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Abstract: In this paper, the asymptotic consensus control of multi-agent systems with general linear
agent dynamics is investigated. A neighbor-based adaptive event-triggering strategy with a dynamic
triggering threshold is proposed, which leads to a fully distributed control of the multi-agent system,
depending only on the states of the neighboring agents at triggering moments. By using the Lyapunov
method, we prove that the states of the agents converge asymptotically. In addition, the proposed
event-triggering strategy is proven to exclude Zeno behavior. The numerical simulation results
illustrate that the agent states achieve consensus in sense of asymptotic convergence. Furthermore,
the proposed strategy is shown to be scalable in case of variable agent numbers.

Keywords: multi-agent systems; event-triggered control; adaptive strategy; asymptotic consensus

1. Introduction

The recent research into multi-agent systems (MASs) paves the way for energy man-
agement and scheduling in smart grids [1], robot formation [2] and sensor networks [3,4].
Due to its wide applications, the consensus of MAS has attracted widespread attention [5,6].
As the size of MAS increases, the limits of the communication bandwidth and energy
resources of the agents (such as mobile robots powered by batteries) have become difficult
issues that need to be resolved in controller design. To deal with these problems, dis-
tributed communication was proposed by means of exchanging local information between
neighboring agents [7]. Event-triggered strategies provide an effective solution in reducing
the communication frequency and thus energy consumption of agents, by transmitting the
state of agents only when the triggering condition is activated [7–10].

The cooperation control of MAS enables the organized agents to accomplish complex
tasks. The research in this area attracts large attention for decades [11]. During this time,
it evolves from centralized to distributed control [12]. Normally, centralized methods
depend on massive communication, with which the bandwidth of communication of the
MAS in large scale is heavily burdened. In addition, a high communication frequency
leads to fast energy consumption, which shortens the usage time of the system powered
by batteries. For these reasons, distributed control has been paid more attention. In
most works of distributed control, the agents are assumed to communicate continuously.
Furthermore, agents are aware of the topology of the communication network, such as
in [13,14]. However, the continuous control requires the high-frequency communication of
agents.

To overcome this drawback, sampled-data control is proposed, which utilizes time-
triggered strategies with a predetermined sampling sequence. Recently, a large amount of
works on sampled-data control was developed, such as [15–17]. In these works, agents need

Sensors 2024, 24, 339. https://doi.org/10.3390/s24020339 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24020339
https://doi.org/10.3390/s24020339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4736-1554
https://doi.org/10.3390/s24020339
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24020339?type=check_update&version=1


Sensors 2024, 24, 339 2 of 17

to communicate with their neighbors synchronously and select the appropriate sampling
period, which is difficult to implement in practice.

The event-triggered control, which is more efficient than the sampled-data control in
reducing unnecessary information transmission, is originally proposed in [18]. This method
is then implemented in MASs in [19–23]. The critical issue of the event-triggered control
is to determine the events and the triggering mechanism. The updates to the controller
and exchanges of information occur exclusively when the triggering condition is satisfied.
In general, the implementation of event-triggered strategies in MASs usually depends
on the eigenvalues of the Laplacian matrix, which is global information associated with
the communication graph, as shown in [24–29]. In order to improve the strategy, fully
distributed event-triggered control was proposed very recently [30,31]. The consensus error
is proven to be uniformly ultimately bounded.

Recently, adaptive control was successfully proposed in MASs. The agent with first-
order dynamics in MASs was considered in [27]. Then, the control strategy was developed
in agents with general linear agent dynamics [28]. Within this framework, more issues such
as actuator and sensor faults were considered [32]. Considering bounded uncertainties,
a static non-smooth event-triggered protocol is investigated in [29]. In [33], the external
disturbances are considered. Notably, in the aforementioned papers, real-time feedback of
the neighbor state is required.

To further reduce the frequency of communication between agents, dynamic event-
triggered adaptive control was proposed recently [34,35], in which the event-triggered
threshold was a dynamic variable. In [34], the dependence of eigenvalues of Laplacian
matrix is mandatory. It is then released in [35], where the neighbors broadcast their
information at the agents’ triggering instants. This increases the communication burden at
triggering moments.

