
Citation: Klein, L.C.; Chellal, A.A.;

Grilo, V.; Braun, J.; Gonçalves, J.;

Pacheco, M.F.; Fernandes, F.P.;

Monteiro, F.C.; Lima, J. Angle

Assessment for Upper Limb

Rehabilitation: A Novel Light

Detection and Ranging

(LiDAR)-Based Approach. Sensors

2024, 24, 530. https://doi.org/

10.3390/s24020530

Academic Editors: Iulian I. Iordachita

and Paolo Gastaldo

Received: 8 December 2023

Revised: 29 December 2023

Accepted: 9 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Angle Assessment for Upper Limb Rehabilitation: A Novel
Light Detection and Ranging (LiDAR)-Based Approach
Luan C. Klein 1,2 , Arezki Abderrahim Chellal 1,3 , Vinicius Grilo 1 , João Braun 1,4,5 , José Gonçalves 1,6 ,
Maria F. Pacheco 1,6 , Florbela P. Fernandes 1,6 , Fernando C. Monteiro 1,6 and José Lima 1,4,5,6,*

1 Research Centre in Digitalization and Intelligent Robotics (CeDRI), Polytechnic Institute of Bragança,
5300-252 Bragança, Portugal; luanklein@alunos.utfpr.edu.br (L.C.K.); arezki@ipb.pt (A.A.C.);
viniciusgrilo@ipb.pt (V.G.); jbneto@ipb.pt (J.B.); goncalves@ipb.pt (J.G.); pacheco@ipb.pt (M.F.P.);
fflor@ipb.pt (F.P.F.); monteiro@ipb.pt (F.C.M.)

2 Department of Electronics (DAELN), Universidade Tecnológica Federal do Paraná (UTFPR),
Campus Curitiba, 80230-901 Curitiba, Brazil

3 School of Science and Technology, Universidade de Trás-os-Montes e Alto Douro (UTAD),
5000-801 Vila Real, Portugal

4 Faculty of Engineering, University of Porto (FEUP), 4200-465 Porto, Portugal
5 Institute for Systems and Computer Engineering, Technology and Science, INESC TEC,

4200-465 Porto, Portugal
6 Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de

Bragança, 5300-252 Bragança, Portugal
* Correspondence: jllima@ipb.pt

Abstract: The accurate measurement of joint angles during patient rehabilitation is crucial for
informed decision making by physiotherapists. Presently, visual inspection stands as one of the
prevalent methods for angle assessment. Although it could appear the most straightforward way
to assess the angles, it presents a problem related to the high susceptibility to error in the angle
estimation. In light of this, this study investigates the possibility of using a new approach to angle
calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data
with point cloud information. This method employs AI-driven techniques to identify the individual
and their joints, utilizing the cloud-point data for angle computation. The tests, considering different
exercises with different perspectives and distances, showed a slight improvement compared to using
YOLO v7 for angle calculation. However, the improvement comes with higher system costs when
compared with other image-based approaches due to the necessity of equipment such as LiDAR and a
loss of fluidity during the exercise performance. Therefore, the cost–benefit of the proposed approach
could be questionable. Nonetheless, the results hint at a promising field for further exploration and
the potential viability of using the proposed methodology.

Keywords: join angle measurement; Artificial Intelligence; motion capture; LiDAR; robotic
rehabilitation

1. Introduction

The measurement and identification of the patient’s Range of Motion (ROM) is an
essential element for assessing and diagnosing shoulder pathology on one hand but also, on
the other hand, a pivotal point to monitor the reliability of the rehabilitation procedure [1].
Different methods are applied to assess rehabilitation procedures, including clinical assess-
ments [2], imaging techniques [3], and wearable devices [4].

The current standard in medical practice for assessing a patient’s angles relies on visual
inspection, which is often regarded as an approximate method and can be complicated due
to the dynamic nature of the patient’s mobility throughout the rehabilitation process [5,6].
Some studies have shown that visual examination can present errors up to 10º [7] and
concluded that they have poor reliability [8]. An alternative solution includes using a
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goniometer [5]. However, this tool has a high level of variance and is often difficult to use
because professionals are not familiar with its use [8,9].

On this basis, there is a necessity for new approaches that provide more accurate esti-
mates. Some studies have been developed to bring considerable improvement, for example,
using images. However, there is still room for improvement, and the possibility of using
more precise sensors than images is an interesting option.

