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Abstract: Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not
indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid
integrity in sewage is important for wastewater-based surveillance, since discharged effluent may
pose a public health hazard. While integrity assays using cell cultures can provide this information,
they require specialised laboratories and expertise. One solution to overcome this limitation is the
use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-
RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 µM and
100 µM concentrations on live and heat-inactivated model viruses commonly detected in wastewater,
including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI).
The 100 µM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for
all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the
detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV
GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV
GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed
−0.52–1.15, 0.9–1.51, and 0.31–1.69 log reductions in capsid integrity, indicating a high degree of
potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR
but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious
virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity
across a diverse range of viruses commonly monitored in wastewater.

Keywords: human pathogenic viruses; One Health; WBE; WBS; viral inactivation; waterborne viruses;
capsid integrity; viability qPCR; enteroviruses; influenza viruses; SARS-CoV-2; adenovirus

1. Introduction

The use of wastewater-based surveillance (WBS) to monitor community-level health
via the detection of harmful disease-causing pathogens, excreted in faeces and urine, has
greatly increased in recent years [1]. For example, many studies now exist showing the
utility of WBS to detect viruses, such as norovirus [2], polio and non-polio enterovirus [3–5],
adenovirus [6–8], hepatitis A [9,10], hepatitis E [11,12], and respiratory viruses such as
coronaviruses, influenza viruses, and respiratory syncytial virus [13–15]. During the
COVID-19 pandemic, WBS was widely implemented for population-level surveillance of
SARS-CoV-2 by research groups and laboratories globally [16–22], further showcasing the
usefulness of WBS for disease monitoring and public health policy implementation.

Viruses in wastewater are typically detected by first concentrating and precipitating
the viruses, extracting their nucleic acids, and then performing molecular techniques on
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the samples such as RT-qPCR (real-time quantitative polymerase chain reaction), dd-PCR
(digital droplet PCR), or next generation sequencing. However, these methods cannot
distinguish between intact potentially infectious viruses and degraded non-infectious viral
particles; rather, they detect genetic markers from viruses regardless of viability. Thus,
while the data gathered by these techniques provide an overview of infection levels in
the community, it does not indicate the viral stability or the potential for infectivity if
an individual comes into contact with sewage-contaminated water. This aspect of WBS
is becoming more important, given the increased discharge of untreated sewage into
rivers and seas and the associated risks to human and environmental health (i.e., One
Health) [23,24].

Cell culture is the gold standard for virus viability testing. However, it requires
specialised equipment like incubators, inverted microscopes, centrifuges, plate readers,
hemacytometers, cryogenic storage, CO2, media, and other consumables [25]. In addition,
it can take 4–7 days to generate infectivity data, causing delays in the implementation
of public health interventions. It also requires staff with expertise to maintain the cell
lines. Furthermore, many human respiratory viruses can only be cultured in biosecurity
level (BLS) 3 laboratories, which are usually not available in environmental monitoring
facilities. These requirements can be limiting factors, especially in lower- or middle-income
countries (LMICs), where, in addition, frequent power outages may be common. Further-
more, isolating viruses from wastewater for cell culture assays is extremely challenging.
Viruses are often present at low viral loads; so, large volumes (>10 l) of wastewater must be
concentrated prior to culturing. Wastewater also contains debris and microbes that can con-
taminate and destroy cell cultures used for virus viability assays. Therefore, methods like
filtration are needed to remove these contaminants without damaging viable viruses [26].
Antibiotics also may need to be added to the culture media to reduce microbial activity,
albeit at levels that do not compromise the cell line [27]. Therefore, simpler methods like
capsid integrity-PCR/qPCR (ci-PCR or ci-qPCR) (also referred to as viability qPCR/RT-
qPCR) are needed to assess the potential infectivity of viruses in wastewater samples.