In this paper, we make significant modifications to the control strategy for MASs
with a linear dynamic, which is proposed in [35]. Differently from the objective of the
research in [23], where the consensus control of discrete multi-agent systems with parameter
uncertainties was investigated, we focus on the adaptive event-triggered control for general
linear agents in this paper. The main contributions are twofold. First, the proposed
control strategy is independent on global information, and the consensus error converges
asymptotically which is different from [31]. Second, continuously reading and listening
to neighbor states is not required for any agents. Each agent exclusively broadcasts its
information to neighbors when the event-triggered condition is satisfied. We also prove that
the Zeno behavior can be excluded. The simulation results show that the consensus error
converges asymptotically and the communication frequency is significantly decreased.

The rest of this paper is organized as follows. In Section 2, some preliminaries on
graph theory are given. In Section 3, the adaptive event-triggered strategy is proposed.
In Section 4, illustrative numerical simulation is carried out, which demonstrates the
effectiveness of the theoretical results. Some convolutions are given in Section 5.

2. Preliminaries
2.1. Problem Statement

We consider a multi-agent system with N agents. Each agent is modeled by general
linear dynamics as follows.

ẋi(t) = Axi(t) + Bui(t), i = 1, 2, . . . , N, (1)

where xi(t) ∈ Rn and ui(t) ∈ Rm represent the state and control input of agent i, respec-
tively. Matrices A ∈ Rn×n and B ∈ Rn×m are both constant matrices.

The objective of this paper is to design a fully distributed event-triggered consensus
protocol for a leaderless network of the multi-agent system with agent dynamics modeled
by (1). The requirements for this goal are as follows: the communication of the agent is
distributed; each agent can only communicate with its neighboring agents and can only
obtain their state information. The state variables of all agents ultimately reach asymptotic
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consensus (the definition of consensus in the multi-agent system is given later). Considering
the constraints of communication network bandwidth and energy in real systems, it is also
required that agents cannot communicate in real-time.

Definition 1 ([34]). Consensus of Multi-Agent Systems. In a multi-agent system with N agents,
for any given initial state,

x(0) = [xT
1 (0), xT

2 (0), . . . , xT
N(0)]

T ,

if lim
t→∞

∥xi(t)− xj(t)∥ = 0,wherei, j = 1, 2, . . . , N, then the states of agents achieve consensus.

2.2. Graph Theory

In a multi-agent system, the communication between agents can be modeled using
graph theory. In the system, agents are represented by nodes, and the communication
between agents is represented by edges. A graph G = (V , E), where V is a non-empty
set of nodes in the graph, and E ⊆ V × V is a set of edges that do not intersect with the
nodes. It is worth noting that an element in E is denoted by (i, j), which indicates that
node i can send information to node j. In this case, node i is also called a neighbor of node
j, and node j is an out-neighbor of node i. The set of neighbors of node i is denoted as
Ni = {j : (j, i) ∈ E}, and the number of neighbors is defined as |Ni|. If, for any (i, j) ∈ E in
the graph, there must exist (j, i) ∈ E , then the graph is called an undirected graph. In an
undirected graph, if there exists a path (consisting of one or more edges) between every
pair of distinct nodes, the undirected graph is connected; otherwise, it is not connected.
For a graph G, the adjacency matrix is denoted by A = [aij] ∈ RN×N , where the elements
are defined as aii = 0, the off diagonal elements aij = 1 if (i, j) ∈ E , or aij = 0 otherwise.
The Laplacian matrix associated with graph G is denoted by L = [lij] ∈ RN×N , where
lii = ∑N

j=1 aij, lij = −aij(i ̸= j). Thus, |Ni| = lii. Two assumptions are given as follows.

Assumption 1. The graph G is undirected and connected.

Assumption 2. (A, B) is stabilizable.

According to Assumption 2, the algebraic Riccati equation RA + AT R − RBBT R + I =
0 has a solution R > 0 [35].

Lemma 1 ([31]). The Laplacian matrix has a zero eigenvalue, and the corresponding eigenvector
is 1n, which is a column vector with all elements equal to 1. Moreover, all non-zero eigenvalues
of the Laplacian matrix have positive real parts. In an undirected graph, if the graph is connected,
its corresponding Laplacian matrix L also has a single zero eigenvalue. The smallest non-zero
eigenvalue of the matrix L, denoted as λ2(L), satisfies the equality λ2(L) = minx ̸=0,1T x=0(

xTLx
xT x ).

