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Abstract: The Internet of Vehicles (IoV) is a technology that is connected to the public internet and is
a subnetwork of the Internet of Things (IoT) in which vehicles with sensors are connected to a mobile
and wireless network. Numerous vehicles, users, things, and networks allow nodes to communicate
information with their surroundings via various communication channels. IoV aims to enhance
the comfort of driving, improve energy management, secure data transmission, and prevent road
accidents. Despite IoV’s advantages, it comes with its own set of challenges, particularly in the
highly important aspects of security and trust. Trust management is one of the potential security
mechanisms aimed at increasing reliability in IoV environments. Protecting IoV environments from
diverse attacks poses significant challenges, prompting researchers to explore various technologies
for security solutions and trust evaluation methods. Traditional approaches have been employed, but
innovative solutions are imperative. Amid these challenges, machine learning (ML) has emerged
as a potent solution, leveraging its remarkable advancements to effectively address IoV’s security
and trust concerns. ML can potentially be utilized as a powerful technology to address security
and trust issues in IoV environments. In this survey, we delve into an overview of IoV and trust
management, discussing security requirements, challenges, and attacks. Additionally, we introduce
a classification scheme for ML techniques and survey ML-based security and trust management
schemes. This research provides an overview for understanding IoV and the potential of ML in
improving its security framework. Additionally, it provides insights into the future of trust and
security enhancement.
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1. Introduction

Today, with recent innovations in technology, the ability of different devices we use in
our daily lives to connect to the internet, communicate, and exchange messages has rapidly
increased. A large number of devices of different categories currently extend the internet to
almost every part of the world. These devices provide different services via communication
with other devices. The devices, whether a smartphone, vehicle, or vending machine,
are capable of connecting to the internet and sharing data. The Internet of Things (IoT)
provides various services to users in the whole network system. The IoT is also expected to
increase automation levels. The IoT increases the efficiency of smart health, smart cities,
and smart transportation when it is integrated with these services. The objective of this
smart environment is to save money, time, lives, and energy [1–3].

The IoT has been implemented in the transportation industry by specialists through
the development of wireless and mobile communication technologies. As a result, wireless
networks have been steadily deployed on vehicles and roadways, allowing vehicles to
share information with each other and with infrastructure. To make these vehicles more
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intelligent and secure, they are being equipped with external and internal sensors. External
sensors are attached outside of the vehicle and include cameras and parking sensors, while
internal sensors include automotive sensors such as brake sensors, fuel sensors, and tire
pressure sensors. Vehicles equipped with sensors that communicate through a mobile
and wireless network are considered part of the IoT and are referred to as the Internet
of Vehicles (IoV). IoV integrates two technologies, vehicular ad hoc networks (VANETs)
and the IoT, to take steps toward intelligent transportation [4–8]. The IoT mobilizes IoV
to produce a revolution in the field. IoV is an open, integrated network system with
significant controllability, manageability, and credibility that has evolved from the IoT.
Numerous vehicles, users, things, and networks allow nodes to communicate information
with their surroundings via various communication channels. IoV is considered one of the
most significant IoT applications in the area of automobiles [9–14]. Driving safety is the
main goal of many applications of IoV environments. IoV has its own set of challenges,
particularly in terms of security and trust, since it has to provide highly important security
functions. As with other technologies, IoV has many security vulnerabilities. Hackers
could control vehicles if vulnerabilities in IoV are exposed, which could lead to traffic
accidents. The security of IoVs is a critical issue for the safety of drivers and anyone using
the roadways. The need for data security will increase as the number of vehicles connected
to the public Internet increases.

A trusted environment is a method of achieving security in IoV networks; hence, trust
is an essential component of security. Messages exchanged between vehicles and their
surroundings must be legitimate since trust must be established between vehicles. The de-
tection and revocation of malicious vehicles, as well as their communications, is critical to
providing a safe IoV environment. Before accepting and sending a message received by a
legitimate vehicle, the vehicle should examine its trustworthiness and legitimacy. Some
aspects of the V2X paradigm have been known to prompt major security concerns as well
as lead to road accidents and traffic congestion. Users of vehicular networks aim to avoid
any infringement on their privacy and any disclosure of private information. It is critical
that users can also ensure that the data they receive are accurate. Traditional methods
may not be able to address all these concerns or safeguard current IoV scenarios. It is
important for security requirements such as integrity, confidentiality, and availability to
be carefully considered by organizations. During an interaction between nodes, we define
trust management as a collection of steps whereby a node attempts to establish trust with
another node. Trust factor is a property measured as a quantifiable belief by a trustor node
and trustee node and ensures that the negative impacts of malicious and selfish nodes are
significantly minimized. The categories of trust properties are subjective and objective trust,
local and global trust, context-based trust and history-based trust as well as direct and
indirect trust. For the safety of their users, IoV systems must be protected from any form of
cyberattacks that may interfere with any operation. To boost IoV security, certain steps are
undertaken, the main one being trust management; therefore, many research works have fo-
cused on integrating trust management in the vehicular environment. Nowadays, the most
promising technology in the wireless network field is machine learning (ML), and ML
techniques are being used in a wide range of applications in wireless networks [15,16].
Recently, many solutions based on ML technologies in security for wireless networks have
been proposed [17].

IoV networks aim to improve traffic safety and efficiency. A secure and trusted envi-
ronment is essential for vehicles to be able to exchange data with each other. Modeling trust
and security in IoV networks has been a challenge because these networks are dynamic, de-
pend on sensitive communication, and are naturally open. In IoV environments, dishonest
vehicles and attacks endanger the lives of drivers, passengers, and pedestrians. Security
solutions and trust management have been employed to make sure that vehicular networks
are safe and reliable. The use of ML techniques in IoV environments is rapidly increasing,
yet the security implications of their integration with IoV have received little attention.
ML techniques are gaining increased attention in trust and security research, and it would
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be interesting to investigate the relevant aspects of this research to create a secure and
trusting IoV environment. ML techniques, such as supervised learning, unsupervised
learning, and reinforcement learning, are reviewed in this survey to enhance security and
trust management in vehicular networks. Our contributions are:

• We provide a detailed description of the concept of IoV that provides an overview and
covers the architectures and types of connections in IoV.

• We explain the fundamentals of trust evaluation and its features in IoV.
• Security is a significant factor in an IoV environment, and serious security concerns of

IoV are discussed in this survey.
• An IoV environment requires various security requirements to ensure constant safety

and security.
• The survey discusses and identifies various security attacks including attacks on

authentication, confidentiality, availability, integrity, secrecy, and routing.
• We present possible trust and security solutions for IoV environments by mainly

focusing on classification using three types of ML models (supervised learning, unsu-
pervised learning, and reinforcement learning).

This paper is organized into the following sections. Section 2 provides background
information. Section 3 discusses related surveys. Section 4 describes the concept of IoV.
Section 5 examines solutions based on ML and traditional approaches for security and trust
in IoV. Section 6 concludes the paper.

2. Search Methodology

A structured methodology was utilized to conduct a comprehensive review of the
literature on the Internet of Vehicles (IoV), with a focus on security, trust, and the poten-
tial role of machine learning (ML). The method started with a search for keywords that
accurately describe the key concepts of the study, such as “Internet of Vehicles”, “IoV
security”, “IoV trust”, “machine learning”, “ML-based security”, “ML-based trust”, and
“IoV challenges”. Google Scholar, IEEE Xplore, Springer, MDPI, and the ACM Digital
Library were the academic search engines used to ensure that our researchers had access
to the most recent and significant literature in their respective fields. In order to ensure
the timeliness of the review, a certain publishing date range was delineated, covering 2017
to 2023. This range was chosen due to the notable advancements observed in the fields
of IoV and machine learning throughout this period. The selection criteria for this survey
were designed to ensure the survey’s concentration and applicability. This study only
incorporates research specifically focused on ML-based approaches for addressing security
and trust concerns within an IoV environment. Any study that was outdated and no longer
relevant to the current state of security and trust in IoV utilizing ML was excluded from the
survey. This ensured that the survey accurately represented the most recent advancements
in this field of study. Furthermore, in order to ensure the precision and effectiveness of
the survey, works that lack substantial relevance or significance for developing the current
landscape of ML in IoV were also excluded. After implementing these exclusion criteria, 50
publications related to the classification of security and trust solutions for IoV were selected
for this review.

3. Background
3.1. Trust Management in IoV

Trust is described as the probability that an individual will anticipate the behavior of
another peer based on the behavior of the peer and the individual’s well-being. This defini-
tion comes from the field of psychology [18]. It is worth noting that trust is significantly
influenced by the subject’s viewpoint. As a result, trust indicates the trustor’s confidence
that the trustee will act in his or her best interests [19]. According to sociological research,
reciprocity and cooperation among persons in social interactions are believed to build trust
among individuals [20]. In the computer science field, trust is defined as a trustor’s convic-
tion in the reliability of the target node, with the goal of achieving a trust objective under
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particular conditions [21]. Trust can also be viewed as an assessment made by an evaluator,
which is influenced by past experiences with a particular entity and the perspectives of
other trustworthy sources [22]. Trust management strategies are commonly employed to
secure many network environments. To comprehend trust management approaches, it is
also important to understand the basic definition of the trust concept. There is a distinction
between trust and trustworthiness, which is a trait that describes reliability. Trust and
reputation can be used interchangeably and at times can cause confusion. The reputation
of a specific node in the network environment is defined as the opinion of that node that
has been built based on recommendations of other network nodes that are either direct or
indirect neighbors of the node in question. Trust concepts demonstrate the relationship
existing between a trustor and trustee and that the trustor believes the trustee will fulfill
its obligations. The success of trust relationships result in security and optimistic feelings,
while their failure result in mistrust and insecurities. In the computer science community,
the trust concept has been proven to be ideal for the protection of networks [23–25].

3.1.1. Trust Properties

Consideration of the concept that trust is a relationship between two entities, the trustor
and trustee in this case, leads to the emergence of these attributes. In this instance, the trustee
becomes the trustworthy entity. The trust properties are shown in Table 1.

Table 1. Trust properties.

Trust Properties Description

Direct This attribute calculates trust value based on trustor–trustee
relationships.

Indirect Trust value is calculated from the suggestions and opinions of the
trustor’s various neighbors.

Subjective Trust value is calculated from the personal views of the trustor.

Objective The parameters of the observed trustee entity are what determine the
value of trust, which is derived from those parameters.

Local The value of trust is exclusively accessible to the trustor and trustee
and cannot be accessed by other users in the network.