The present work is a preliminary study on the feasibility of using Light Detection and
Ranging (LiDAR) for joint angle estimation in rehabilitation. This new approach uses an
Artificial Intelligence (AI) framework that enables pose detection in an image, and by fusing
image and point cloud data, the system can better estimate the angle between the joints.
Therefore, this study aims to contribute with a more accurate method to calculate the angles
during rehabilitation sessions, as facilitated by a robotic arm and controlled by SmartHealth
software 0.0.9 [10,11]. The presented results aim to assess the effectiveness and reliability
of the proposed method in robotic rehabilitation and its limitations for different views
and distances.

In addition to this Introduction, this paper is divided as follows: Section 2 presents
related works. Section 3 outlines the methodology for exploiting LiDAR point clouds
for angle detection in SmartHealth software. Section 4 highlights the obtained results
and offers some details for additional discussion. Finally, Section 5 provides a general
conclusion about the work and the proposition of future developments that will enhance
this study.

2. Related Work

Throughout this section, a non-exhaustive exploration of the techniques employed for
the detection of a person’s angles in the medical environment is carried out. It has been
observed that there is a general trend towards the use of AI for remote wireless solutions
and Inertial Measurement Units (IMUs) as a wearable solution.

2.1. Artificial Intelligence and Depth Cameras

A large majority of the works cited mention the application of AI for this purpose,
for instance. A squat angle assessment technique was investigated in the study presented
in [12], and a mean absolute error (MAE) of 8.64° was reported. Based on a single RGB cam-
era placed in front of the subject, the system continuously provided the angle of the subject’s
knee at a rate of 25 frames per second (FPS). The training was carried out using two cameras,
one at the front and the other at the side. The actual angle used to train the algorithm
was deduced offline using an algorithm that was not mentioned. CHHOEUM et al. [13]
introduced a Convolution Neural Network (CNN) designed to assess knee joint angle
based solely on mapping foot pressure. Three types of footwear were involved in the exper-
imentation. The algorithm’s performance was evaluated by comparing the results obtained
from reflective markers auto-tracked using Kinovea software. The reported accuracy of
this system comprises was 70% to 90%.

In another study [14], a system consisting of two RGB-D cameras was employed
to ascertain the three-dimensional (3D) positions of the subject’s joints. While the study
did not explicitly mention the implementation of AI, it is reasonable to infer its applica-
tion, given that the estimation of joint position typically involves computer vision and AI
methodologies. The performance of this system was juxtaposed with that of a photonic-
based optical fiber (POF) system and an IMU system. The investigation revealed that
non-portable systems still exhibit notable errors in motion analysis and subsequently
proposed post-processing techniques to mitigate these inaccuracies. Hii, Chang Soon
Tony et al. [15] conducted a comparative analysis of different pose-estimation techniques
for lower limb and gait rehabilitation, including OpenPose, Mediapipe, and MMPose, em-
ploying two cameras positioned alongside the test pathway. The study relied on reflective
markers to establish reference angles, and subsequent computations were executed through
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the Quintic Biomechanics software. It was concluded that Mediapipe was suitable for this
case study.

The authors also investigated, in a previous study [16], the application of AI in this
application area. The results of two vision-computer approaches, Mediapipe and YOLO
v7, were compared. The study concluded that YOLO v7 could be applied to this type of
application, where errors of less than 8° (and 5° on average) were observed for the exercises
studied. In contrast, Mediapipe performed poorly, with errors of up to 25° for most of the
exercises studied.

2.2. IMUs

A strong tendency to use IMUs for angle estimation has also been observed. In [17],
a smartphone application using the smartphone’s built-in sensors was proposed to esti-
mate the angle of subjects. This tool was tested both in a controlled environment and a
real environment. The reported results showed low assessment errors. Another study
in [5], focusing on the lower limb, proposed a Machine Learning (ML) technique for angle
assessment of IMUs’ output data. An investigation of applying one or a combination of
two IMUs has been proposed to capture the subject’s angle evolution. A CODA motion
capture system is also applied as a ground truth. The results indicate no differences be-
tween the usage of one and two IMUs, with a reported Root Mean Square Error (RMSE) of
4.81°.

In [18], a wireless sensor network based on two Shimmer devices is reported to monitor
the patient’s movement in real time; these IMUs; network accuracy is briefly compared
with a goniometer, with a difference between the two measurements reaching no more than
3°. Lee, Wang Wei, et al. [19] also proposed a wireless system composed of seven sensor
nodes in direct communication with a central smartphone application. Clinical trials of
this system have been reported in [20]; 19 healthy subjects and 20 disabled patients have
participated in the study, where the system has been compared with a goniometer. A high
correlation between the goniometer and the system has been reported.