3. Main Results

In this section, an adaptive event-triggered consensus protocol is proposed. A schema
of the controller is shown in Figure 1. In general, an event-based consensus protocol mainly
consists of an event-based control law and a triggering function of the agent [30]. The
controller design input and the triggering function are given in the sequel.
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Figure 1. Event-triggered strategy framework for agent i.

3.1. The Consensus Control Module

Inspired by paper [31], we propose the adaptive control input for agent i as follows.
ui(t) = E

N

∑
j=1

cij(t)aij(x̂i(t)− x̂j(t)),

ċij(t) = (x̂i(t)− x̂j(t))T F(x̂i(t)− x̂j(t)), i = 1, . . . , N,

(2)

where cij(0) ≥ 0. Matrices E ∈ Rm×n and F = RBBT R ∈ Rn×n are feedback gains of the
controller. The continuous state of agent i is estimated by the following equation.

x̂i(t) = xi(ti
k) + gi(t)(t − ti

k), ∀t ∈ [ti
k, ti

k+1) (3)

where

g(t) =

 0, t ≤ ti
2

xi(ti
k)−xi(ti

k−1)

ti
k−ti

k−1
, t > ti

2

Note that xi(ti
1) = xi(0).

Remark 1. In (2), the adaptive parameter cij(t) is used to regulate the weights of communication
links on the topology. The protocol of cij(t) is designed only based on the state variables of agent i and
j at triggering moments. Therefore, the controller is fully distributed. In addition, the continuous
measuring and listening of agent states are avoided.

Remark 2. If cij(0) ≥ 0, we conclude that cij(t) is always greater than zero, since ċij ≥ 0.

3.2. The Event-Triggering Protocol

The triggering function is designed as follows:
fi(t) =

N

∑
j=1

(1 + cij)aijeT
i Fei −

1
8

N

∑
j=1

aij
(
x̂i − x̂j

)T F(x̂i − x̂j)− θi,

θ̇i = −ρiθi − σi

[ N

∑
j=1

(1 + cij)aijeT
i Fei −

1
8

N

∑
j=1

aij
(

x̂i − x̂j
)T F(x̂i − x̂j)

]
,

(4)

where ei(t) ≜ x̂i(t) − xi(t), i = 1, . . . , N is the estimating error of the state of agent i.
Parameters ρi and σi are both positive constant scalars, which are not equal for agents. The
selection of these parameters is discussed later.
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The triggering time for agent i is defined by ti
k+1 ≜ inf{t > ti

k| fi(t) ≥ 0}, where
ti
k represents the k-th triggering time of agent i, and fi(t) ≥ 0 is called the event trigger

condition. Note that ti
1 = 0. As can be seen from the event-based consensus framework

in Figure 1, the update of the controller signal of agent i depends on its own states at its
triggering moments and the states of its neighbors at their latest triggering moments.

In the second equation in (4), by choosing some positive scalar ρi and σi, we can obtain
θ̇i > −(ρi + σi)θi except in the triggering moments. According to the comparison principle,
it holds that θi(t) > θi(0) exp [−(ρi + σi)t].

3.3. Consensus Analysis

In the sequel, we will prove that the multi-agent system achieves asymptotic consensus
under the proposed protocol on avoiding Zeno behavior. Let us define by ξi ≜ xi −
(1/N)∑N

j=1 xj the consensus error of agent i. The compact form of ξi for all the agents is
represented by vector ξT = [ξ1, . . . , ξN ].

Theorem 1. With Assumptions 1 and 2 and choosing E = −BT R, where R > 0 is the solution of
the algebraic Riccati equation (ARE) RA + AT R − RBBT R + I = 0, then, the consensus error ξ
ultimately achieves asymptotic consensus and the adaptive parameter cij in Equation (2) is uniformly
ultimately bounded, if the adaptive protocol (2) satisfies cij(0) ≥ 0, and the event-triggering function
(4) satisfies θi(0) > 0, σi < 1, and σi + ρi > 1.

Proof. Based on the design of the control input ui(t) = E ∑N
j=1 cij(t)aij(x̂i(t)− x̂j(t)) and

the ARE, we chose the feedback matrix in the control input as E = −BT R and the Lyapunov
function candidate as follows:

V1 =
N

∑
i=1

ξT
i Rξi, (5)

Its time derivative yields ξ̇i = Aξi + BE ∑N
j=1 cij(t)aij(x̂i − x̂j), and ξi − ξ j = xi − xj.

