity caused by G(0) = 0, let ζ̂i(t) ≡ 0, ∀t ∈ [0, τ). The initial states
are set as [0, 5]× [0, 5]× [0, 5]× [0, 5] randomly. The trajectories of the estimation error
ηi(t)− η̂i(t) are presented in Figure 2. To show the effectiveness of the proposed appointed-
time observer, only the trajectories of the estimation errors within time range [0, 1] are
drawn. Clearly, the proposed observer can estimate the formation error at predefined time
τ = 0.1. Note that

(I4 − BUC)B0T =


1 0 0 0
−1 0 0 0
0 0 1 0
0 0 0 0

,

indicating that ηi4(t)− η̂i4(t) ≡ 0. This is consistent with the simulation result as shown
in Figure 2. The trajectories of the formation error are illustrated in Figure 3, which
asymptotically converge to zero, meaning that the formation of the five agents can be
achieved under the proposed distributed formation controller.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(s)

-4

-2

0

2

4

agent 1
agent 2
agent 3
agent 4
agent 5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t(s)

-4

-2

0

2

4

agent 1
agent 2
agent 3
agent 4
agent 5
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Figure 3. The trajectories of the formation error ηi(t).

5. Conclusions

In this paper, the NN-based distributed formation controller was proposed based
on the reduced-order observer. The designed reduced-order observer can estimate the
formation error of networked systems based on only relative output information at any
predefined time, and the order reduction in the observer is mainly realized by the transfor-
mation T. In the future, the following directions can be further investigated.

- The distributed formation controller presented in this paper is applicable to undirected
connected graphs. In practice, the graphs may be general directed, and thus, it is
preferable to design distributed formation controllers of networked systems under
directed graphs based on the reduced-order appointed-time observer.

- The distributed formation controller presented in this paper continuously changes. In
the real world, it is more desirable to design discrete-time controllers, which leads to
the investigation of the event-triggered formation controller for networked systems
based on the reduced-order appointed observer.

- The distributed formation controller presented in this paper depends on the agents’
dynamic model. In practice, the nominal model is difficult to obtain, and it is welcome
to design data-driven appointed-time observers and formation controllers without
using the agents’ dynamic model.

- The distributed formation controller presented in this paper can ensure the asymp-
totical convergence of the formation error for networked systems in the absence of
disturbances. It is preferable to analyze the robustness of the appointed-time observer-
based formation controller for networked systems in the presence of disturbances by
theoretically revealing the upper bound of the formation error.

- The parameters of the distributed formation controller depend on the connectivity of
the graph, which is not fully distributed. It is desirable to design a fully distributed
formation controller based on appointed-time observers by introducing adaptive gain
to estimate the global information of the graphs.

- The formation shape in this paper is fixed. One can further study the distributed
appointed-time observer-based formation controller for time-varying formation tasks.
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Abbreviation
The following abbreviation is used in this manuscript:
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