Alternatively, research reported in [21,22] has proposed a wearable solution based
on liquid metal sensors to capture the angle and general motion of the ankle complex.
The study’s findings affirm a high confidence level in the results obtained from the device,
with an RMSE of up to 3.16°, compared to a 3D motion capture system used as ground
truth. Another approach, described in [23], proposes the application of a flexible polymer
fiber (POF) optic sensor to assess the angle of the human joint. Tests were carried out on
the elbow and knee joint with an RMSE of 1.5°.

Other research teams propose a fusion between systems, for example, in [24], where
a hybrid system combining POF and IMU for lower limb assessment was presented.
The angular velocity measured using the BN055 gyroscope is used to compensate for the
hysteresis effect of the POF sensors, and the data obtained from both sensors are merged
and filtered using a Kalman filter. The angle estimated using the device was compared
with the encoder of an exoskeleton used for gait rehabilitation, resulting in an RMSE of less
than 4°.

To the best of the authors’ knowledge, only one ongoing study proposes the application
of a LiDAR camera for angle assessment. As of the time of writing, this study remains
unpublished and is currently undergoing review, with further details available in [25]. This
study harnesses a fixed LiDAR camera with Cubemos and Mediapipe for human joint
estimation. The approach was validated by comparing the results obtained from a Mocap
system. Thirteen participants assessed a single exercise. The preliminary study findings
highlight the effectiveness of Cubemos over Mediapipe, as it yields an MAE of less than
10°. Nevertheless, the proposed system exhibits limitations when capturing movements
directed toward the camera. This limitation underscores the importance of optimal camera
positioning for accurate angle assessment.
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3. Methodology
3.1. Data Collection

In order to collect data, an Intel RealSense D415 RGB camera was employed, synchro-
nized with an RS16 LiDAR (Manual available at: https://cdn.robosense.cn/20200723161715
_42428.pdf, accessed on 10 December 2023). Both of these devices were attached to the Uni-
versal Robot 3 (UR3) robotic arm (Manual available at: https://s3-eu-west-1.amazonaws.
com/ur-support-site/32341/UR3_User_Manual_en_E67ON_Global-3.5.5.pdf, accessed on
12 December 2023), as depicted in Figure 1, which shows the system implementation.

x g
y g z

xL

L

yL

Ground Truth

z

g

LiDAR

RGB
Camera

UR3

Computer

Figure 1. Proposed system, representing the different coordinate frame.

Specific software was developed to ensure synchronized interaction between the
sensors mentioned above and the robot. It was also responsible for gathering and saving
the collected data. The code was programmed in Python 3.8.10, with OpenCV 4.8.0, Ubuntu
20.04, and the Robot Operating System (ROS) Noetic.

In summary, the RS16 LiDAR and the D415 Camera had their respective topics on
the ROS, where they continuously published the gathered data. Another function was
responsible for reading the topics and saving the data. In addition, the same software
was responsible for connecting to the UR3 and obtaining its current position. With all the
information, it was possible to save the data systematically. To ensure the synchronization
between all the data, it was only saved when all the data were available; i.e., the image,
the point cloud, the robot pose, and the IMU data were all available simultaneously.

As the RS16 LiDAR is a 360° sensor, its capacities were limited to capturing only the
participant’s movement. An angular span, ±φmax, was chosen as ±18°, with a maximal
detection distance of 4.8 m.

https://cdn.robosense.cn/20200723161715_42428.pdf
https://cdn.robosense.cn/20200723161715_42428.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/32341/UR3_User_Manual_en_E67ON_Global-3.5.5.pdf
https://s3-eu-west-1.amazonaws.com/ur-support-site/32341/UR3_User_Manual_en_E67ON_Global-3.5.5.pdf
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The camera was strategically positioned atop the LiDAR to ensure that both instru-
ments captured coinciding data fields. Even though minor discrepancies between their
data might occur, this arrangement facilitates easier data integration. The LiDAR was
oriented vertically to optimally utilize its 16 light beams, enhancing the detection of the
patient. For comprehensive participant identification, both the LiDAR and the camera were
mounted on the UR3. This setup allowed the UR3 to execute solely horizontal motion,
shifting between −0.3 m to −0.1 m on the x-axis during the data acquisition. Figure 2
depicts the system’s implementation and highlights the overall relation between each
used component.