Then, the derivative of V1 yields:

V̇1 =2
N

∑
i=1

ξT
i Rξ̇i

=
N

∑
i=1

ξT
i (RA + AT R)ξi + 2

N

∑
i=1

ξT
i RBE

N

∑
j=1

cijaij(x̂i − x̂j).

(6)

Since we assume that the communication topology network of MAS in this paper is
undirected. The entries in the adjacency matrix satisfy aij = aji = 1. Then, the adaptive
gains are given such that cij(t) = cji(t). Due to E = −BT R, F = RBBT R, we have

N

∑
i=1

ξT
i RBE

N

∑
j=1

cijaij(x̂i − x̂j) = −1
2

N

∑
i=1

N

∑
j=1

cijaij(ξi − ξ j)
T F(x̂i − x̂j). (7)

By substituting Equation (7) in (6), we can rewrite V̇1 as follows.

V̇1 =
N

∑
i=1

ξT
i (RA + AT R)ξi −

N

∑
i=1

N

∑
j=1

cijaij(ξi − ξ j)
T F(x̂i − x̂j). (8)

Recalling that ξi − ξ j = xi − xj and ei = x̂i − xi, we obtain the following equation.

ξi − ξ j = (x̂i − x̂j)− (ei − ej). (9)
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According to (9), we can rewrite (8) as follows.

V̇1 =
N

∑
i=1

ξT
i (RA + AT R)ξi −

N

∑
i=1

N

∑
j=1

cijaij(x̂i − x̂j)
T F(x̂i − x̂j)

+
N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(x̂i − x̂j).

(10)

Using Young’s inequality [31], we can obtain

N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(x̂i − x̂j)

≤ 1
4

N

∑
i=1

N

∑
j=1

cijaij(x̂i − x̂j)
T F(x̂i − x̂j) +

N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(ei − ej).

(11)

Substituting (11) into (10), we can rewrite V̇1 as follows.

V̇1 ≤
N

∑
i=1

ξT
i (RA + AT R)ξi −

3
4

N

∑
i=1

N

∑
j=1

cijaij(x̂i − x̂j)
T F(x̂i − x̂j)

+
N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(ei − ej).

(12)

To utilize the algebraic Riccati equation (ARE), we add a second term V2 into (5), which
is given as follows.

V1 + V2 =
N

∑
i=1

ξT
i Rξi +

N

∑
i=1

N

∑
j=1

3aij(cij − α)2

8
(13)

where α is a positive constant. Recall that ċij(t) = (x̂i(t) − x̂j(t))T F(x̂i(t) − x̂j(t)), i =
1, . . . , N; the time derivative of Equation (13) yields

V̇1 + V̇2 ≤
N

∑
i=1

ξT
i (RA + AT R)ξi −

3
4

N

∑
i=1

N

∑
j=1

αaij(x̂i − x̂j)
T F(x̂i − x̂j)

+
N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(ei − ej)

. (14)

Note that

−
N

∑
i = 1

N

∑
j= 1

aij(x̂i − x̂j)
T F(x̂i − x̂j) = −

(
N

∑
i=1

N

∑
j=1

aij(ξi − ξ j)
T F(ξi − ξ j)

+
N

∑
i=1

N

∑
j=1

aij(ei − ej)
T F(ei − ej) + 2

N

∑
i=1

N

∑
j=1

aij
(
xi − xj

)T F(ei − ej)

)
,

(15)

where

−
N

∑
i=1

N

∑
j=1

aij(xi − xj)
T F(ei − ej) ≤

1
4

N

∑
i=1

N

∑
j=1

aij(xi − xj)
T F(xi − xj)

+
N

∑
i=1

N

∑
j=1

aij(ei − ej)
T F(ei − ej),

(16)
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Combining (15) and (16), we can obtain

−
N

∑
i = 1

N

∑
j= 1

aij(x̂i − x̂j)
T F(x̂i − x̂j) ≤− 1

2

N

∑
i=1

N

∑
j=1

aij(ξi − ξ j)
T F(ξi − ξ j)

+
N

∑
i=1

N

∑
j=1

aij(ei − ej)
T F(ei − ej).