Global Each entity that is part of the network has its own trust value that is
known by every other entity.

Asymmetric This is when one entity gives trust to a second entity but the second
entity does not give trust to the first entity.

History-dependent Trust value is given depending on the previous behaviors of the
entity under observation.

Context-dependent The importance of trust depends on the surrounding circumstances.

Composite Trust value is based upon various parameters.

Dynamic If the initial trust value was generated with certain parameters and
those values later change, the trust value will also change.

3.1.2. Components of Trust

Direct trust: Because of the interactions between the trustor and the target vehicle,
this component displays a trustor’s direct observations of a target vehicle [26]. Knowledge,
in the context of some studies, can mean any information the trustor learns about the
trustee [27]. This normally makes use of parameters that are dependent on the nodes
and services involved. Although direct trust is more important than indirect trust, when
evaluating a vehicle, a combination of the two should be considered [28]. The indirect trust
component is used to display the opinions of the trustor’s neighbors about the trustee,
who is the target node. Indirect trust usually considers the node’s previous encounters and
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experiences. In some circumstances, researchers employ both experience and reputation to
explain the indirect observation. All previous experiences with a target node are included
in reputation, which contributes to the formation of a global opinion about the node under
observation. Experience, on the other hand, is frequently based on the interaction between
the trustor and the trustee, and it strongly relies on the trustor’s confidence in the trustee’s
competence to complete a task [21].

3.1.3. Attributes of Trust

Various trust attributes have to be considered when computing the components of
trust mentioned earlier.

• Similarity: This refers to the degree to which two vehicles are similar in terms of
content and services. Euclidean distance is often used to describe the similarity of
messages or vehicles in the literature. The direction of travel of the two nodes, which is
usually the location based on trajectory similarity, is known as Euclidean distance [29].

• Timeliness: The attribute of timeliness relates to how recently the two vehicles have
interacted with each other. It is usually determined by adding the current time to the
time when the interaction happened. Maintaining the timeliness of data and the trust
score contributes to higher levels of trust; however, old data reveal an outmoded trust
value, which can lead to negative consequences [30].

• Duration of Interaction: This refers to the length of interaction among the two nodes.
Longer interactions allow the entity to learn more about the other entity’s conduct
and capabilities, and as a result, long interactions have been seen to lead to better
interactions among entities, which leads to higher trust levels [31].

• Familiarity: This attribute exhibits the level of acquaintance the two vehicles have
with one another. This feature was derived from social networks, and it is worth
noting that increased familiarity leads to increased trust in interpersonal relationships.
Higher familiarity with the trustee is frequently a reflection of the evaluator’s past
understanding and knowledge of the trustee [32].

• Packet Delivery Ratio: This can be described as the degree of connection between the
trustor and the trustee. The only criterion required to calculate direct trust toward
a trustee is the packet delivery ratio. In the literature, this is typically referred to as
the packet transmission rate between nodes. Furthermore, it is a main goal in the
development of trust models and a key criterion for detecting harmful activity [33].

• Frequency of Interactions: On a regular basis, the trustor and trustee communicate
with one another., and this is measured by the frequency of their interactions. When
two nodes communicate, they can learn each other’s communication and behavioral
patterns to improve trust computations [31].

3.1.4. Trust Metrics

The proposed trust management approaches have been known to apply different
metric methods to measure and evaluate trust value. These methods are:

• Reputation-based metrics: This type of trust metric calculates trust value from the
recommendations given by specific nodes in the network. These network nodes may
have similar opinions about the node that has been propagated within the network.
This metric method considers major opinions or global feedback regarding the node.

• Knowledge-based metrics: This technique calculates trust value based on direct or
previous experience that the node has or has gained from another specific node. These
metrics help identify selfish nodes that may be part of a network.

• Expectation-based metrics: These metric methods involve a node determining the
trust of another node based on how it expects the node to act. Its expectations are
based upon previous interactions with the node, received suggestions, or the initial
prediction in the case of no prior communication.

• Node-properties-based metrics: Trust calculations make use of the main parameters
of proximity such as location and distance with the considered node.



Sensors 2024, 24, 368 6 of 37

• Environmental-factors-based metrics: When measuring an IoV network, this metric
takes into account environmental factors, including network density and topology.

3.1.5. Trust Computation

When trust has been established, it has to be managed throughout the duration of the
target node interaction. Some commonly considered modules in trust computation are:

• Trust Propagation: This module assists in establishing the trustworthiness of various
communication system nodes based on previously established worthiness values while
collaborating. It combines features from both a centralized approach, where trust is
granted to entities through a single, trusted node or mechanism, and a decentralized
system, where no one entity acts as a central point of control. The module’s main
features are trust transitivity and trust fusion. Instead of determining each individual
entity’s trust, resource computation costs in this module can be decreased by measuring
trust value in a propagating network [34].

• Trust Aggregation: Multiple network pathways can be used to disseminate different
versions of a node’s trust value. When it receives diverse trust values for the node, this
module aims to define a singular value based on the sum of data received. The Bayesian
model, weighted sum approaches, and fuzzy logic are the most commonly used
aggregation strategies. The primary principle for composing trust from the path of
trust for various received values is trust aggregation.

• Trust Update: This refers to the process of bringing trust values up to date, and it can
be divided into three schemas:

– Event-driven Trust: this is where node trust is adjusted after an event or during
the occurrence of a transaction.

– Time-driven trust: this is where the aggregation scheme is used to adjust the node
trust value within a determined time period.

– Continuous trust update: this is mostly used to protect integrity and is used to
regulate one single node task.

• Trust Prediction: the purpose of this module is to predict trust connections between
entities by utilizing selected criteria. This module predicts whether trust can develop
between trusted nodes.

• Trust Evaluation: This module often contains sections on experience, suggestions,
and global knowledge. Requesting node neighbors provides experience, which is con-
tinually updated in the table of trust, from which it is communicated as a recommenda-
tion trust node. The assessed trust value is linked to the global knowledge component.

• Trust Formation: This is the module where the trust formula is defined. To define how
trust can be computed, it is necessary to establish the set of trust qualities and metrics
considered by the trust formula. For the formation of the trust formula, the two trust
categories of multitrust and single trust must be defined.

3.1.6. Trust Management Approaches

Entity-based approaches, data-based approaches, and integrated approaches are the
three types of trust management approaches. The trust concept is related with network
nodes in an entity-based approach. These methods are used to assess how trustworthy the
nodes in a network are that send and receive data. Malicious nodes can subsequently be
excluded from the network or isolated based on the evaluation of their trust ratings. Social
trust interactions are inherited by certain existing entity-based techniques in the literature.
These methods primarily consider measures that are based on a person’s reputation. As a
result, the trust formula used to generate the trustee node’s trust value is mostly dependent
on previous knowledge-related metrics as well as traded recommendations among various
entities. Other studies look at comprehensive trust, considering not only reputation-based
indicators but also the similarity aspect. In data-based systems, the concept of trust is closely
associated with the integrity of the generated message, hence necessitating the assurance
of data authenticity in these solutions. Utility refers to a specific helpful act or the worth
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of the created event compared to other actions in the same context, and it is an essential
factor in determining data content worthiness. The proximity time, the type of incident that
occurred, and the role of the vehicular node are some of the major trust elements considered
in data utility assessments. Information-oriented methods and event-oriented methods are
two types of data-driven approaches. Similarity is a term that describes how the contents of
shared data are similar in terms of time and proximity criteria, and it is used to determine
the value of data trust. Similarity aids in reducing the amount of data disseminated,
ensuring that only meaningful information is broadcast. The primary principle of the
combined trust management technique relies on entity and data-sharing trustworthiness.
This module is more efficient when it comes to trust computation. The assessment of data
trust value is aided by entity trustworthiness.

An example was provided to address the issue of injecting inaccurate information into
safety-related events in VANETs, in which a similarity-based solution was proposed [35].
The calculation of a similarity rating is based on periodic beacons that contain position
and speed information. An Echo procedure was also used to acquire a trust rating and to
validate the reports by observing the vehicle’s normal and expected behavior in relation to
the reported occurrence. In a VANET presented in [36], a multidimensional trust system
was created for the agents. In order to require further feedback from trustworthy nodes,
the system’s trust values must be maintained. When determining trustworthiness, authors
take into account variables including experience, majority opinion, and priority criteria.
These schemes classify nodes as having an authority role, an expert role, a seniority role,
or an ordinary role. It is also worth noting that the experience factor is calculated as a
result of the number of encounters. To deal with behavioral changes, the forgetting factor
is introduced. Each node communicates its trustworthiness to other entities through trust
messages sent to an authentic infrastructure, which later becomes a component of the
reputation management center, where node trust is collected [37]. Authentic infrastructure
filters trust communications based on statistical regularity, and each node then has access
to updated trust data from the reputation center. Historical trust can be determined with
the use of authentic center recommendations [38]. Platoon head vehicles are ranked using
the reputation criteria. The system model includes servers that are used to assess the trust
of vehicles, and reputation values are calculated using feedback from user vehicles. The use
of iterative filtering eliminates any malicious user vehicle feedback. The server node then
suggests a safe platoon leader vehicle.