LiDAR

Ground 
Truth

LiDAR Detected
Points

1
2

3
4

Camera UR3

AI Detected
Joints

A B

Wireless
Direct / Cable
Camera FOV
LiDAR FOVs

x

y
z

xLyL

zL

Figure 2. Example of the position of the sensors and the patient during the data collection. (A) LiDAR
field of view. (B) Camera field of view.

The designated points from (1) to (4), outlined in the previous figure, correspond to the
link between the system’s component and the computer. They can be defined as follows.

1. Corresponds to the data collected and transferred from the ground truth to the com-
puter. This communication operates via Bluetooth. The data related to the angle of the
joint used in the movement are sent as a character string and subsequently archived
within a designated .txt file for later analysis.

2. Corresponds to the images captured by the RealSense camera. These images are saved
in the .jpg format, allowing for convenient access and reference throughout the study.

3. Corresponds to the point cloud captured by the RS16 LiDAR and sent to the computer.
The raw point cloud data are saved in a structured .bag format.

4. Associated with the communication between the robotic arm and the computer,
the data sent represent the position of the robot by encompassing six parameters
(x, y, z, θx, θy, θz), which represent the end effector’s position. The data are sent as
a character string via a Transmission Control Protocol/Internet Protocol (TCP/IP).
The data are stored upon receipt in a dedicated .txt file.

3.2. Data Processing and Angle Calculation

Several steps were required to obtain the value of the angle. Figure 3 presents the
flowchart of the needed steps, starting with the data collection, which was explained
before, and finishing with the angle calculation. Each step is detailed in sequence, giving
further details.
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Figure 3. Flowchart of the proposed approach.

3.2.1. Fuse the Points in the Point Clouds

Once the data were available, i.e., once the data were collected, the first processing
step was the fusion between different point clouds. Initially, it is necessary to rotate the
point clouds and the images collected since the LiDAR and the camera are rotated by a 90°
angle during the collection. To perform the rotation of the point cloud, the YL and ZL axes,
related to the LiDAR frame as presented in Figure 1, were mutually swapped.

In sequence, since several collections were performed for the same person’s pose, it
is necessary to merge all the point clouds into only one. The fusion methodology was
to select a reference to the measurements and make the fusion of all the other measure-
ments based on the reference. In practical terms, the process was as follows. Select
the first measurement as a reference, and, through an interactive loop, make the fusion
measurement-by-measurement, adding a horizontal offset defined by the horizontal dis-
tance between the first measurement and the other measurements (collected from the
robot’s position, which was holding and moving the LiDAR and the camera). For instance,
the measurement at iteration n is selected as the reference. Measurement n + 1 is merged
with the reference with a horizontal offset, measurement n + 2 is merged with the previous
measurement (n + 1) at another horizontal offset, and so on until measurement n + 10. This
process is illustrated in Figure 4, where Figure 4A represents the cloud point related to the
first measurement; Figure 4B the n measurement merged with n + 1; Figure 4C the merge
between measurement n, n + 1, n + 2; Figure 4D the merge of n, n + 1, n + 2, n + 3; and,
finally, Figure 4E the final merge between all the 11 measurements (n, n + 1, . . . , n + 10),
where a different color represents each one. The choice to use 11 measurements was due to
the whole range of the data collection; i.e., a complete horizontal movement of the UR3
was defined to collect 10 measurements. However, due to delays, in some cases, 11 were
collected. So, the choice was to use 11 because if the collection achieved 11 measurements,
all those could be used, and if only 10 were collected, using 11 meant that one of the
measurements was replicated. However, this was not a problem because the points could
only be overlapped without impacting the approach.

A B C D E

Figure 4. Example of the LiDAR measurement process merge: (A) the initial measurement, (B) the
fusion between the initial measurement and the second, (C) fusion with the third measurement,
(D) fusion with the fourth, and (E) the final fusion of the points cloud, with each color representing
one measurement.
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3.2.2. Identify the Person in the Image

The second processing step is the person’s identification in the image. The tool used for
identification was YOLO v7, which is one of the state-of-the-art tools in object detection in
images [26]. The pre-trained model with the weights used in this work is called yolov7-w6-
pose.pt (https://github.com/WongKinYiu/yolov7, accessed on 7 October 2023), which is
the same used in the previous work of the authors [16]. With this framework, a bonding box
was defined around the person, with the position of the edges defined in pixels. With these
edges, it was possible to define the size of the person (height and width) in pixels. It is
important to emphasize that since the data collection with the LiDAR only collected data
from the upper part of the body, as presented in Figure 4, the person detection was also
adjusted to identify only the upper part of the body. So it was empirically defined which
part of the image should be considered and which should not, and then, to the person’s
identification with YOLO v7, a black rectangle was put over the image to hide the part
of the body that LiDAR did not collect. Later, after the person’s identification, the black
rectangle was removed. An example of person identification using the YOLO v7 framework
is presented in Figure 5, where a green rectangle was drawn around the upper part of
the person.