(17)

Substituting (17) into (14), we have

V̇1 + V̇2 ≤
N

∑
i=1

ξT
i (RA + AT R)ξi −

α

4

N

∑
i=1

N

∑
j=1

aij(ξi − ξ j)
T F(ξi − ξ j)

+
α

2

N

∑
i=1

N

∑
j=1

aij(ei − ej)
T F(ei − ej)

− 1
4

N

∑
i=1

N

∑
j=1

αaij(x̂i − x̂j)
T F(x̂i − x̂j)

+
N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(ei − ej).

(18)

We rewrite Equation (18) as follows.

V̇1 + V̇2 ≤ ξT
[

IN ⊗ (RA + AT R)− α

4
L⊗ F

]
ξ

+
α

2

N

∑
i=1

[
N

∑
j=1

(1 +
2
α
· cij)aij(ei − ej)

T F(ei − ej)−
1
2

N

∑
j=1

aij(x̂i − x̂j)
T F(x̂i − x̂j)

]
,

(19)

where ξ = [ξT
1 , . . . , ξT

N ]
T .

Note that

N

∑
i=1

N

∑
j=1

cijaij(ei − ej)
T F(ei − ej) ≤2

N

∑
i=1

N

∑
j=1

cijaijeT
i Fei + 2

N

∑
i=1

N

∑
j=1

cijaijeT
j Fej

= 4
N

∑
i=1

N

∑
j=1

cijaijeT
i Fei.

(20)

Substituting (20) into (19), we obtain

V̇1 + V̇2 ≤ξT
[

IN ⊗ (RA + AT R)− α

4
L⊗ F

]
ξ

+ 2α
N

∑
i=1

[
N

∑
j=1

(
1 +

2
α
· cij

)
aijeT

i Fei −
1
8

N

∑
j=1

aij(x̂i − x̂j)
T F(x̂i − x̂j)

]
.

(21)

According to Lemma 1, we have ξT(L ⊗ F)ξ ≥ λ2(L)ξT(IN ⊗ F)ξ. Then, we can
rewrite (21) as follows.

V̇1 + V̇2 ≤ξT
[

IN ⊗ (RA + AT R)− λ2(L)α
4

IN ⊗ F
]

ξ

+ 2α
N

∑
i=1

[
N

∑
j=1

(
1 +

2
α
· cij

)
aijeT

i Fei −
1
8

N

∑
j=1

aij(x̂i − x̂j)
T F(x̂i − x̂j)

]
,

(22)
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where α satisfies α ≥ max{2, 4/λ2(L)}. Then,

V̇1 + V̇2 ≤ξT
[

IN ⊗ (RA + AT R)− IN ⊗ F
]
ξ

+ 2α
N

∑
i=1

[
N

∑
j=1

(
1 + cij

)
aijeT

i Fei −
1
8

N

∑
j=1

aij(x̂i − x̂j)
T F(x̂i − x̂j)

]

≤− ξTξ + 2α
N

∑
i=1

[
N

∑
j=1

(
1 + cij

)
aijeT

i Fei −
1
8

N

∑
j=1

aij(x̂i − x̂j)
T F(x̂i − x̂j)

]
.

(23)

We now reconstruct the Lyapunov function by adding a third term V3 = 2α ∑N
i=1 θi

into (13), as follows.

V1 + V2 + V3 =
N

∑
i=1

ξT
i Rξi +

N

∑
i=1

N

∑
j=1

3aij(cij − α)2

8
+ 2α

N

∑
i=1

θi (24)

where θi(0) > 0. We calculate the derivative of (24), with hi = ∑N
j=1(1 + cij)aijeT

i Fei −
1
8 ∑N

j=1 aij
(
x̂i − x̂j

)T F(x̂i − x̂j), which yields

V̇1 + V̇2 + V̇3 ≤ −ξTξ + 2α
N

∑
i=1

[−ρiθi + (1 − σi)hi], (25)

where σi < 1. Considering (4), the inequality (25) yields

V̇1 + V̇2 + V̇3 ≤ −ξTξ + 2α
N

∑
i=1

[(1 − σi − ρi)θi], (26)

By choosing σi + ρi > 1, we have V̇1 + V̇2 + V̇3 ≤ 0. The Lyapunov function is equal
to zero if and only if ξ = 0 and θ = 0. Hence, the largest invariant set is composed by
Ω = {ξ = 0, θ = 0}, where θ = [θ1, . . . , θn]T . By using LaSalle’s invariance principle, we
conclude that ξ(t) → 0, θ(t) → 0 as t → ∞ and cij ≤ c̄ where c̄ is a limited positive constant.
Thus, the consensus of (1) is achieved in the sense of asymptotic convergence. That ends
the proof.