Capsid integrity-PCR/qPCR has become an important technique in virology for selec-
tively detecting potentially infectious viral particles. Photo-reactive monoazide dyes such
as ethidium monoazide (EMA), propidium monoazide (PMA), and PMAxx® penetrate
damaged viral capsids with exposed genomes, which are incapable of cell attachment
and entry but are excluded from viruses with intact capsids that maybe capable of host
cell infection. After addition of the dye to a wastewater viral concentrate, the sample is
exposed to light at which point the dye modifies any exposed nucleic acids, blocking their
subsequent amplification by PCR [28]. In contrast, the genomes of viruses with intact
capsids that are potentially infectious can be successfully amplified. This allows selective
quantification of the encapsulated viral genomes versus the non-infectious nucleic acids
present in the sample. Capsid integrity-PCR using monoazide-based dyes has been ap-
plied to differentiate infectious and non-infectious viruses including influenza-A virus [29],
norovirus [30], and SARS-CoV-2 [31]. Furthermore, the quantification of encapsulated viral
genomes has provided insights into viral persistence in the environment [32,33] and the dis-
infection efficiency [34–36]. It is worth noting that the capsids of viruses inactivated using
UV are still intact, and as a result, ci-qPCR is not suitable for assessing UV disinfection [36].
However, the sensitivity and specificity of this approach continues to be improved through
optimising dye types, the concentration of dye used, incubation times, and light exposure
length [37].

Many studies have utilised ci-qPCR to assess the capsid integrity of viruses in contami-
nated drinking water and food, as reviewed [38]; however, the use of ci-qPCR in wastewater
monitoring has received much less attention. Of the wastewater studies that do exist, ci-
qPCR has been used to assess the capsid integrity of adenovirus [39], enterovirus [39,40],
norovirus GI and GII [30,32,40,41], rotavirus [32,39], hepatitis A virus [10,42], and SARS-
CoV-2 [31,32]. Human enteric virus genomes (adenovirus, enterovirus, and norovirus)
in wet and dry wastewater-derived struvite have also been shown to remain encapsu-
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lated using intercalating dyes [43]. We hypothesize that wastewater-based ci-qPCR can
provide improved estimates of public health exposure risks compared to conventional
PCR, especially regarding the potential infection risks posed by sewage discharges into
the environment. This study therefore aims to optimise and assess the usefulness of ci-RT-
qPCR using PMAxx dyes alongside conventional wastewater monitoring via RT-qPCR, for
important viruses of public health concern including adenovirus (AdV), enterovirus (EV),
hepatitis A (HAV), influenza A virus (IAV), influenza B virus (IBV), norovirus GI (NoV GI),
norovirus GII (NoV GII), and SARS-CoV-2. The optimisation of PMAxx dye for a range of
viral targets is also presented.

2. Materials and Methods
2.1. Viral Stocks

The viral stocks used for PMAxx dye optimisation were AdV 40 cultured in-house, as
described previously [44], HAV (Culture Collections of the UK Health Security Agency),
IAV vaccine strain (H1N1) (kindly provided by Dr Eleanor Gaunt, University of Edinburgh),
and NoV GI (Culture Collections of the UK Health Security Agency). To optimise the
PMAxx dye assays on live and heat-inactivated viruses, samples were made containing
AdV at concentration of ~108–109 gene copies/ml (gc/ml), HAV at ~105–106 gc/ml, IAV at
~107–108 gc/ml, and NoV GI at ~105–106 gc/ml. Viruses were suspended in phosphate
buffer saline (PBS), pH 7.4, to a final volume of 5 ml. An aliquot of the virus mixture
was then heat inactivated at 70 ◦C for 30 min in a benchtop heating block, to allow for a
comparison of viruses with damaged capsids, alongside samples containing live viruses.
All samples were made in triplicate.

2.2. PMAxx Optimisation

PMAxx dye 20 mM in H2O (Biotium, Cat no: 40069; Biotium Inc., Freemont, CA, USA)
was diluted with molecular grade H2O to a final volume of 10 mM to make a working
stock. PMA enhancer at 1 X concentration was added to each sample and mixed by
pipetting. Working in the dark, PMAxx dye working solution was added to the samples
at a final concentration of 50 µM or 100 µM. Once the PMAxx dye was added, samples
were incubated in the dark, at 20 ◦C on a bench top rocker (PMR-30 2D Rocker, Cat No:
PMR-30-UK) at 30 oscillations/min. The samples were then exposed to light (465–475 nm)
for 20 min at room temperature, using the PMA-Lite™ 2.0 Photolysis Device (Biotium, Cat
No: BTE90006). Nucleic acids were extracted directly after light exposure.

2.3. Wastewater Sample Collection

On 13 June 2023, 1 litre of influent wastewater samples was collected from behind
the primary screen at 17 wastewater treatment plants (WWTP) and the main sewer line
leaving 2 hospital sites, located in North Wales, resulting in a total of 19 samples. These
sites formed part of the national wastewater-based public health surveillance programme
funded by the Welsh Government. All wastewater samples were 24 h composites collected
using refrigerated autosamplers, with samples taken every 15 min. The samples were
collected and transported chilled to the laboratory, where on their arrival they were stored
at 4 ◦C overnight and processed the following day. Sample storage at 4 ◦C is deemed
appropriate for wastewater samples, as minimal impact on the viral decay and recovery of
SARS-CoV-2 and surrogates from wastewater has been evidenced [45,46].