Figure 5. Example of person identification using YOLO v7.

3.2.3. Fit the PointCloud in the Person Identified

In sequence, a copy of the point cloud was performed, and the depth of the points
was unconsidered; i.e., at this moment, all the points were in 2D. The points were resized
according to the person’s size: the height of the point cloud must be the same as the
person in the image and the same for the width. This was carried out by encountering
the proportion between the sizes (point cloud and person), and the position of the points
in the point cloud was multiplied by the defined proportions. Once both had the same
size, the point cloud was fitted on the image to be on the person at the same position.
An example of this is presented in Figure 6, where the white points are the point cloud
in 2D, with the adaptation to fit in the person on the image. It is important to emphasize
that they may be flawed, as the person identification may present limitations. Indeed, it
has been observed that for some images, certain parts of the body, such as the hand, may
be ignored.

https://github.com/WongKinYiu/yolov7
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Figure 6. Example of the point cloud fitting in the person on the image.

3.2.4. Identify the Person’s Joints

The following step is the person pose identification, aiming to identify the body’s
joints. Through the YOLO v7 application, the framework returns the position of each joint
in pixels. The procedure applied to this was similar to the one present in [16].

3.2.5. Identify the Nearest Point of Each Joint

Once the joint position is known in a pixel, the system searches for the nearest points
for each joint in the point cloud. The Euclidean distance was considered, and in a 40-pixel
radius, the closest 10 points were selected. If fewer than 10 points were within this radius,
all available points were selected. The choice of these values was made empirically. Since
the objective of this study is only to validate the possibility of using the proposed approach,
these values can be further explored in future works, aiming to find an optimal value and
improve the quality of the estimations.

3.2.6. Obtain the Original Value of Each Point Identified

Once the points were defined, they were described according to the index, and through
the index, the original points in the point cloud were obtained. An example of the joint
identification and point definition is presented in Figure 7, where the white points are the
point cloud, the green points are related to the right wrist, the red points are related to the
right shoulder, and the blue points are related to the right hip.

Figure 7. Example of the joints identified in the person. Green points related to the right wrist. Red
points related to the right shoulder. Blue points related to the right hip.
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3.2.7. Calculate the Angle with the Original Values

Upon the point selection related to each joint and the respective recovery of their origi-
nal values, each joint’s mean coordinates were calculated, yielding a singular representative
point denoted by coordinates (x, y, z), referred to as the centroid. This centroid, in turn,
serves as the basis for further computations involving angular measurements through the
application of a defined mathematical formula as follows:

θ = arccos
(

BA · BC
‖BA‖ · ‖BC‖

)
, (1)

where A, B, and C are the centroids of each joint; BA = (xa − xb, ya − yb, za − zb) is the
vector with endpoints points A and B; and BC = (xc − xb, yc − yb, zc − zb) is the vector
whose endpoints are C and B.

Figure 8 presents an example of execution of the elbow flexion exercise (R7), which will
be explained further in Section 3.3, considering a distance of 4 m and a oblique perspective.
Each column represents one pose performed during the exercise, with the first row showing
the participant’s picture, the point cloud fitted on the person, and the colored joint points.
The second row shows the original point cloud in 3D.

Figure 8. Example of joint identification, with the equivalent fitted point cloud for the elbow
flexion (R7) at a 4−m distance and an oblique view: (.1) at a 130° angle; (.2) at a 96° angle; (.3) at a
70° angle. (A) The points marked in green, red, and blue correspond to the shoulder, elbow, and
wrist, respectively. (B) colors represents distinct data captured by the LiDAR at different iteration.

3.3. Rehabilitation Exercises

The arm is a complex part of the human body, composed of several joints, including
the wrist, elbow, and shoulder. Each joint is composed of several rotation axes, enabling the
different movements of the arm. In the rehabilitation process, the exercises are performed
in countless repetitions, aiming to exercise and develop the movement of the joint to be as
natural as possible. Further details about these exercises are out of the scope of this study,
and interested readers are referred to the following references [16,27].