3.2. Machine Learning

ML is a subfield of artificial intelligence that uses data and previous decisions to
predict the future with high accuracy. ML comes in three forms: supervised, unsupervised,
and reinforcement learning [39]. Highly accurate results can be ensured through the use of
ML for trust evaluation in instances in which big data are processed. The high accuracy
in trust evaluation when one uses big data is due to the adequate data sources big data
provide [40]. Inaccurate evaluation results are common in instances in which scientists
decide to use traditional trust evaluation methods in social networks as well as many other
large-scale networking instances, as such instances have sophisticated data structures and
generate and process vast volumes of data, thereby introducing enormous complexities.
However, when it comes to handling and processing big data, using ML as the primary
method provides enormous specific advantages. For trust evaluation, when dealing with
big data, ML takes the lead compared with other methods in terms of the appropriateness
dimension [41]. From an artificial intelligence perspective, massive convenience is evident
in trust evaluation when ML is used. Artificial intelligence uses ML as its primary tech-
nology, with the simulation of human behaviors using computers being an example of a
perfectly accomplished task using ML. A model for successor computations is obtained
through the use of data or experiences that are already available. There is an almost perfect
fit between this process and human thinking patterns. Since human beings’ subjective
behavior items include trust patterns, the use of ML for trust evaluations is appropriate. ML
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artificial intelligence models and human behavior simulations using computers provide
an almost perfect process for emulating human thinking patterns. The ML-based trust
evaluation process is concise and instructive. There is usually a high degree of certainty in
using ML-based trust evaluation to solve basic processes. Data processing, model selection,
and final model determination are the three rough division steps of ML’s general process.
The data processing step involves transforming available raw data into useful features
or turning dirty raw data into meaningful features. It involves the use of, among many
other methods, data cleansing, feature selection, and data fusion; these are methods that
appropriately minimize high dimensions, missing values, noise, and values that are re-
peated. In the model selection step, the most appropriate trust evaluation model-building
algorithm is selected from the many available ML algorithms. The final model selection step
involves adjusting parameters and selecting the best performance achievement enabling
parameters for the selected algorithm. The performance of the selected algorithm is usually
significantly affected by the availed parameters’ configurations, as the algorithm has a
set of parameters that should be set for its run to deliver expected results for the given
input. Existing experience-based decision-making or human decision-making processes
are what the ML-based trust evaluation process simulates. In addition to this process
being easily understandable, implementing it is highly effective and easy. ML has a wide
range of applications, including fraud detection in finance [42], personalized learning in
education [43], disease diagnosis in healthcare [44], and climate modeling in environmental
research [45]. ML helps solve challenges related to IoV, especially traffic flow prediction
and optimization. The authors in [46] highlighted the importance of timely and reliable
traffic flow information for ITS deployment. Traffic flow predictions are accurate using ML
algorithms and historical and real-time traffic data. This predictive capability, which is diffi-
cult to acquire using traditional approaches, is useful for a variety of IoV applications, such
as traffic congestion mitigation, fuel consumption reduction, and location-based services.
In addition, the authors in [47] demonstrated how machine learning techniques can im-
prove routing strategies in vehicular networks, including implementing a software-defined
networking (SDN) architecture that incorporates a neural network (NN)-based mobility
prediction. This approach guarantees uninterrupted connectivity and reduces latency [48],
as well as using Q-learning-based hierarchical routing instead of traditional routing tables.
This uses self-constructed adaptive Q-value tables that are based on local traffic flow. This
approach enables them to achieve high delivery rates and balance network load [49]. These
examples demonstrate how machine learning can effectively handle the many forms of
communication and Quality of Service (QoS) needs in automotive networks, beyond the
performance limitations of conventional networking systems. Moreover, the authors in [50]
demonstrated the effectiveness of machine learning in predicting traffic flows, a typical
time-series challenge. Because traffic flows are stochastic and nonlinear, conventional
methods that rely on autoregressive moving averages frequently fail to account for these
characteristics. Effectively enhancing the accuracy of predictions has been accomplished
with the help of ML techniques such as kNN and support vector regression (SVR). A fun-
damental endeavor in intelligent transportation systems, behavior prediction is another
area in which ML performs well. The authors in [51] showed that SVMs can predict lane
changes. Overall, machine learning in the environment of IoV has shown its adaptability
and efficacy in solving a wide range of challenges associated with predicting traffic patterns,
optimizing routes, and forecasting behavior in vehicular networks.

3.2.1. Supervised Learning

Supervised learning (SL) can be categorized into regression and classification. In the
classification model, the output is categorical. The most common classification models in-
clude neural networks, Naïve Bayes, support vector machines, decision tree, and K-nearest
neighbor. As for the regression model, the output is continuous. Logic regression methods
are commonly used in secure vehicular networks [46,52,53].
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3.2.2. Unsupervised Learning

Unsupervised learning (UL) is the opposite of supervised learning because there are
no used labels for the dataset. Unsupervised learning can be categorized into cluster-
ing and dimensionality reduction applications The most common clustering models are
k-means and the Hidden Markov Model, which are commonly used to secure vehicular
networks [52,54].

3.2.3. Reinforcement Learning

Reinforcement learning (RL) algorithms fall into two categories: model-free RL algo-
rithms and model-based RL algorithms. Model-free RL algorithms use policy optimization
and value-based algorithms as the main approaches. The primary objective of these al-
gorithms is to come up with a strategy that helps individuals gain the best results in the
long term. In value-based algorithms, the temporal difference stands for the place where
the agent studies the environment and learns the most accurate method for predicting a
variable’s value over a certain period of time. The learned state values are then used to
improve the state of the environment. The temporal difference performs refreshes depend-
ing on the information obtained from the current assessment. In Q-learning, the Q stands
for quality. The agent uses a Q-table to choose the best action for each state. It also helps
with increasing the rewards generated from all the ideal actions. The State–Action–Reward–
State–Action (SARSA) algorithm learns Q values depending on the functions performed
by the current system. Most importantly, the Deep Q-Network (DQN) algorithm creates a
matrix that enables the working agent to locate the best action so as to maximize future
rewards. It should be noted, however, that an increase in the number of states and actions
leads to a more complex and time-consuming Q-table characterization [55]. The primary
objective of RL is to identify the circumstances under which the output of the IoT system
is most highly rewarded [56]. Below are some of the terms used in this process: Agent:
the elements that perform the activities. Environment: the circumstances surrounding the
agent. State: the present circumstances. Reward: the response of the environment. Value:
the long-term reward.

3.3. Security Requirements

Security has become a critical issue in the IoT due to the large amount of data being
transmitted, the different technologies used, and the development of cloud computing
systems. IoT systems are particularly vulnerable when data are transmitted from a user
interface to a cloud-based service, as attackers can use loopholes in transmission links to
manipulate the data. Moreover, they can take charge of cameras, the brake system as well as
the alert system. In such a case, the people inside the vehicle have no control over what the
vehicle can do. This is what makes IoV a high-risk technology. Despite efforts to address
the challenges presented by IoV, new and more sophisticated challenges keep popping up.
The various security threats are a result of the frequent availability of large amounts of
data in IoV. Among the many devices and nodes involved in IoV are data, access points,
base stations, sink nodes, and backbone points, making data collection security crucial.
To guarantee data security, IoV experts must ensure the data are authenticated and made
confidential. Other requirements include integrity, authorization, and nonrepudiation [57].

Security requirements are measures for identifying how secure an IoV network is.
While IoV is vulnerable to multiple threats, researchers have identified some of the most vul-
nerable areas and how they can be protected from network attacks [57–60]. Below are some
of the security aspects that must be considered. Figure 1 illustrates the security require-
ments including authentication, confidentiality, availability, data integrity, nonrepudiation,
access control, privacy, and real-time guarantees.



Sensors 2024, 24, 368 10 of 37

Figure 1. Security requirements in IoV.

3.3.1. Authentication

The system should not allow any form of imitation of a vehicle or vehicles trying
to send information. The sensor that sends the data must be the vehicle it claims to be.
The receiving sensor should also be able to differentiate between the true sender and a fake
sender by scanning the ID of the sender. The chances of a masquerading node acting in the
same way as a legitimate node are extremely high. As such, communication between nodes
must be authenticated. Every sender must have a unique ID that can be verified through
keys or passwords [61].

3.3.2. Confidentiality

Sensitive information passes through the communication channels in IoV networks.
This information can have serious effects if it gets into the wrong hands. As such, an efficient
system should ensure that sensitive information is secure and only the intended users can
access it. Confidential information should be protected at all costs. Encryption has proven
to be an effective solution in this endeavor.

3.3.3. Availability

The number of vehicle owners has increased in the past ten years. As such, there is
a high likelihood of a high number of IoV users within a particular region at the same
time. For this reason, network breakdowns cannot be ruled out, especially during peak
hours when everyone is rushing to go home or to work. Hence, an effective system
will be available at all times to all legitimate users. The entire IoT system is based on
information dissemination. For this reason, information should be made available when
needed; otherwise, if there are delays, it might be of no help. It is for this reason that group
signature was developed to solve the availability issue.
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3.3.4. Data Integrity

The information being delivered from one node to another should not be altered in
any way. The content received should match what was sent. In communication that goes
through various channels, malicious nodes can tamper with the message or send the wrong
signals. Such tampering is dangerous because it might result in messages being interpreted
differently. To ensure that the network’s integrity is intact, digital signatures can be used.
The content of the message being passed from one node to the other may save a life or
cause damage if modified [62].

3.3.5. Nonrepudiation

Nonrepudiation not only detects compromised nodes but also prevents the sender
or receiver from denying the transmitted message. Coordination and cooperation among
users of an IoT network within a particular range are crucial. For instance, information
on an emergency or an accident should be communicated promptly to identify the person
responsible. As such, if a user denies a sent message, the user can jeopardize the lives of
other users.

3.3.6. Access Control

Access control is comparable to the police in that it ensures that every participating
node performs its functions according to its roles and privileges. An efficient system must
have an access control panel.

3.3.7. Privacy

A driver’s daily routine is one of the types of private information that should not be
made public. No unauthorized access to the network should be allowed since it may put
people’s lives at risk [63].

3.3.8. Real-Time Guarantees

Applications used in IoV are designed in such a way that they are time sensitive.
For this reason, they have to disseminate information when needed and at the right
time. The failure to deliver information in a timely manner can lead to accidents and
unnecessary delays.

4. Related Surveys

The authors in [64] reported different trust management schemes based on three types
of models: entity-centric trust models, data-centric trust models, and combined trust mod-
els: a multifaceted trust, a trust and reputation infrastructure-based proposal, a distributed
trust, a deterministic approach, a trust model based on various factors of a message, a vot-
ing system based on distance from the event, categorized decentralized trust management,
an evaluation scheme, and an attack-resistant trust management scheme. They did not,
however, present an ML scheme to enhance trust. In the survey in [65], security aspects
of IoV, including security requirements and challenges, were considered. Various security
threats and existing security solutions for each threat were explored. However, neither
ML-based solutions nor trust management were examined in this analysis.

ML-based trust evaluations are free from the inadequacies of traditional trust eval-
uation methods, as they can carry out trust evaluation to establish a trust model using
data about other available trust-related features. ML-based trust evaluations are capable
of finding substitute data for the unavailable indirect recommendation and direct histori-
cal interaction information in newcomer trustees. ML methods aim to improve the trust
evaluation’s accuracy compared with traditional trust evaluation methods [66]. Based on
IoV’s security requirements, such as authentication and availability, the authors of [67]
classified various security attacks and suggested possible solutions. ML-based solutions
were not demonstrated.
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Many different trust management models were examined in the survey in [68], and the
authors specifically focused on IoVs. One of the intelligent solutions suggested for trust
management is the use of context awareness. The authors attempted to demonstrate
the potential benefits of context awareness in vehicular networks; however, the authors
did not consider ML as a potential solution to the problems of trust and security in IoV.
The observation of genetic algorithms (GA), one type of optimization technique, is the
focus of reference [69], which aimed to improve the security of IoV networks through
the observation of GA. According to the survey, GA is frequently utilized to improve the
security of IoV comparisons via various swarm intelligence optimizations. The utilization
of the GA in an IoV security system was carried out to improve the accuracy of the network
as well as the detection of malicious nodes. However, this survey omitted the use of ML
and the improvement in IoV trust.