Wastewater Processing

Samples were processed via the polyethylene glycol (PEG) precipitation method, as
previously described [47,48] but with modifications [49]. Briefly, a PEG-NaCl solution at
40% PEG (PEG8000, Sigma-Aldrich, St. Louis, MO, USA, Cat. No. P5413) with 8% NaCl
(Sigma-Aldrich, St. Louis, MO, USA, Cat. No. S7653) was prepared. Wastewater (200 ml,
n = 19) and dH2O negative controls were clarified by centrifugation at 10,000× g, 4 ◦C, for
10 min. The supernatant (150 ml) was transferred to a sterile 250 ml PCCO bottle, and the
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pH was adjusted to 7–7.5 using 1 M NaOH. PEG-NaCI (50 ml) was then added to each
sample, and the sample was mixed and incubated overnight at 4 ◦C. The following day, the
samples in PEG-NaCI were centrifuged (10,000× g, 4 ◦C, 30 min). The resulting pellet was
resuspended in 200 µl of PBS. All samples were processed in duplicate, one for RT-qPCR
and one for ci-RT-qPCR. Concentrates were stored at 4 ◦C until nucleic acid extraction. All
sample preparation and processing were conducted in a Biosafety Level 2 (BSL2) laboratory,
adhering to WHO and national biosafety guidelines [50].

2.4. Nucleic Acid Extraction

Nucleic acids were extracted from concentrates using NucliSens lysis buffer (BioMerieux,
Marcy-lÉtoile, France, Cat No. 280134 or 200292), NucliSens extraction reagent kit (BioMerieux,
Cat. No. 200293), and a Kingfisher 96 Flex system (Thermo Scientific, Waltham, MA, USA),
following a previously published protocol [49]. Extracts were stored at −80 ◦C until analysis.

2.5. Real-Time Quantitative PCR (RT-qPCR) and Capsid Integrity-RT-qPCR
(ci-RT-qPCR) Analysis

All qPCRs (RT-qPCR and ci-RT-qPCR) were carried out on a Quant Studio Flex 6
Real-time PCR machine (Applied Biosystems Inc., Waltham, MA, USA). To quantify AdV,
the qPCR reactions contained 2 X PowerUP™ SYBR™ Green Master Mix (Applied Biosys-
tems™, ThermoFisher, Cat No: A25742), 10 pmol forward primer, 10 pmol reverse primer
(Supplementary Table S1), molecular grade water, and a 4 µl sample, to make a 20 µl
final reaction volume. The cycling conditions were to hold at 95 ◦C for 5 min, followed by
40 cycles of 95 ◦C for 0.15 s, 56 ◦C for 30 s annealing, and melt curve at 95 ◦C 15 s, then 60 ◦C
for 1 min and 95 ◦C for 15 s at increments of 1.6◦ C/s. The qPCRs for EV, HAV, IAV, IBV,
NoV GI, NoV GII, and SARS-CoV-2 contained 5 µl 4 × TaqMan™ Fast Virus 1-Step Master
Mix for qPCR (Applied Biosystems™, ThermoFisher, Cat No: 4444432), 10 pmol forward
primer, 20 pmol reverse primer, 5 pmol probe (Supplementary Table S1), 6 nmol MgSO4,
1 µg bovine serum albumin (BSA), molecular grade water, and a 4 µl sample to make a
final reaction volume of 20 µl. RT-qPCR was conducted as follows: hold at 55 ◦C for 60 min
for reverse transcription, 95 ◦C for 5 min for reverse transcriptase inactivation, followed by
45 amplification cycles of 95 ◦C for 15 s, 60 ◦C for 1 min, and 65 ◦C for 1 min at increments
of 1.6 ◦C/s. All viral targets were run alongside a dsDNA (AdV), ssDNA (HAV), or ssRNA
standard curve ranging from 1 to 105 copies/µl The DNA standards were purchased from
IDT (Integrated DNA Technologies Inc., Coralville, IA, USA), whilst the RNA standards
were prepared in-house using a protocol previously described by Kevill et al. (2021) [49].
All samples were run in duplicate with each plate containing four non-template controls
with molecular grade water.

