Skip to main content
. 2024 Jan 19;12(1):87. doi: 10.3390/toxics12010087

Table 6.

Results for the AI models are reported for split 90–10. Each row represents a distinct AI architecture. The first of the three sections relates to the evaluation of the models on the external test set, the second assesses the model in training, and the third contains information on the encoder used.

Test Set Training Set
Balance Accuracy Precision Sensitivity Specificity MCC F1-Score Balance Accuracy Encoder
DNN Circular Fingerprint 0.746 0.527 0.672 0.819 0.454 0.591 0.870 Circular Fingerprint
DNN MACCS 0.700 0.446 0.638 0.762 0.358 0.525 0.737 MACCS fingerprint
DNN CDDD 0.808 0.539 0.828 0.788 0.542 0.653 0.836 Latent representation CDDD
DNN Molecular Descriptors 0.774 0.471 0.828 0.720 0.470 0.600 0.811 Molecular Descriptors
MPNN 0.746 0.527 0.672 0.819 0.454 0.591 0.741 Graph
NLP chars Embedding 0.780 0.551 0.741 0.819 0.510 0.632 0.753 Text Vectorization and character embedding
NLP chars Embedding Augmented 0.815 0.616 0.776 0.855 0.585 0.687 0.886 Text Vectorization and character embedding
Multimodal 0.808 0.592 0.777 0.839 0.564 0.672 0.830 All (no graph)
Extreme Gradient Boosting (best ML with oversampling methods) 0.742 0.605 0.600 0.883 0.485 0.602 0.921 Latent Description CDDD