In [70], the authors discussed the use of ML solutions in VANET such as applica-
tions, routing, security, resource allocation and access technologies, mobility management,
and integrated architectures. The challenge of trust in the VANET environment was not
discussed. In [50], the authors focused on the proposed ML method for ITS challenges.
Security and trust were not addressed, but they addressed ML-based works from the point
of view of vision-based perception, infrastructure, and resource management as well as
the prediction of traffic flow, the behavior of vehicles and users, and the road occupancy of
ITS. In [71], the authors investigated the potential integration of Digital Twins (DTs) into
IoV, focusing on improving the system design without mentioning machine learning or
trust. In [72], the security challenges within vehicular networks are discussed primarily,
with an emphasis on attacks and preventive measures, but without explicit mentions of
machine learning or trust. In [73], the author examined the security challenges of IoV
environments, emphasizing various attack types and the need for privacy preservation
and strong authentication, thereby contributing to discussions on security but without
ML techniques.

We provide a comprehensive discussion of related surveys, the difference between
our survey and these related surveys, as well as the survey’s main focus, which is shown in
Figure 2. Despite the fact that there are several surveys on IoV security [12,65,67,69,71–75],
few surveys have covered ML-based solutions in security or in trust schemes in this
environment. For example, the surveys in [50,70,76] addressed the use of ML-based trust
evaluation in IoV focusing on the trust scheme. In contrast, the surveys in [64,68,77,78]
addressed trust in IoV, but ML-based research was not conducted. In the survey in [66],
the security aspect was not covered by the authors. In Table 2, we compare previous survey
studies in terms of the focused areas of security, trust, and ML approaches as a solution.

Figure 2. The scope of our survey.
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Table 2. Comparison of surveys in terms of the focused areas of security, trust, and ML approaches.

Citation Year IoV Security IoV Trust Machine Learning Comparison

[12] 2017 + The survey does not explore ML techniques and the
trust scheme.

[74] 2017 + The survey discusses only security challenges and
the trust and ML-based solutions are not explored.

[64] 2018 + + Only three types of trust models are considered.
The survey does not discuss ML-based solutions.

[77] 2018 + + The survey does not provide a number of solutions
based on ML techniques for security or trust in IoV.

[78] 2018 + + The authors present cryptographical solutions and
ML-based solutions are missing.

[65] 2019 +
The authors present many security solutions but
detailed information on trust and ML techniques
are missing.

[66] 2020 + + There is no security challenge discussed in this
survey.

[76] 2020 + + The survey discussed ML-based solutions for
security but not for trust.

[67] 2020 + The survey discusses only security protection but
the trust and ML-based solutions are not presented.

[75] 2020 + The survey is missing the trust scheme and
ML-based solutions in IoV.

[68] 2020 + + The survey does not discuss ML-based solutions for
security and trust.

[69] 2021 + The survey is missing the trust scheme and
ML-based solutions in IoV.

[70] 2021 + + Details about using ML-based solutions in the trust
problem are missing.

[50] 2022 + + The authors do not explore the trust challenge and
its solutions.

[71] 2022 + The survey does not explore ML and trust.

[72] 2022 + The survey does not mention ML or trust.

[73] 2022 +
The authors present the security challenges of IoV
environments, but ML-based solutions and trust
are missing.

Our
Survey 2023 + + + Our survey focuses on the areas of security, trust,

and ML approaches.

5. The Concept of IoV
5.1. The Internet of Vehicles

The unprecedented developments in computers and communication have escalated
the implementation of IoV. The VANET is the previous version of IoV. IoV’s primary objec-
tive is to ensure safe driving. While IoV has been embraced by the vehicle manufacturing
industry, the technology presents myriad challenges and opportunities that are yet to be
explored [75].

Diverse network connections and varying road conditions are considered by intelligent
vehicles that are controlled by sophisticated internal software. This software is responsible
for managing and controlling vehicle systems. The software depends on information
obtained from the interconnected devices and the internet. Most manufacturers decided
to adopt IoV applications and start manufacturing their own cars when they discovered



Sensors 2024, 24, 368 14 of 37

the process of converting vehicles from normal mobile nodes to intelligent vehicles. This
discovery also brought stiff competition among renowned software-producing companies
such as Apple, Google and Huawei [79].

The emergence of IoV technology made it more convenient to own and drive a vehicle.
In addition to improving traffic monitoring, the technology aimed to enhance comfort-
able driving, improve energy management, secure data transmission, and prevent road
accidents. While this was good news, the new technology came with many challenges
and opportunities. Some of the issues that have still not been addressed are achieving
large-scale coverage, exchanging data in a secure environment, managing diverse network
connections, and dealing with vehicles with a dynamic topology [80].

5.2. Comparison of IoV and VANETs

IoV emerged as a result of the integration of the IoT and VANETs. As such, it is a
more advanced version of VANETs. The primary reason for the development of IoV was
to strengthen and enhance VANETs’ capabilities. While the two technologies share some
similarities in terms of objectives, they also have differences that are worth discussing [65].

• Goal: Both VANETs and IoV aim to enhance traffic safety and efficiency. However,
while VANETs focus more on cost and pollutant emission efficiency, IoV focuses on
commercial infotainment. Infotainment is one of the most crucial components of
IoV because it helps passengers access services such as online video streaming and
file downloading.

• Network specification: IoV has a diverse network framework. The network is used
for collaboration and entails communication types such as 4G, Wi-Fi, WAVE, and
satellite [81].

• Communication types: IoV has five types of communication, with each type relying
on specific wireless communication technology. The five types of communication are
vehicle to sensors (V2S), vehicle to road side units (V2R), possible vehicle to vehicle
(V2V), vehicle to personal devices (V2P), and vehicle to the infrastructure of cellular
networks (V2I) [82]. Figure 3 illustrates the types of communication used in IoV.

• Processing competence: IoV is capable of handling large packets of global data.
The system incorporates intelligent computing platforms such as fog computing,
cloud computing, and edge computing, which enable it to process large amounts of
data at a fast speed [83].

• Compatibility: IoV is easy to use since all the devices used are compatible with the
network, thus making it easier for information to be disseminated among the nodes
in the most efficient way possible. As such, an interactive environment is created,
making it possible to detect hazards early.

• Range of usage: IoV can be used globally; as such, it is an effective technology that can
sustain a wide range of applications with different communication and computing
capabilities [14,60].

• Network connectivity: Communication is a critical component of IoV networks; for
this reason, IoV operates in an environment with the best communication. Moreover, it
can easily switch to a stronger and more efficient network in case the current one fails.

• Internet facilities: IoV environments enable vehicles to be connected to the internet at
all times. The reliability of IoT networks depends on the speed of the internet and a
high bandwidth.

• Cloud computing: Massive quantities of data are processed on a daily basis in an
IoV environment. As such, cloud computing is often regarded as the most effective
approach for managing vast quantities of data. Cloud computing makes it easier for
information to be collected, stored, and analyzed [84].
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Figure 3. Types of communication used in IoV.

5.3. IoV Architecture

This subsection illustrates the suggestions of numerous researchers about various
architectures for IoV. The researcher Liu Nanjie [85] suggested a “Client-Connection-Cloud”
system as a three-layer architecture for IoV. The client layer collects data about driving
patterns and intra-vehicle and inter-vehicular connections with surrounding vehicles by
using all sensors present in the vehicle. The connection layer deals with communication
among various units (vehicles, individuals, RSU, and the Internet) in an IoV system to
offer vehicle-to-vehicle, vehicle-to-individuals, vehicle-to-RSU, and vehicle-to-Internet
communication. In addition, the cloud layer offers services needed for executing tasks,
which might not be satisfied by the restrained resources accessible within the vehicle such
as mass storage, authentication, and actual-time communication.

Gandotra et al. [86] suggested a three-layer architecture for gadget interaction in which
the first layer is utilized for the network region in which gadgets are connected to another
device with the network control choosing either wireless or wired interaction. The next
layer offers support for IP connectivity and roaming. The last layer backs up the chosen
application (IoV and healthcare, among others). Other researchers in [82] proposed a
seven-layer architecture: the first layer is the user communication layer, the second is the
data acquisition layer, the third is the data filtering and preprocessing layer, the fourth is
the business layer, the fifth is the communication layer, the sixth is the management and
control layer, and the last layer is the security layer. A transparent connection among the
network components is provided by this IoV architecture.

IoV structure can be broken down into four main categories: network, computing,
sensing, and application, where the sensing layer collects important data about the vehicle’s
surrounding environment. The data collected entail information such as the condition of
the roads, object locations, and driving habits. The means of data collection is the Radio
Frequency Identification Card. The network layer provides all the essential network types
such as cellular networks (4G/LTE) and short-range communications (Wi-Fi, Bluetooth) be-
tween all the objects in the vehicle. This layer is also connected to the cloud. The computing
layer processes, stores, and analyses data required for convenience, efficiency, safety, and
risk evaluation. The last layer, the application layer, offers open and closed services. Open
services include online video streaming, which is offered by internet service providers.
In contrast, closed services are specific IoV applications [12,87,88]. Figure 4 shows the four
main categories in IoV architecture.

Different IoV architectures have been suggested by various researchers. Investigation
of these architectures illustrates that some of these architectures do not consider security,
while some have explained security as services. Since IoV has open network access, the se-
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curity services provided on these architectures will not be sufficient for securing IoV, which
will lead to different vulnerabilities that might affect the entire system. Accordingly, there is
a requirement for effective security mechanisms to improve the security of any architecture.

Figure 4. IoV architecture.

5.4. Challenges Facing IoV

In recent years, various technologies have been integrated for the sole purpose of
designing and deploying an IoV architecture. Some of these technologies are IEEE 802.11p,
Microwave Access, Dedicated Short-Range Communication, Long-Term Evolution, and
cloud computing [89]. While IoV is a promising field, it presents myriad challenges.
Some of the bottlenecks IoV developers must grapple with include issues associated with
data protection, liability, architecture, resource allocation, and diverse interconnected
nodes [90–92].