2.6. Data Analysis

The qPCR data were analysed and quality checked as per MIQE guidelines for RT-
PCR [51]. The limit of detection (LOD) and limit of quantification (LOQ) for viral targets in
wastewater have been descried previously [52]. The gene copies per PCR reaction were
transformed into gc/ml for viruses in PBS and gc/l for viruses detected in wastewater, for
statistical analysis. The data followed a non-normal distribution; therefore, nonparametric
statistical analysis was performed using a Kruskal–Wallis test, followed by post hoc multi-
comparisons using a Dunn’s test [53], with a Bonferroni corrected alpha of p < 0.003.
Statistical analysis was performed using R studio, utilising the “MultNonParam” package,
“Kruskal.test” [54], and “dunn.test” [55]. Log reductions were calculated as:

Log reduction = log10 (
Viral copies o f untreated samples

Viral copies o f treated samples
) (1)
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3. Results
3.1. PMAXX Dye Concentration on Live and Heat-Inactivated Viruses (AdV, HAV, IAV, NoV GI)

Comparisons of live and heat-inactivated viruses (HI) (AdV, HAV, IAV, and NoV GI)
pretreated with PMAxx dyes at concentrations of 50 µM and 100 µM and untreated samples
(no PMAxx dye) (Figure 1) were made using a Kruskal–Wallis test. The analysis revealed
significant differences between all viral targets, across treatment groups (p < 0.001). The
post hoc Dunn’s test with Bonferroni-corrected alpha of p < 0.003 identified significant
differences between mean ranks of paired comparisons (Table 1). Pretreatment with the
100 µM PMAxx dye significantly reduced the AdV copy number compared to the untreated
samples (no dye) (p 0.0024, Table 1). The HI AdV untreated had 4 × 107 gc/ml versus
2 × 106 gc/ml for live AdV, pretreated with 100 µM PMAxx dye (Figure 1). This result
indicated the AdV sample contained degraded/semi-assembled virus. The HI 100 µM dye
significantly reduced the viral copy number >100-fold compared to HI no dye for AdV
and IAV (Table 1, Figure 1). A significant difference between the 100 µM pretreated live
and 100 µM pretreated HI samples for NoV GI (p <0.0003, Table 1) also occurred, as the
gc/ml were higher for live NoV GI (2 × 104 gc/ml) than for the HI samples (5 × 103 gc/ml)
(Figure 1). The gc/ml was significantly lower for all viruses when comparing HI 100 µM
to the live no dye treatment (Figure 1, Table 1), indicating the dyes at this concentration
reduce the gene copies detected by RT-qPCR and are suitable for ci-RT-qPCR assays for the
target viruses.
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Figure 1. Effect of PMAxx addition (0, 50, or 100 µM) on the RT-qPCR-based quantification of live
and heat-inactivated (HI) viruses (AdV (A), HAV (B), IAV (C), and NoV GI (D)).
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Table 1. The p values from Dunn’s multi-comparison post hoc test, showing the significance between
ranked pairs for each target virus. Comparisons were made between the gene copies/ml obtained
from live and heat-inactivated (HI) viruses (AdV, HAV, IAV, or NoV GI) that were exposed to 50 µM
or 100 µM PMAxx dye or no dye. Significant (Bonferroni corrected) p values are highlighted in bold.