In the sequel, we will discuss how the Zeno behavior is excluded. Let us define
∆i

k = ti
k+1 − ti

k.

Theorem 2. If the parameters of the controller (2) and triggering function (4) are selected satisfying
cij(0) ≥ 0, θi(0) > 0, σi < 1, and σi + ρi > 1, then, there does not exist any positive finite
constant scalars T, which makes limm→∞ ∑m

k=0 ∆i
k < T.

Proof. Recall that ei(t) ≜ x̂i(t)− xi(t), i = 1, . . . , N; then,

ėi = gi(t)− (Axi +
N

∑
j=1

cijaijBE(x̂i − x̂j)). (27)

The derivative of ∥ei(t)∥ yields

d∥ei(t)∥
dt

=
eT

i
∥ei∥

ėi ≤ ∥ėi∥ ≤ ∥A∥∥ei∥+ ∥gi∥+ ∥Axi +
N

∑
j=1

cijaijBE(x̂i − x̂j)∥. (28)

where t ∈ [ti
k, ti

k+1). According to theorem 1, we infer that ∥ẋ∥ = ∥Axi + ∑N
j=1 cijaijBE(x̂i −

x̂j)∥ is bounded. Thus, ω̄i satisfies ω̄i > ∥gi∥+ ∥Axi + ∑N
j=1 cijaijBE(x̂i − x̂j)∥.
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We process the proof by contradiction in the sequel. We first assume that the Zeno-
behavior exists, such that

lim
k→∞

ti
k = lim

k→∞
ti
k+1 (29)

a. When ∥A∥ ̸= 0,
By using the comparison principle, we can rewrite (28) as follows.

∥ei(t)∥ ≤ ω̄i
∥A∥

(
e∥A∥(t−ti

k) − 1
)

, t ∈ [ti
k, ti

k+1)

Therefore,
∥eT

i (t)RB∥ ≤ (ω̄i)∥RB∥
∥A∥

(
e∥A∥(t−ti

k) − 1
)

, t ∈ [ti
k, ti

k+1). (30)

According to (4), we can infer that at triggering instant t = ti
k+1,

N

∑
j=1

(1 + cij(ti
k+1))aijei(ti

k+1)
T Fei(ti

k+1)

− 1
8

N

∑
j=1

aij(x̂i(ti
k+1)− x̂j(ti

k+1))
T F(x̂i(ti

k+1)− x̂j(ti
k+1))

≥ θi(0)e
−(ρi+σi)ti

k+1 ,

Then,

∥eT
i (t

i
k+1)RB∥2 ≥

1
8 ∑N

j=1 ∥qT
j (t

i
k+1)RB∥2 + θi(0)e

−(ρi+σi)ti
k+1

lii(1 + c̄)
. (31)

where qj(ti
k+1) = x̂i(ti

k+1)− x̂j(ti
k+1).

According to (29), we have

1
8 ∑N

j=1 ∥qT
j (t

i
k+1)RB∥2 + θi(0)e

−(ρi+σi)ti
k+1

lii(1 + c̄)
≤
( ω̄i∥RB∥

∥A∥

(
e∥A∥(ti

k+1−ti
k) − 1

))2
(32)

which infers that θi(0) < 0. It contradicts the condition θi(0) > 0. Therefore, Equation
(29) is not true, i.e., the Zeno behavior does not exist.

b. When ∥A∥ = 0, according to Equations (28) and (29), Equation (31) yields,

1
8 ∑N

j=1 ∥qT
j (t

i
k+1)RB∥2 + θi(0)e

−(ρi+σi)ti
k+1

di(1 + c̄)
≤ (ω̄i)∥RB∥(ti

k+1 − ti
k), t ∈ [ti

k, ti
k+1). (33)

which also infers that θi(0) < 0. It contradicts the condition θi(0) > 0. Therefore,
Equation (29) is not true, i.e., the Zeno behavior does not exist.

