Skip to main content
. 2024 Jan 5;16(1):80. doi: 10.3390/pharmaceutics16010080

Table 3.

Anti-biofilm QPSs developed in the last fifteen years.

Mechanism of Action Type of Compound Target Pathogens Effects on BF Concentration [Ref.] Year
EI, MDI, cytoplasmic leakage TMPCS
TPPCS
E. coli BF inhibition rate 33.9% (TMPCS), 56.6% (TPPCS) 156 µg/mL [148] 2023
BF removal rate 46.4% (TMPCS), 48.9% (TPPCS) 2.5 mg/mL
S. aureus BF inhibition rate 53.8% (TMPCS), 62.2% (TPPCS) 20 µg/mL
BF removal rate 60.4% (TMPCS), 69.9% V 2.5 mg/mL
Disrupts disulfide
bonds on the cell surface
THPS P. aeruginosa 5 log killing of sessile cells 100 ppm (2 h)
100 ppm (24 h)
[149] 2010
35% (24 h)–45% (2 h) biomass residual 100 ppm
40% (24 h)–40% (2 h) biomass residual 1000 ppm
N.R. Bellacide® 350
Tolcide® PS75
P. aeruginosa N.R. N.R. [150] 2010
EI, MDI
Partial diffusion in EPS
Pyridoxine-based QPSs S. aureus
S. epidermidis
QPS (6) killed detached S. epidermidis cells
68–77% cells located in BF killed
32 µg/mL
8 µg/mL
[151] 2015
EI by well-accessible positive charges on QPSs
Host–guest properties of pillar[n]arenes
Pillar [5]arene QPS S. aureus
E. faecalis
Inhibition of BF formation (MBIC50)
No biocidal, no hemolytic
2–4 µg/mL [153] 2016
N.R. TTPC S. aureus ⇓ BF (OD545 < 1) 20 µg/mL [170] 2015
P. aeruginosa ⇓ BF (OD545 < 1) 40 µg/mL
⇓ Biofilm thickness (73.9%) and volume (73.8%) 40 µg/mL
QS disruption ATPB Chromobacterium
violaceum
Inhibition of BF formation
(violacein inhibition)
52.9–142.2 μM * [171] 2015
Vibrio harveyi. Inhibition of BF formation
(bioluminescence inhibition)
128.6–348.5 μM *
EI, MDI
Cell lysis, cytoplasmic leakage
TATPBP (P6P-10,10) EDR A. baumannii BF eradication (MBEC) MBEC 32–63 µM [45] 2022
EI, MDI, MD
ROS production
(1,2-DBTPP)Br2
(1,4-DBTPP)Br2
(1,6-DBTPP)Br2
S. aureus 100% inhibition of BF formation 64–128 µg/mL ** [173] 2023
80% ⇓ metabolic activity 32–64 µg/mL **
MRSA 100% inhibition of BF formation 128–256 µg/mL **
80% ⇓ metabolic activity 64–128 µg/mL **
EI with cell surface
Cell wall penetration
NCPS S. aureus Significant ⇓ of BF formation 64–128 µg/mL [174] 2014
E. coli 64–256 µg/mL
CTPBs S. aureus
E. coli
Not active MIC > 1600 µg/mL
N.R. THPS Desulfovibrio
Desulfomicrobium
Desulfocurvus
⇓ Microbiologically influenced corrosion 17% [175] 2018
N.R. THPS SRB
APB
Significant ability to penetrate BF
100% inhibition of SRB
>85% inhibition of APB
0.6% [176] 2015
Antioxidant effects
Hydroxyl radical scavenging
ATBPB, ATPB MDR A. baumannii N.R. 6.25–25.0 μM [158] 2022

EI = electrostatic interactions; MD = membrane depolarization; MDI = membrane disruption; N.R. = not reported; TMPCS = N-(4-N′, N′, N′-trimethylphosphonium chloride) benzoyl chitosan); TPPCS = N-(4-N′, N′, N′-triphenylphosphonium chloride) benzoyl chitosan; THPS = tetrakis (hydroxymethyl) phosphonium sulfate; Bellacide® 350: contains 50% tributyl tetradecyl phosphonium chloride (TBTP); Tolcide® PS75: contains 75% THPS; TTPC = tributyl tetradecyl phosphonium chloride; ⇓ = reduction; NPCSs = N-phosphonium chitosans with different degrees of substitution (3%, 13%, and 21%); CTPB = (5-carboxypentyl)triphenylphosphonium bromide; ATPB = alkyl triphenyl phosphonium bromide; ATBPB = alkyl tributyl phosphonium bromide; * biocidal effects at concentrations ≥500 μM; EDR = extensively drug resistant; TATPBP = tetraalkyl tetraphenyl bis-phosphonium; (1,2-DBTPP)Br2 = ethyl-bis-(triphenyl)-phosphonium bromide; (1,4-DBTPP)Br2 = butyl-bis-(triphenyl)-phosphonium bromide; (1,6-DBTPP)Br2 = hexyl-bis-(triphenyl)-phosphonium bromide; SRB = sulfate-reducing bacteria; APB = acid-producing bacteria; ** refers to compound in bold; numbers in bold indicate the number of compound as reported in the study; Bellacide® 350 and Tolcide® PS75 are from Azelis Americas, LLC, Westport, CT, USA.