The most common IoV network challenges are as follows:

• Complex and diversified networks;
• The security and reliability of services, incompatibility and accuracy of services, and

limited storage capacity;
• Data storage and management;
• Scalability;
• Internet provision;
• Poor reception and weak signals that hinder the availability of satellite-based

GPS systems;
• Disruptive tolerant communication;
• High mobility of dynamic topologies and vehicle nodes;
• Localization issues;
• Addressing and tracking network fragmentation.

5.5. Security Issues in IoV Communication

A middle ground exists between the smart vehicle and the cloud server. This middle
ground is commonly referred to as the fog cloud-based IoV. This important component
enhances the vehicle’s capabilities by enabling the vehicle to collect and process information
locally and to make instant decisions during an accident rather than relying on a cloud
server. For instance, several vehicles in the same vicinity can respond to a request from a
vehicle within the same area instead of sending a request to the cloud, which may result
in a delayed response. IoV highly depends on wireless communication for traffic flow
management. For this reason, IoV is susceptible to various attacks such as data disclosure
and session key leakage. To address these security issues, the following measures can be
employed [75,93,94].
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5.5.1. Regular Network Monitoring

Fog systems must be monitored on a regular basis to rid them of any suspicious
activities. A fog network can be scanned using either static or dynamic techniques. Typically,
a normal network scan involves an antivirus program and a firewall to identify threats and
eliminate them to protect the network. Fog environments, however, require more security.
Therefore, a new and more effective mechanism for network monitoring is required [95].

5.5.2. Encrypted Data/Communication

Electronic data produced when transmitting between fog and cloud should be pro-
tected by encryption. The two most widely used data encryption methods are the Advanced
Encryption Standard (AES) algorithm and the Data Encryption Standard (DES) algorithm.
The AES algorithm is more appropriate in a fog environment compared to the DES al-
gorithm due to its suitability for sensitive data. Moreover, DES codes are easier to crack
compared to AES codes [96].

5.5.3. Authentication and Key Management

During IoV deployment, authentication and key management should be employed
between the different devices. Moreover, when authentication and key management are
employed between fog servers and cloud servers, they enhance communication in an IoV
environment [97].

5.5.4. Wireless Security Protocols

The transmission of sensitive information via mobile phones, wireless cameras, and
Radio Frequency Identification (RFID) is common in an IoT environment. As such, for the
information to be protected against hackers and other intruders, the wireless communica-
tion must be protected. For instance, an unauthorized user can take charge of the network
by locking out authorized users, thereby preventing them from using the network. This can
be carried out by downloading applications that are irrelevant to the network. Some of the
most effective solutions against these kinds of attacks include the use of Wi-Fi-protected
access such as WPA2 and WPA3 [98,99].

Now more than ever, IoT networks are vulnerable to cyberattacks. The most common
type of attack against IoV involves manipulating and exploiting connections. In other cases,
the attackers can gain access to the on-board unit (OBU) and manipulate the data there,
affecting functions such as the locking system, emergency brakes, cameras, and wireless
system. As such, an effective security mechanism should be capable of protecting the
system’s data and nodes from external intrusion. The security of the IoV network is what
determines the safety of the driver and passengers in a vehicle. The messages contained in
IoV outline accident prevention procedures and methods on how to deal with malicious
activity. As such, IoV networks must be protected at all costs due to their sensitivity.
To maintain the integrity of the data being transmitted, they must not be altered or modified
during transmission [74,77].

5.6. Security Threats and Attacks in IoV Environments

Attackers come in different forms. No matter how simple or sophisticated an attacker
is, the attack will ultimately affect the integrity of the IoT network. Hence, to protect these
networks, it is important to understand the existing threats. Attacks can be categorized into
three types: active, passive, and malicious attacks. In active attacks, the attackers can either
originate fake messages or alter the information of authentic messages. These attacks are
more frequent and difficult to avoid but can easily be detected and are inexpensive to detect.
Attackers usually carry out active attacks with the aim of modifying network operations.
To prevent this kind of attack, physical security measures should be implemented [100].
The goal of passive attacks is to compromise the target node without changing the content
of the transmitted messages. This type of attack is used by attackers to obtain dispersed
data from the network. Since passive attacks do not disrupt network operations, they are
difficult to detect, and since attackers do not participate in network communication, data
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encryption can be utilized to prevent such attacks [101]. With malicious attacks, rather
than attackers benefiting from the attacks, they are instead initiated with the intent of
harming participating nodes. These attacks are dangerous and can cause significant damage.
Malicious attackers can even transmit false safety-critical information that puts drivers,
passengers, and pedestrians in danger [59,78,102–104]. Below is a detailed explanation of
some of the attacks to be expected in an IoV environment.

5.6.1. Wormhole Attack

This type of attack is also referred to as a tunnel attack. In this type of attack, the at-
tacker displays the wrong information about its current location to the targeted victim. As a
result, the victim node sends its messages through the fake node. Then, all the information
received from the sender goes through the attacker node before flowing to the network.
Such information is exposed.

5.6.2. Black Hole Attack

A black hole is formed when a vehicle drops packets or refuses to engage in communi-
cation. A black hole is akin to an empty space that no one knows exists. The attack starts
with an attacker introducing itself as a legitimate node and as a shortcut to a particular
destination. Then, the legitimate nodes abandon the route discovery process in favor of the
shortcut. The fake node then intercepts the data packets and uses them to create confusion.
Eventually, other attacks such as DoS attacks and man-in-the-middle attacks may ensue.
In other words, one attack may open doors to other attacks [105].

5.6.3. Dissimulation of a GPS Attack

This refers to the act of intercepting and modifying GPS signals sent by a vehicle
within a particular network. These signals are then sent to an unsuspecting receiver after
being modified. As a result, the driver and passenger of the targeted vehicle make wrong
decisions based on the modified message [60]. In a GPS attack, GPS signals are attacked and
the exact location of the vehicle is manipulated. As such, when searching for a particular
vehicle, a user may be directed to another location with a fake vehicle. A GPS spoofing
attack is a common name for this kind of attack [57].

5.6.4. Denial-of-Service Attack

Every network has a bandwidth within which it operates. Hence, a denial-of-service
(DoS) attack feeds a large amount of information to a particular communication channel
legally. In this way, the attacker congests the channel and slows it down. While the
network is down, the attacker can use the limited resources for illegal business [60]. When
communication among legitimate vehicles is jammed, no form of communication can
take place. This leads to confusion and panic because these vehicles depend on this
communication to make informed decisions such as what routes to avoid [106]. Moreover,
information relayed on the network can save lives by preventing accidents from happening.
DoS attacks can be categorized into three types [107]:

• Malicious—there is an objective behind the attack;
• Disruptive—the attack has the potential to degrade the network;
• Remote—the attack does not emanate from within the network.

5.6.5. Distributed Denial-of-Service

A distributed denial-of-service (DDoS) attack is a more advanced form of a DoS
attack. Unlike a DoS attack, which focuses on specific targets, a DDoS attack is distributive.
For this reason, it is more dangerous than a DoS attack. An attack is launched from multiple
malicious vehicles to one particular node. The attack can also be launched at different times
and locations with the ultimate goal of locking out legitimate users. The fact that the attack
can be launched on both vehicles and infrastructure makes it a particularly dangerous type
of attack.
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5.6.6. Sybil Attack

In this type of attack, the targeted vehicle is made to believe there are vehicles on
a particular route, even though the path is clear. As a result, the targeted vehicle takes
another route. This attack is made possible by creating multiple fake IDs of a single node,
thus indicating that there are multiple nodes in a particular location.

5.6.7. Man-in-the-Middle Attack (MITM)

In this case, the attacker acts as a middleman, but they impersonate both the sender
and the receiver. As such, the attacker intercepts messages from both sides and sends wrong
information to unsuspecting nodes. This type of attack can be either active or passive.
This is one of the most dangerous types of attack because the attacker can cause massive
damage, even with minimal information about the network. This type of attacker often
targets roadside unit nodes because they are responsible for providing services by sending
messages, updates, and resources to handle all communication requests.

5.6.8. Masquerading Attack

To masquerade is to pretend. As such, the attacker pretends to be someone else by
hiding their true identity. Once that is achieved, the attacker can then act as a legitimate
node with the sole intention of producing misleading messages or modifying the received
messages. For instance, an attacker may receive a message indicating that the road is clear.
In contrast, the attacker broadcasts that there is an accident ahead. As a result, road users
may decide to take an alternative route or slow down. This type of attack disrupts traffic
and may create a huge traffic jam [108].

5.6.9. Eavesdropping Attack

In this case, the attacker gains access to the network from the outside. Even though
they are not an active participant in the network, the attacker is able to obtain private
confidential information illegally and use it for personal gain.

5.6.10. Malware Attack

In this type of attack, malicious worms or viruses are transferred from one point
to another through electronic files. The files can then infect the network instantly or
gradually [109].

6. Solutions for Security and Trust in IoV

As depicted in Figure 5, this section classifies security and trust solutions based on
traditional and ML-based approaches.

Figure 5. Classification of security and trust solutions based on traditional and machine learning
(ML)-based approaches.
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6.1. Traditional-Based Solutions

Over the years, trust management has become a popular method for maintaining
secure and reliable vehicle networks. Traditional solutions, such as Bayesian-inference-
based, cryptography-based, blockchain-based, and fuzzy-logic-based trust management
techniques can all be used in vehicular networks. Conventional trust models are also
known as traditional trust management models, and they do not require any advanced data
analysis or statistical inference methods to work. In [110], the MARINE system, which was
presented by Ahmad et al., is used to detect malicious vehicles, which are vehicles capable
of launching MITM attacks and canceling credentials. Furthermore, the MARINE system
is an example of a hybrid model that takes into account the possibility that a trustworthy
vehicle may send a false message due to faulty hardware as well as the likelihood that a
malicious vehicle may send real messages. Data trust, node trust, infrastructure-to-vehicle
trust, and vehicle-to-vehicle trust are often taken into account in this proposed paradigm.
The trustworthiness of a node is determined by the sum of all prior connections with
the target vehicle and neighbor opinions. On the other hand, data trust considers the
quality of data received, the vehicle’s ability to transfer messages, and surrounding entities’
recommendations. In most cases, calculating vehicle-to-vehicle trust requires assigning
each vehicle the responsibility of writing a good report about an honest vehicle and a
negative report with information about a dishonest vehicle. After the reports are generated,
they are sent to the roadside unit, which is where the infrastructure-to-vehicle report is
generated and updated. Three attack scenarios were used to test the suggested MARINE
model. It makes use of SUMO (urban mobility simulation) as well as a cars in network
simulation (VEINS) [111–113].