According to the aforementioned analysis, the Zeno behavior of MAS is excluded. That
ends the proof.

4. Simulation Results

In this section, we carry out the numerical simulation to validate the proposed theoret-
ical result and compare it to some related works to show the improvements.

We consider the following two scenarios. In the first scenario, a multi-agent system
with five agents is considered. The dynamics of each agent are modeled by a third-order
linear system (34).

A =

 0 1 0
0 0 1
0 0 0

, B =

0
0
1

 (34)
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The initial states of the five agents are given by x1(0) = [0.25, 0.25, 0.25]T , x2(0) =
[1.25, 1.25, 1.25]T , x3(0) = [2, 2, 2]T , x4(0) = [2.5, 2.5, 2.5]T and x5(0) = [4, 4, 4]T .

The communication topology of the MAS is shown in Figure 2. It is evident that the
graph is undirected and connected, as its Laplacian yields

L =


3 −1 −1 −1 0
−1 2 −1 0 0
−1 −1 2 0 0
−1 0 0 2 −1
0 0 0 −1 1

.

1

32

4

5

Figure 2. Undirected network topology of the MASs with five agents.

In controller (2), we choose cij(0) = 0.25, if j ∈ Ni. The gain matrices are obtained by
solving the ARE RA + AT R − RBBT R + I = 0, as follows.

E =
[
−1.000 − 2.4142 − 2.4142

]
, F =

 1.0000 2.4142 2.4142
2.4142 5.8284 5.8284
2.4142 5.8284 5.8284

.

In (4), the initial value of the event-triggered threshold is assigned by θi(0) = 0.25. The
scalars ρi and σi are given by ρi = 0.3, σi = 0.8, where i ∈ V .

For the sake of comparison, we, respectively, carried out the simulation using the
control strategies proposed in [31,35]. In both simulations, the agent model and initial
states are given the same as in (34). In [31], the adaptive parameters are also initialized
by cij(0) = 0.25, if j ∈ Ni. In [35], the parameters of the triggering threshold are given by
ρi = 0.3, σi = 0.8, where i ∈ V as well.

1

3

2

4

5

6

8

7

Figure 3. Undirected network topology of the MASs with eight agents.
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In the second scenario, we consider a MAS with eight agents. The dynamic of each
agent is modeled as follows.

A =

 0 1 0
0 0 1
0 −0.4 −0.5

, B =

0
0
1

 (35)

The initial states of the eight agents are given by x1(0) = [0.25, 0.25, 0.25]T , x2(0) =
[1.5, 1.5, 1.5]T , x3(0) = [1.25, 1.25, 1.25]T , x4(0) = [2, 2, 2]T , x5(0) = [2.5, 2.5, 2.5]T , x6(0) =
[3.25, 3.25, 3.25]T , x7(0) = [4.5, 4.5, 4.5]T and x8(0) = [4.75, 4.75, 4.75]T .

The network topology of the MAS with eight agents is shown in Figure 3. The graph
also is undirected and connected, and its Laplacian matrix is as follows.

L =



4 −1 −1 −1 0 −1 0 0
−1 3 −1 0 0 0 −1 0
−1 −1 4 −1 −1 0 0 0
−1 0 −1 5 −1 −1 0 −1
0 0 −1 −1 4 0 −1 −1
−1 0 0 −1 0 2 0 0
0 −1 0 0 −1 0 2 0
0 0 0 −1 −1 0 0 2


.

In controller (2), we choose cij(0) = 0.25, if j ∈ Ni. The gain matrices are obtained by
solving the ARE RA + AT R − RBBT R + I = 0, as follows.

E =
[
−1 − 1.9956 − 1.7893

]
, F =

 1 1.9956 1.7893
1.9956 3.9823 3.5707
1.7893 3.5707 3.2018

.

In (4), the initial value of the event-triggered threshold is assigned by θi(0) = 0.25. The
scalars ρi and σi are given by ρi = 0.3, σi = 0.8, where i ∈ V .

For the sake of comparison, we, respectively, carried out the simulation using the
control strategies proposed in [31,35]. In both simulations, the agent model and initial
states are given the same as in (35). In [31], the adaptive parameters are also initialized
by cij(0) = 0.25, if j ∈ Ni. In [35], the parameters of the triggering threshold are given by
ρi = 0.3, σi = 0.8, where i ∈ V as well.