Comparison AdV HAV IAV Nov GI

Live 100 µM—Live 50 µM 0.2700 0.4300 0.6800 0.8813

Live 100 µM—HI 100 µM 0.2500 0.0037 0.0260 0.0003

Live 100 µM—HI 50 µM 0.8800 0.3200 0.0820 0.1419

Live 100 µM—HI no dye 0.0024 0.0870 0.1700 0.0112

Live 100 µM—Live no dye 0.0250 0.0520 0.0160 0.5462

Live 50 µM—HI 100 µM 0.0140 0.0002 0.0680 0.0002

Live 50 µM—HI 50 µM 0.2000 0.0890 0.1700 0.1091

Live 50 µM—HI no dye 0.0310 0.0130 0.0770 0.0072

Live 50 µM—Live no dye 0.2000 0.2500 0.0049 0.6447

HI 100 µM—HI 50 µM 0.3300 0.1100 0.8000 0.0780

HI 100 µM—HI no dye <0.0001 0.2300 0.0003 0.2825

HI 100 µM—Live no dye 0.0003 0.0000 <0.0001 0.0001

HI 50 µM—HI no dye 0.0013 0.6000 0.0031 0.4231

HI 50 µM—Live no dye 0.0160 0.0062 0.0001 0.0502

HI no dye—Live no dye 0.3700 0.0003 0.3000 0.0025

3.2. Wastewater Samples

Wastewater samples were negative for AdV, HAV, IAV, and IBV; so, a comparison of
RT-qPCR and ci-RT-qPCR was conducted for EV, NoV GI, NoV GII, and SARS-CoV-2, as
these viruses were detected in the samples. SARS-CoV-2 was detected in all wastewater
samples via RT-qPCR only, while NoV GI, NoV GII, and EV were detected by both RT-
qPCR and ci-RT-qPCR (Figure 2). EV was detected in 17 out of 19 samples, ranging from
7.82 × 102 to 1.84 × 105 and 6.14 × 102 to 4.87 × 105 gc/l for ci-RT-qPCR and RT-qPCR,
respectively (Figure 2). Additionally, EV showed the lowest log reduction across all target
viruses, at -0.52–1.15 (Figure 3), indicating that the EV capsid remains intact in wastewater.
NoV GI and NoV GII were detected in all wastewater samples. NoV GI ranged from
5.89 × 103 to 4.72 × 105 and 1.43 × 103 to 1.69 × 106 gc/l for ci-RT-qPCR and RT-qPCR,
respectively, and the log reductions were between 0.9 and 1.51 (Figure 3). NoV GII was
detected at higher copy numbers than NoV GI, ranging from 9.20 × 102 to 3.70 × 105 and
3.72 × 104 to 8.12 × 106 gc/l, respectively (Figure 2). The log reductions for NoV GII were
between 0.31 and 1.69 (Figure 3).
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Figure 2. Scatter diagrams comparing RT-qPCR and ci-RT-qPCR gene copies/l for EV (A), NoV GI
(B), NoV GII (C), and SARS-CoV-2 (D) detected in wastewater samples (n 19).
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Figure 3. Log reductions of viruses (EV (A), NoV GI (B), and NoV GII (C)) detected in wastewater for
samples 1–19.
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4. Discussion

Molecular methods used to assess the capsid integrity of viruses present in wastewater
are needed to provide more in-depth risk analysis of human exposure to wastewater [38],
especially where sewage is discharged into the environment, as it may contain intact poten-
tially infectious viruses [56]. It may also be relevant for undertaking quantitative microbial
risk assessments (QMRA) to estimate the potential viral exposure of operators at wastewa-
ter treatment plants or those working within the sewage network [57]. As evidenced, EV,
NoV GI, and NoV GII capsids remain intact, and as a result are potentially infectious.

In this study, we further advance the use of intercalating dyes for viral capsid integrity-
RT-qPCR assays used in WBS applications. PMAxx dye at 50 µM and 100 µM concentrations
was selected based on a review by Leifels et al. 2021 [38], where over half of the research
papers reported dye concentrations of 50 µM and 100 µM to be sufficient for detecting dam-
aged viral capsids. Due to the increased cost associated with using 200 µM of PMAxx dye,
and the fact that 100 µM was deemed sufficient, we decided to assess lower concentrations
of the dye. The heat-inactivated viruses exposed to PMAxx dye had a lower amplification
resulting in lower gc/ml values than that of the live and no-dye-treated heat-inactivated
viruses, a result consistent with other studies that assessed the effectiveness of PMAxx on
heat treated Norovirus GI and GII and HAV [42,58]. In this study, we used heat inactivation
to damage the viral capsid and compared the results to corresponding samples that did not
undergo heat inactivation. Exposing viruses to high temperatures (>50 ◦C) causes them
to become non-infectious and is a well-established method, as evidenced in cell culture
assays [59]. However, using lower temperatures (<50 ◦C), while potentially inactivating
viruses, may not sufficiently destabilise the viral capsid enough to expose the viral genome.
In such cases ci-qPCR can overestimate the remaining infectious potential by detecting
encapsulated viral genomes of viruses that can no longer replicate. Overall, the 100 µM
dye concentration effectively differentiated live viruses from heat-inactivated viruses and
reduced the detection of inactivated viruses for the targets tested. The PMAxx dyes also
allowed us to identify viruses that were degraded or semi-assembled, as was the case for
the AdV culture stock used in this study. These findings demonstrate that the PMAxx
dye at 100 µM reduces the detection of heat-inactivated and degraded viruses compared
to live viruses, allowing differentiation of capsid integrity by qPCR. Other studies have
demonstrated that 50 µM PMAxx is sufficient for detecting human AdV in aquatic matri-
ces [60] and similarly for NoV on vegetables [58]. However, the concentration of PMAxx
dye treatment required varies depending on the sample type and what compounds maybe
present in the sample [30]. Therefore, initial optimisation is required before the use of
PMAxx in capsid integrity assays, across the sample type and target viruses.