Bayesian-inference-based trust models employ Bayesian theory, which addresses the
uncertainty of data-centric modeling and inference through the application of probability
and statistics. While considering both regional and international vehicle trust, Zhang et al.
proposed a trust management approach based on the TrustRank algorithm [114]. To com-
pute local trust, the Bayesian inference model is applied to previous vehicle interactions,
and once local trust is computed, a trust link graph is constructed. Global trust is calcu-
lated by combining social factors based on the driver and vehicle, and before applying the
TrustRank algorithm, the behavior with local trust values and previous global trust values
is considered. The PageRank algorithm determines the most trustworthy automobiles as
seed vehicles. True negative and true positive performance indicators are used to evaluate
this strategy. Furthermore, these models are simulated with the help of VEINS simulation.
During its evaluation, this model took into account newcomer attacks, on–off attacks,
and collusion attacks.

The fuzzy-logic-based model takes into account the imprecision of human reason-
ing when making decisions in uncertain and imprecise contexts. In [115], Guleng et al.
proposed a decentralized architecture that integrates a vehicle’s own experience and peer
recommendations using fuzzy logic. This is carried out with the intention of labeling the
vehicle’s unintentional dishonest behavior. The concept of RL is enforced by an indirect
trust score for vehicles with no direct connection to the trustor. In measuring direct trust
before using fuzzy logic, the percentage of authentic messages passed by the vehicle and
the proportion of all messages conveyed by the vehicle are taken into account. Q-learning
is used to gather feedback on the target vehicle from nearby vehicles, which is then used to
calculate indirect trust. The simulations for this model were carried out with the help of a
network simulator (NS-2.34) [116].

In the cryptography-based trust model, the emphasis is on encrypting data to increase
secrecy and prevent unauthorized users from decoding the data. In [109], Gai et al devel-
oped a concept in which one inquirer uses cookies to rate the services offered by another
vehicle. These vehicles are signed by a certificate authority to prevent counterfeiting by
other vehicles. When a vehicle is presented with a request from another vehicle, it transmits
its cookies along with the specific service that is needed, and the vehicle that receives
the request uses this information to assess the service provider’s trustworthiness. In this
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paradigm, cookies in the requester’s record are used to calculate direct trust, which is based
on previous encounters. Indirect trust, on the other hand, is calculated using the service
provider’s shared cookies. VANETism was used to run simulations of this model. The most
common authentication attacks include wormhole attacks, GPS deception, secrecy attacks,
and routing attacks [67]. As presented in [58], for an IoV architecture to be considered
secure, it must have low error tolerance, high mobility of IoV entities, private routing
of data, and key distribution management. Common countermeasures for the above-
mentioned attacks include honeypot, threat modeling, and intrusion detection systems.
In the honeypot approach, the system deceives attackers and identifies malicious actions in
architecture. In threat modeling, Petri net modeling is used to authenticate, control, and
model complex vehicular networks. Crowdsourced data must be authenticated to deal
with malicious attacks that often mislead the vehicle and force it to take a different route
than the desired one. These messages must be detected in time so they can be eliminated
before causing any damage. In [117], the authors emphasize the importance of authorizing
and verifying information. By doing so, the collected information will be under supervi-
sion, thus preventing the vehicle from being misled. The other commonly used method
is scalable privacy. An individual’s privacy is protected, and the individual is given the
alternative to control the flow of information. In this case, privacy is sacrificed for privacy.
Scalable privacy ensures that data are extracted from a big group, thus making it difficult
for the owner’s data to be distorted. Sybil attacks violate the safety of passengers. These
attacks introduce nodes that assume multiple identities, thus disseminating false messages
in the network. The authors provide insights into the mechanism of understanding by
proposing a comprehensive heterogeneous communication technology architecture for
secure and private vehicular clouds that serve IoVs. This type of attack can cause confusion
and is responsible for most of the accidents in IoVs [67]. The authors in [118] created a
Sybil detection method known as Voiceprint that is based on signal strength indicators.
Voiceprint compares all the received time series, which is unlike the other common methods
used to prevent Sybil attacks. Moreover, Voiceprint can be enhanced to carry out detection
on service channels. This enhancement decreases the false positive rate. GPS Spoofing is a
type of attack that focuses on Global Positioning System signals. It misleads these signals,
which places passengers in danger. In [119], it is shown that the best way to address this
type of attack is to use a two-factor authentication system that uses digital signatures and
time synchronization to prevent spoofing. The hash signals are encrypted to further protect
the system. Detecting masquerading attacks is not an easy task. The authors effectively
address VANET vulnerabilities and highlight the complex difficulty of preventing mas-
querading attacks in autonomous navigation systems. In [120], to address this problem,
network specialists recommend an anomaly detection model that detects attacks using
signal strength fluctuations. The malicious nodes are detected by factoring in the maximum
speed of the nodes and the time of reception. Data falsification attack detection mechanisms
have received increasing attention from security analysts. The authors present a hardware-
independent technique for detecting masquerade attacks that is based on an adaptive
anomaly detection model that takes signal strength variations into account. Furthermore,
this methodology emphasizes the criticality of employing adaptive and efficient threat
detection systems. In [121], the main idea behind these mechanisms is to improve IoV
network throughput and ensure accurate information relay to the neighbors. At the same
time [122], hierarchical temporal memory can be employed to mitigate inconsistencies in
the communication medium. In [123], to improve the security of smart vehicles, a two-level
cryptography authentication technique is used.

The methods used to address common attacks can be categorized in terms of avail-
ability, data integrity, authentication, and confidentiality [124]. Availability, which refers
to the overall network uptime, is a crucial element in IoV. Given that vehicles depend
on traffic to make certain decisions, availability must be considered when selecting the
best solution to common threats. A lack of availability can lead to the total shutdown
of an IoV environment. Some of the most common attacks against availability are DoS,
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jamming, and DDoS attacks. In [125], to detect malicious nodes that affect the availability
of vehicular networks, an algorithm for DoS attacks is proposed by detecting the sending
of irrelevant packets by malicious nodes. Data integrity refers to the incorruptible nature
of the information distributed in an IoV environment. In other words, the data received
and sent should be the same. The most common type of attack against data integrity is
the man-in-the-middle attack [126]. In [110], the use of trust models to identify malicious
nodes is recommended. Once the malicious nodes have been identified, their credentials
are revoked, thereby stopping the man-in-the-middle attack in its tracks. Confidentiality
refers to the nondisclosure of private information pertaining to the vehicle as well as the
user. Hackers are always on the lookout for loopholes they can exploit to access confidential
information and use it for sinister motives. For this reason, measures are put in place to
ensure that unauthorized individuals cannot access critical information such as the location
and routes of the vehicle. The most recognized type of attack against IoV is known as
eavesdropping. In [127], network specialists use models that generate false traffic packets
to mislead attackers. The false data packets shield roadside unit (RSU) hotspots from
unwarranted intrusions. Additionally, a real-time monitoring system for road conditions
can be used to prevent collision attacks, thus protecting confidential information from
potential attackers [128]. Lastly, authentication refers to the verification of user identities
or system identities in an IoV environment. The most common type of attack against
authentication is the Sybil attack. This type of attack can be addressed by grouping nodes
into various zones and eliminating the malicious nodes [129].

6.2. Machine Learning-Based Solutions for Security

The massive production and use of digital gadgets has led to tremendous growth in
IoT usage. The IoT is currently being used in industries, transport systems, power systems,
and agriculture, among other domains; this growth in usage, however, has also brought
about myriad security problems. The IoT uses a variety of advanced technologies such as
Bluetooth, RFIDs, wireless sensor networks, cloud computing, and Zigbee, among many
other systems. As such, it is challenging to protect all these networks against malware
attacks, eavesdropping, DoS attacks, and virus injection [76,130]. ML has developed as a
security-enhancing technology in recent years. A growing number of studies has estab-
lished that there has been an increase in ML-based contributions to network security over
the past few years. The five most frequently explored security fields are software protec-
tion, malware detection, reaction policy, game protection, and biometric authentication.
Of all these fields, malware/intrusion detection is the most heavily researched. Moreover,
autonomous vehicles and wireless networks are among the most frequently addressed
targets of attacks. The IoT connects millions of devices. These devices are dynamic and
result in a complex network. It is for this reason that ML techniques are used for detecting
intrusions, CPS attack detection, malware detection, privacy maintenance, and trust. These
elaborate techniques are ineffective, however, in performing dynamic responses as far as
the IoT is concerned [131–134]. In this survey, ML-based trust management schemes and
security solutions are classified. We present trust and security solutions for IoV environ-
ments, and we classify them based on the three types of ML models: supervised learning,
unsupervised learning, and RL.

6.2.1. Supervised-Learning-Based Solutions

Gyawali and Qian describe an ML-based framework that uses fake alarm messages
and positional falsification to detect vehicle misbehavior. By communicating information
via a beacon, the vehicles keep each other informed about various events such as road
conditions, accidents, emergency vehicles, and collision warnings. The authors of this work
used beacons and information deviations from standard protocol conditions as input to ML
algorithms. This study compared five different types of ML algorithms, with the decision-
tree classifier achieving the greatest accuracy of 95% [135]. In [136], the authors proposed
using k-nearest neighbors (kNN)and support vector machine models to detect malicious
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node attacks in VANET. By adapting KNN models to attack detectors, network features such
as IP addresses, delays, jitters, dropped packets, and throughput are learned. The authors
used an NS-3 network simulator to generate a multihop communication scenario, and the
result showed 99% accuracy. In [137], the authors proposed a scheme to detect jamming
attacks in a vehicular network. Recent work developed a data-centric misbehavior detection
system for IoVs. This research is unique in that it combines plausibility tests with traditional
supervised ML algorithms to improve detection accuracy. The authors evaluated the
performance of six supervised ML algorithms using location and movement plausibility
checks. With the added plausibility checks, the findings reveal a 5% and 2% gain in precision
and recall, respectively [138]. In IoV networks, real-time data integrity is dependent upon
the detection of data falsification. The IoT and ML are used to address vehicular network
(VN) security challenges in [139]. The study addresses backdoor, DDoS, and MITM attacks
and uses TON-IoT dataset ML algorithms for intrusion detection. Intrusion detection uses
RF, NB, and KNN machine learning. KNN has the highest accuracy, demonstrating ML’s
ability to detect VN attacks. In [140], the authors proposed an IDS scheme to classify normal
and malicious traffic messages in vehicle networks using eight supervised models. Their
scheme demonstrated high performance. The authors in [141] proposed a Randomized
Search Optimization Ensemble-based Falsification Detection Scheme (RSO-FDS) that uses
Random Forest (RF) as its primary model. This scheme’s efficacy in detecting falsification
attacks is demonstrated by the performance evaluation and addresses the detection of
falsification, which is necessary to maintain trust in the data shared between vehicles and
IoV services. These studies provided a foundation for enhancing the security of vehicular
networks and IoV with supervised machine learning. Future research should concentrate
on addressing all of these obstacles and expanding the applicability of these techniques to
situations in the real world.