Using the controllers proposed in this paper and in [31,35], the comparison of the first
components ξi(1), i ∈ V of consensus error ξ is given in Figure 4, in which we observe
that by using the proposed control, the MAS achieves consensus asymptotically and the
convergence speed is faster than that in [31,35].
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a b
Figure 4. First components of consensus errors. (a) First components of consensus errors of five agents
ξi(1), i ∈ V , using the control strategies in [31,35] and this paper respectively. (b) First components
of consensus errors of eight agents ξi(1), i ∈ V , using the control strategies in [31,35] and this paper
respectively.

By using the three methods, we also compare the control outputs of the agents in
Figure 5. We can see that both the control outputs using the proposed strategy and that
in [35] have less fluctuation than [31]. However, our proposed method has fewer triggering
times than [35], as shown in Figure 6.

a b
Figure 5. Control outputs. (a) Control outputs of the five agents, using the strategies in [31,35] and
this paper. (b) Control outputs of the eight agents, using the strategies in [31,35] and this paper.

Table 1 and Table 2, respectively, show the statistics of the triggering times of five and
eight agents, using the three control strategies. According to Tables 1 and 2, we can observe
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that the triggering frequency is significantly reduced by using our proposed controller,
compared with that in papers [31,35].

In order to show the scalability of the proposed strategy, we consider two scenarios,
i.e., one agent joins (leaves) the group of agents at a certain time instant. We reconsider the
MAS represented by the topology in Figure 2.

In the first scenario, the 6th agent joints the group at 3 s. Then, the topology of the
MAS becomes Figure 7. By using the proposed strategy, the consensus errors ξ are shown
in Figure 8, in which we can observe that the MAS achieves consensus asymptotically
even if the 6th agent joints to the network at 3 s. In the second scenario, the 2nd agent is
disconnected with the other agents at 3 s. Then, the topology of the MAS becomes Figure 9.
The consensus error ξ is shown in Figure 10, in which we can observe that the MAS also
achieves consensus asymptotically by using the proposed strategy, even if the 2nd agent is
disconnected with neighbors at 3 s.
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time(s)
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(b)

Figure 6. Triggering instants of agent i, i = 1, . . . , 5. (a) The triggering instants of agent i under the
control strategy proposed in [35]; (b) The triggering instants of agent i under the control strategy
proposed in this paper.

Table 1. The number of events driven by event triggers in MAS with five agents.

Agents 1 2 3 4 5 Total

Under [31] 2398 92 143 2398 173 5204
Under [35] 3746 2671 2721 2558 555 12,251
Proposed control 999 199 230 990 613 3031

Table 2. The number of events driven by event triggers in MAS with eight agents.

Agents 1 2 3 4 5 6 7 8 Total

Under [31] 1529 187 220 1526 237 129 139 1514 5481
Under [35] 2351 822 1420 681 453 1092 394 456 7669
Proposed control 544 462 404 644 481 308 450 516 3809
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1

32

4

5

6

Figure 7. Undirected network topology of the MASs with five agents where 6th agent joints at 3 s.

Figure 8. Consensus errors ξi, i = 1, . . . , 6 under the control strategy of this paper.

1

32

4

5

Figure 9. Undirected network topology of the MASs with five agents where 2nd agent is disconnected
at 3 s.
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Figure 10. Consensus errors ξi, i = 1, . . . , 5 under the control strategy of this paper.

5. Conclusions and Perspectives

In this paper, we address the consensus problem of multi-agent systems with general
linear dynamics. A dynamic event-triggered adaptive control strategy is proposed. Com-
pared with the existing works, our proposed strategy leads to a consensus of the agents’
states in the sense of asymptotic convergence. Furthermore, it improves the convergence
speed and reduces the triggering frequency. The proposed strategy is fully distributed and
scalable. Global information is not required by using the strategy. The agent states achieve
consensus asymptotically even if the communication topology is switching. Under this
strategy, continuous communication among agents and simultaneous broadcasts of the
neighbors’ information are avoided.

In practice, time delay widely exists in discontinuous communications. The consensus
problem with an uncertain and stochastic communication delay is an open topic for further
study. On the other hand, the actuator saturation of agents should be considered, which
leads to nonlinearities in the agent dynamics. In this case, the contradiction of triggering
frequency and the response rapidity should be treated in the future.
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