Once the concentration of PMAxx dye, effective on several viruses, was determined,
we tested our assay on wastewater samples for more targets (AdV, EV, HAV, IAV, IBV,
NoV GI, NoV GII, and SARS-CoV-2). Wastewater samples were negative for AdV, HAV,
IAV, and IBV. Therefore, we compared the RT-qPCR and ci-RT-qPCR data for EV, NoV
GI, NoV GII, and SARS-CoV-2, which were detected in the wastewater samples. SARS-
CoV-2 was detected in all samples by RT-qPCR only, showing that SARS-CoV-2 did not
remain viable in the wastewater samples tested; as a result, the log reductions were not
calculated, as no intact SARS-CoV-2 viruses were detected. The integrity of SARS-CoV-
2 in wastewater samples has previously been investigated using PMAxx dyes and cell
culture [31]. SARS-CoV-2 that had been spiked into wastewater had strongly (>3 log) or
moderately (>1 log) reduced infectivity, and encapsulated SARS-CoV-2 RNA was always
detected at a lower titre than total RNA in wastewater [31]. The reduced integrity of SARS-
CoV-2 in wastewater is likely due to the enveloped capsid, which is less stable than that of
non-enveloped viruses (e.g., NoVs, EV) [61], a result which mirrors the known modes of
SARS-CoV-2 transmission. EV, NoV GI, and NoV GII were detected by RT-qPCR and ci-RT-
qPCR. EV showed the lowest log reductions between RT-qPCR and ci-RT-qPCR, suggesting
the viral particles remain intact and potentially infectious in wastewater. The EV RT-qPCR
assay used in this study is a non-specific assay that detects a highly conserved region of the
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62 nonpolio enteroviruses and three poliovirus types characterised at the time the assay was
developed [62]. Therefore, the exact enterovirus strains detected are unknown. Norovirus
GI and GII were detected in all samples, with NoV GII at higher gene copies. The log
reductions for NoV GI and GII were < 1 log for most samples, indicating the presence of
viable virus particles in the wastewater samples. PMAxx dyes have previously been used
to detect viable NoV GI and GII in wastewater samples [30], while PMA dyes have been
used to detect NoV GI and GII in contaminated drinking water [63], freshwater [29], and
sewage samples [64]; again, these viruses remain intact and pose a human health risk.

Reductions in viral gene copies for inactivated viruses were observed in our assays,
and our results show that PMAxx dyes are suitable for use in WBS; however, there are
limitations to the approach, and where possible, steps should be taken to avoid these.
Intercalating dyes such as PMAxx rely on a photolysis step; therefore, the sample matrix
needs to be considered, as shown when detecting viruses in shellfish [30], as when a sample
has a high volume of suspended solids, light penetration maybe insufficient to induce the
reaction. The floccing of viruses in the sample may also need to be considered, as damaged
viruses in the middle of viral aggregations maybe protected from the dye, and samples
may need to be agitated to limit this. In addition, the dyes cannot differentiate between
non-viable viruses that have an intact capsid and live infectious viruses, as seen with
UV treatment [36,39]. Furthermore, the target virus, concentration of dye, length of dye
incubation period, and length of light exposure all need to be considered [38]. Therefore,
while ci-RT-qPCR gives a better estimation of the number of viable virus particles than
RT-qPCR alone, an overestimation of viable viruses within a sample may still occur.

5. Conclusions

This study demonstrates the utility of PMAxx dye for quantifying viable viruses, even
when cell culture-based assays are unavailable. With careful optimisation, ci-RT-qPCR
can build upon knowledge from public health surveillance to provide estimates of viral
infectivity. Assessing infectious viruses will enable better evaluation of potential public
health risks associated with wastewater discharge and environmental transmission routes.
Overall, capsid integrity-PCR shows promise for enhancing the specificity of wastewater-
based epidemiology by revealing insights into community-level transmission dynamics of
infectious pathogens.
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