6.2.2. Unsupervised-Learning-Based Solutions

The authors in [142] proposed an approach to defend against DoS attacks. The un-
supervised deep learning choice was Deep Contractive Autoencoders (DCAEs). They
compared actual and predicted data depending on mean square error and mean absolute
error metrics. Angelo et al. developed a data-driven strategy for detecting DoS assaults
as well as three additional types of in-vehicle network threats. Unsupervised learning is
used to extract relevant features from data linked to the controller area network (CAN)
bus. It reflects CAN behavior based on those traits, and any divergence from the learned
behavior is regarded as a system attack. Additionally, by observing associated CAN bus
metrics, this work adopts a data-centric scheme to narrow down the type of attack. For a
car-hacking dataset, the suggested scheme’s performance evaluation findings demonstrate
a high performance [143]. The authors in [144] addressed the significant issue of DoS
attacks in vehicular networks and investigated the viability of using unsupervised learning
algorithms for DoS detection. Since DoS attacks pose threats to connected car functionality
and safety, their detection and mitigation are of utmost importance. Future research should
focus on enhancing the accuracy and adaptability of these algorithms, evaluating their
performance in real-world scenarios, and developing hybrid approaches that combine
unsupervised and supervised learning techniques. Detection of Anomalous Behavior
in Smart Conveyance Operations (DAMASCO) is a security system described in Refer-
ence [145], which discusses the security challenges in VANETs and presents a system called
DAMASCO. The system detects anomalies in vehicle-to-vehicle (V2V) communication
using a statistical approach. The findings prove that the system is capable of identifying
potentially malicious nodes while maintaining a low false positive rate. These studies show
that unsupervised learning approaches can improve vehicle network security, notably by
identifying DoS attacks. UL can improve the security and dependability of connected
vehicles and IoT-driven transportation ecosystems by tackling the difficulties in these
references and refining unsupervised learning algorithms. This adoption of unsupervised
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learning signifies a significant advance in enhancing the integrity and safety of current
transportation systems.

6.2.3. RL-Based Solutions

RL-based spoofing attack detection can be used to prevent jamming attacks. In this
approach, RSSI is used to find spoofing data. Q-learning makes the final decision. There
is no need for prior information about the network model and the attack model [146].
The threshold of an IoT attack detection agent can be established through interaction with
the surrounding environment. It should be noted that RL is more suitable for specific
network scenarios [147]. For instance, an RL-based scheduler is preferred because of its
ability to adapt to various types of traffic and reward functions [148]. In addition, deep
RL can be used for signal authentication [149]. In other cases, a deep RL detection system
can be used to enhance the security of an IoT system [150]. Still, there is room for further
improvement in terms of research work on the characteristics of intrusion. The agent
observes the attack detection rate as well as the false alarm rate and then takes the required
action. The reward of the process is immediate. The selection of a new optimal policy
will update the system reward with new detection and false alarm rates. What is more,
the information acquired in the observation, such as the immediate reward, can be used to
adjust the agent’s policy. This process is repetitive [147]. One of the best approaches for IoV
network protection is analyzing packets of data to detect any potential vulnerability. This
approach utilizes a cluster-based topology in which packets are captured and analyzed
through fuzzy logic. What is more, Q-learning is used to detect DDoS attacks [151].
To prevent jamming attacks, an RL attack algorithm is used to perform Q-learning so as to
study past actions. It has been established that a well-learned network boosts the optimum
performance of the transmitter in the case of a jamming attack [152]. In [153], the authors
presented an approach based on RL to identify and address the transmission of false or
inaccurate data by malicious vehicles, posing a risk to road safety. This methodology uses
RL models to analyze V2X data, effectively classifying incoming data as either legitimate
or showing malicious behavior in a timely manner. The research addresses the increasing
significance of securing V2X communication in the era of connected vehicles and establishes
the stage for more advanced misbehavior detection mechanisms, significantly enhancing
the safety and efficacy of IoV networks. The authors in [154] proposed an attack-resistant
framework for optimal service placement using deep reinforcement learning (DRL) and
integer linear programming (ILP) models. In a dynamic IoV environment, this innovative
strategy optimizes service placement to minimize latency while efficiently utilizing limited
edge resources. Secondary mapping and service recovery mechanisms are also introduced
to mitigate edge attacks and failures. This design improves the user experience, service
latency, resource use, and active edge nodes. It may improve IoV network stability and
security. These references highlighted the significance of utilizing innovative approaches,
such as reinforcement learning techniques, to address security challenges in connected
vehicular and IoT networks. They presented valuable insights for enhancing detection,
authentication, and attack resilience in these environments. The security solutions based
on ML are shown in Table 3.
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Table 3. Security solutions based on ML.

Citation Year Focused
Area

Solution
Technique

ML
Type Algorithm Attack Type Object

[135] 2019

Security Machine
Learning

SL Decision-tree classifier Vehicle misbehavior Detect vehicle misbehavior

[136] 2019 SL KNN and SVM Malicious node attacks Detect malicious node

[137] 2019 SL CatBoost Jamming attacks Detect jamming attacks

[138] 2020 SL Plausibility checks and
traditional SL

A data-centric
misbehavior

Misbehavior detection system
for IoVs

[139] 2022 SL RF, NB, and KNN Backdoor, DDoS, and
MITM attacks

To detect and mitigate various
IoV attacks using ML algorithms

[140] 2022 SL Eight SL models Malicious messages
Classification of normal and

malicious messages in
vehicle network

[141] 2023 SL RF Falsification attacks To protect IoV data, identify and
prevent falsification attacks.

[142] 2019 UL DCAEs DoS attacks Defend against DoS attacks

[143] 2020 UL UL Four types of attacks Detect DoS attacks and three
other types of attacks

[144] 2022 UL
K-Means, Gaussian

Mixture, and Dbscan
Clustering

DoS attack

To identify and mitigate DoS
attacks that compromise

connected vehicle function
and safety

[145] 2023 UL Median Absolute
Deviation

Anomalies in V2V
communication

To detect malicious nodes with
low false-positive rates

[146] 2018 RL Q-learning Spoofing attack Find spoofing data

[149] 2019 RL DRL Malicious node attacks Signal authentication

[151] 2019 RL Q-learning DDoS attacks Detect DDoS attacks

[152] 2019 RL Q-learning Jamming attack Prevent jamming attack

[153] 2022 RL Q-learning
Malicious data

transmission in V2X
communication

Classifying incoming data as
legitimate or malicious

improves security

[154] 2023 RL DRL and ILP Edge attacks
To improve network stability

and enhancing security
mechanisms

6.3. ML-Based Solutions for Trust
6.3.1. Supervised-Learning-Based Solutions

In [155], an ML-based trust model is developed to extract relevant features from
the vehicular network. The authors employ a Bayesian neural network (BNN) for the
classification process. The model had high-performance prediction and classification ac-
curacy. In [156], the authors proposed an M2M vehicle-based ML network (MLN)-based
trust to detect suspicious activity. The intense recharge of the battery (XGBoost) method
is used, and the system has entropy-dependent data augmentation combined with this
approach. The effectiveness of this method is measured based on XGBoost and Random
Forest, and the results showed increased efficiency with 10% inaccuracy. In [157], the au-
thors proposed an ML technique to detect fake position attacks in VANETs. The applied
technique is KNN, which is a classification algorithm under supervised learning. The direct
trust and the trust metric are calculated depending on the data exchanged by the nodes
of the network. The kNN classification and trust model metrics can detect misbehaving
nodes using receiver power coherency. A random forest algorithm attack classification is
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proposed in [158]. Intrusion detection system (IDS) classifiers are used for each vehicle
depending on a random forest algorithm, and each vehicle shares its knowledge with other
vehicles. The value of this algorithm is generated by the trust factor of the received classifier.
Over four types of attacks are classified with an F1 score of 97% and a 4% false-positive
rate by using a network security laboratory-knowledge discovery data mining (NSL-KDD)
dataset. In [159], the authors proposed a classification-based trust model (CTM) for IoV
to improve the security of the communication environment. They used an ML model to
indicate the vehicles as trusted or untrusted, which is a Naïve Bayes model. The model
gave a good answer for both the different kinds of vehicles and the trust factor. The authors
in [160] focused on identifying potential Sybil vehicles and protecting messages from Sybil
attacks. The proposed strategy integrates metaheuristic methods during the establishment
of communication to identify possible Sybil nodes and employs trust certification mecha-
nisms to guarantee the integrity of messages. The importance of employing a variety of
methods to properly prevent Sybil attacks is highlighted. The author in [161] investigated
the expanding field of IoV and the need for trust assessment schemes to defeat insider
assailants. For accurate trust assessment, precise weight assignment and the definition of
a minimum acceptable trust threshold are essential. The paper employs an IoT dataset,
adapted from CRAWDAD to an IoV format, comprising information on 18,226 interactions
among 76 nodes, both honest and dishonest. It computes important parameters, includ-
ing packet delivery ratio, familiarity, timeliness, and interaction frequency. Two feature
matrices are generated: FM1, which takes individual parameters into account as features,
and FM2, which averages pairwise computations for each parameter. Once the truth has
been established by unsupervised learning, supervised machine learning can be employed
for categorization. The results demonstrate that FM2 is superior at accurately classifying
dishonest vehicles. These references enhance trust and security techniques in vehicular
communication networks, addressing important difficulties and making VANETs and IoV
systems safer and more reliable. These research will likely develop and enhance these
models to address evolving threats.

6.3.2. Unsupervised-Learning-Based Solutions

Kamel et al. introduced a generic RNN-based approach for the global detection of
Sybil attacks. This study investigates the four distinct consequences of a Sybil attack:
traffic congestion, data replay, DoS random, and DoS disruptive. OBUs and RSUs identify
misbehavior in vehicles in the first stage. They notify the misbehavior authority (MA) of
any malicious activities by sending misbehavior reports (MBRs). The objective of the MA
is to obtain a broad picture of what is going on in the world of vehicular nodes. The MA
carries out eleven different information checks and feeds these as input into an LSTM-
based RNN network that detects the correct type of Sybil attacks. The authors also use
an autoencoder algorithm to enforce feature compression in their work. They use the
OMNET++ simulator to analyze the performance of their suggested model, which has a
95% accuracy [162]. In [163], Tangade et al. suggested a trust model that uses deep neural
network models (DNN) to improve dependability while simultaneously lowering latency.
Each car in this model communicates with the vehicles around it, and this communication
is utilized to award points to each vehicle. Furthermore, the awarding of points to cars is
used to classify communications as either honest or dishonest, and it is subsequently used
in the computation of trust scores using deep neural networks. The message generated
by the vehicle is transmitted and received by the roadside unit, which authenticates the
source before using deep neural networks to determine reward points based on the driver’s
behavior. Using deep neural networks, the received message can be categorized as either
honest or dishonest, and the mediator’s trusted authority then calculates the vehicles’
updated trust score. The TensorFlow simulator and a network simulator (NS-3) were used
to test this model. In [164], Siddiqui et al. suggested another trust model that uses ML
to identify rogue vehicles in the vehicular network. Similarity, familiarity, and packet
delivery ratio are the three trust factors used in this model. This model clusters the data for
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label assignment using multiple unsupervised learning algorithms. Various supervised
learning techniques are used to classify cars as either honest or dishonest, and they also
aid in the acquisition of an ideal threshold. MATLAB was used to run simulations of the
suggested trust model. The authors in [142] proposed an approach to defend against DoS
attacks. The unsupervised deep learning choice is Deep Contractive Autoencoders. Using
mean square error and mean absolute error, they compare the real data with what was
predicted. The authors [165] presented a trust management strategy for VANETs that relies
on machine learning and active detection technology. The evaluation process assesses the
trustworthiness of vehicles and events in order to assure the reliability of communication.
The active detection method improves the filtering of malicious nodes, while the Bayesian
classifier identifies malicious vehicles. These references help to develop trust mechanisms
in vehicle networks, and future studies will concentrate on their practical application,
model improvement, and research of novel technologies to address new challenges.

6.3.3. Reinforcement-Learning-Based Solutions

In [166], the authors presented a proposal detailing their previous trust evaluation
method; this is another method that amalgamates the Q-learning algorithm and fuzzy logic.
Incorporating trust’s incertitude and vagueness is beneficial. The computation of direct
trust values is performed first through the use of a Q-learning algorithm, with fuzzification
of the indirect trust value, average time delay, and direct trust value being the second step.
They then obtained the final result by using the inference rules in a fuzzy logic system.
Simulation experiments were carried out in dissimilar settings. One can assimilate from
the experimental results that, in addition to this method supporting context awareness, it is
capable of resisting attacks and enhancing accuracy. However, the method’s support for
subjectivity was ambiguous, and data privacy protection measures were absent. An RL-
based obfuscation scheme helps enhance the privacy of the vehicle. The vehicle initiates
communication with the RSU, indicating its location coordinates and semantic location.
The information is used to assess the privacy level of the vehicle, its current state, and its
real location to update the Q-function. This approach’s main objective is to minimize the
vehicle’s privacy gain [167]. In [168], the TROVE model is proposed to authenticate and
evaluate the trust value of the sender. The authors created an RL model to set the evaluation
strategy for vehicles and decide how much to trust the current evaluation strategy based
on the information available. In [169], the authors propose an indirect reciprocal incentive
mechanism for VANETs. It attempts to reduce OBU attacks motivated solely by self-
interest by encouraging OBU cooperation. DRL is used to reduce the motivation for
attacks and make informed decisions. Simulations demonstrate superior performance in
comparison to conventional strategies. These references are intended to resolve emerging
challenges, improve the performance of trust mechanisms, and contribute to the practical
implementation and RL-proposed solutions for vehicular networks. The trust solutions
based on ML are shown in Table 4.
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Table 4. Trust solutions based on ML.

Citation Year Focused
Area

Solution
Technique

ML
Type Algorithm Attack Type Object

[155] 2018

Trust Machine
Learning

SL Bayesian neural
network Malicious node attacks

Extract relevant features from
the vehicular network for a

trust model

[156] 2019 SL XGBoost and RF Suspicious activity Detect suspicious activity

[157] 2020 SL KNN Fake position attacks Detect misbehaving nodes

[158] 2020 SL RF Four types of attacks Generated the trust factor

[159] 2020 SL NB Malicious node attacks Indicate the vehicles as trusted
or untrusted

[160] 2022 SL Metaheuristic Sybil attacks
To identify Sybil nodes and

protect messages from
Sybil attacks.

[161] 2023 SL KNN and SVM Insider attacks in IoV

By computing parameters and
identifying dishonest vehicles,

the aim is to accurately
evaluate trust

[162] 2019 UL RNN-based Sybil attacks The global detection of
Sybil attacks

[163] 2019 UL DNN Dishonest vehicle Classify communications as
either honest or dishonest

[164] 2019 UL Various UL models Dishonest vehicle Classify the cars as either honest
or dishonest

[165] 2022 UL Bayesian and active
detection methods Malicious nodes

Enhance the reliability of
communication through the

evaluation of the
trustworthiness of vehicles

and events.

[166] 2018 RL Q-learning Dishonest vehicle Capable of resisting attacks and
enhancing trust

[167] 2019 RL Q-learning Malicious node attacks Minimize the vehicle’s
privacy gain

[168] 2020 RL Q-learning Dishonest vehicle Evaluate the trust value of
the sender

[169] 2023 RL DRL OBU attacks
Reduce attack motives and
make informed decisions to
improve OBU collaboration.

Various researchers have proposed numerous security solutions and trust schemes
for securing and establishing trust in IoV. Figure 6 shows that ML-based solutions are
more widely used than traditional solutions for detecting malicious nodes and attacks in
IoV networks, and they are widely used to improve trust and security. The percentage
of each ML-type solution is depicted in Figure 7. The objective of supervised learning is
to predict training data dependencies and find the solution to the issue presented in the
data. Unsupervised learning utilizes unlabeled data to recognize patterns. RL improves
efficiency monitoring and provides real-time data on the performance of an advanced
system. RL uses trial and error to test a model in order to learn it. Data collection in certain
IoT contexts can be a problem. RL is able to produce its own dataset [76,170]. ML plays a
critical role in helping autonomous vehicles make informed decisions. Despite its strengths,
ML faces a range of challenges such as failure in the detection of attacks, wrongly classified
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objects, the recognition of driver monitoring patterns, vehicle theft, and compromised
functional safety [57,76,171,172].

Figure 6. Percentage of solutions based on traditional and machine-learning-based approaches.

Figure 7. Percentage of solutions based on three types of ML-based approaches.

6.4. Future Directions

There are numerous potential future avenues for addressing emerging challenges,
improving the performance of trust and security techniques, and contributing to the
practical implementation and development of provided solutions in vehicle networks.

6.4.1. Real-Time Testing

Testing in the actual world would be beneficial to extend the experiments to IoV
environments in the real world. Testing in the field can provide information about the
applicability of machine-learning-based security solutions in the real world and their
effectiveness in real-world vehicular networks [139,141–144]. Researchers can refine and
optimize algorithms to ensure reliability in real-world scenarios. Real-time testing also
informs adaptive models that learn and adapt to changing security threats. This iterative
technique improves ML-based security solutions for real-world vehicular networks.
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6.4.2. Unknown Attacks

It is essential to consider new or unknown attack types. The development of adaptive
machine learning models that can detect new attack patterns and constantly changing
threats to security in vehicle networks is a topic that could potentially benefit from further
exploration in the future [135,138]. In vehicle networks, the proactive detection of unknown
intrusions is a complex challenge requiring innovative approaches. For future research, it
is worth considering investing in the development of adaptive machine learning models.
This might lead to the development of security systems that are more resilient and adaptive,
able to handle developing threats in the connected vehicle environment.

6.4.3. Blockchains

In most IoV scenarios, blockchains can offer a wide variety of novel solutions. The ma-
jority of IoV scenarios involve the generation and interchange of a significant amount
of data, and the majority of conventional technologies are not suited for efficient utiliza-
tion in these types of scenarios. As blockchain research is still in its infancy, however,
the blockchain could enhance IoV’s trust, security, and privacy [165]. The use of blockchain
technology in IoV has great potential for protecting privacy. This is due to its privacy-
focused characteristics and the decentralized management of data. Future research should
focus on resolving issues with scalability, performance, and privacy to fully utilize these
advantages. It is essential to overcome these challenges to develop a secure and reliable
IoV environment.

6.4.4. IoV and Big Data

Since the IoT is expanding and huge amounts of data are being produced in vehicle
networks, researchers may investigate how these two technologies might be combined
in the future to enhance trust models and security solutions. Researchers may obtain
insights from vast amounts of data using IoV and Big Data, improving trust models
and security in connected vehicle networks. Big data analytics can improve vehicle real-
time communication reliability by developing adaptive trust mechanisms. By employing
machine learning to identify anomalies and potential intrusions, this combination helps
provide proactive security solutions. Combining IoV with big data could lead to more
secure, efficient, and reliable intelligent transportation systems.

6.4.5. Availability of Datasets

In order to further study and compare machine-learning-based security solutions in
IoV environments, it is essential to create and share open datasets that represent real-world
vehicular network scenarios [136,138].

7. Conclusions

The Internet of Vehicles presents a promising technology aimed at enhancing driving
comfort, improving energy management, securing data transmission, and preventing
road accidents. However, these advantages are accompanied by significant challenges,
particularly in the domains of security and trust. This survey discusses the critical role
of ML as a potent solution to address security concerns and trust management in an IoV
environment. We presented an overview of IoV and trust management, discussing security
requirements, challenges, and attacks. Additionally, we introduced a classification scheme
for ML techniques and surveyed IoV ML-based security and trust management schemes.
This survey highlights the significant role that ML technology can play in providing a secure
environment for the operations of IoV. Through an extensive study of diverse machine
learning methodologies and their practical implementations, such as supervised learning,
unsupervised learning, and reinforcement learning, we demonstrate the capability of
machine learning to effectively address security and trust challenges in IoV. ML technology
is increasingly recognized as an effective method for addressing the challenges posed by
malicious nodes and attacks on an IoV network when compared to conventional methods.
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In order to protect the safety and security of drivers and users within IoV dynamic and
interconnected environments, it is crucial to adopt modern technologies such as machine
learning. To improve trust and security, future work should focus on real-time testing,
resilience against unknown attacks, blockchain integration, IoV and big data management,
and expanded dataset availability.
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