The subject was positioned in front of the LiDAR, at distances of 3, then 4 m, as pre-
viously represented in Figure 2. Three exercises were performed for this study by only
one healthy human test subject, utilizing his right arm. During the trials, the participant
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performed several poses, both in a frontal view (Figure 9), a lateral view (Figure 10), and an
oblique view (such as in Figure 8). Figure 9 demonstrates the targeted human joint for
this study.

R7

RA

RF

A B C

Figure 9. Demonstration of the three performed exercises in frontal view, with the targeted rotation
joint. (A) Shoulder abduction (RA), (B) shoulder flexion (RF), (C) elbow flexion (R7), and (•) targeted
rotation joint.

The exercise depicted in Figure 9A represents the shoulder abduction movement
relative to the RA rotation axis. The subsequent test shown in Figure 9B might seem similar
to the previous one. However, it is based on the shoulder flexion exercise, a movement
related to the RF rotation angle. The last targeted movement (Figure 9C) represents elbow
flexion (R7), with the center axis located in the elbow. All of the exercise representations
above demonstrate the Point of View (POV) of the camera and are referred to in this study
as the frontal view. According to the proposed system, the same test series is also performed
in a lateral view, as demonstrated in Figure 10, and in an oblique view.

RA RF

R7

A B C

Figure 10. Demonstration of the three performed exercises in lateral view. (A) Shoulder abduction
(RA), (B) shoulder flexion (RF), and (C) elbow flexion (R7).

For each of the targeted exercises, the participant proceeded as follows:

• The participant initiated the exercise by moving their hand;
• He aimed to maintain a relatively fixed position;
• The participant waited for several cycles to complete the robotic arm’s movement;
• After the cycle concluded, the participant moved their arm to another position for

further assessment.

This approach offers the possibility of investigating LiDAR’s capabilities and limita-
tions in a continuous and discontinuous subject motion. The limitation encountered will be
further discussed in the Results and Discussion section.



Sensors 2024, 24, 530 11 of 23

3.4. Ground Truth System

In order to assess the quality of the results obtained throughout the proposed ap-
proach, it was necessary to obtain the real value of the angle during the execution of the
exercise. These real values are called ground truth values and will be used as the reference
to the results obtained through the proposed approach. To obtain the real values with a
high level of confidence, an external measurement method was developed, and this section
presents further details about it. Once the system was developed, it was executed in parallel
to the data collection with the LiDAR in all exercises performed: shoulder abduction (RA),
shoulder flexion (RF), and elbow flexion (R7). Once the angle values from the ground truth
and the proposed system were obtained, the metrics for the evaluation were calculated (the
details about the metrics and the evaluation method are presented in Section 4). The ground
truth system developed consists in a device that was developed based on Bosch’s BNO055
IMU (manual available at: https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS0
00_12.pdf, accessed on 25 November 2023). The device was developed using an ESP32,
the IMU sensor previously mentioned, and a pair of 18,650 batteries to power the system.
The communication between the device and the computer that collected the data was via
Bluetooth, as depicted in Figure 2.

The IMU used contains three motion sensors (gyroscope, accelerometer, and mag-
netometer) and a microcontroller running an algorithm that fuses the sensors, filters out
unwanted measurement noise, and communicates with external devices, such as other
microcontrollers. Unlike other commercial sensors, the algorithm for fusing and processing
the sensor signals must be implemented on the system’s main microcontroller. This brings
an advantage to the system since the algorithm embedded in the sensor was developed
by the manufacturer and is adapted and developed, especially for this model. Figure 11,
shows the wearable IMU attached to the UR3.

x
y

z
g

g

g

Elbow joint

θ

Figure 11. Wearable module attached to the UR3 with its reference coordinate frame and the coordi-
nate frame selected for θ calculation.

To assess the ground truth accuracy, the device was compared along the UR3 robotic
arm. The UR3 is a versatile arm that performs the movement with minimal errors, making
the ground truth validation process more cohesive [4]. The accelerometer was attached to
the arm shown in Figure 11. Only the robotic arm elbow joint was set to move. The robot
performed a sinusoidal movement first, from 0° to 90°, at the maximum robot speed. Then,
the robot moved from 0° to 90°, stopping at some angle (20, 30, 50, 70) for 5 s. Figure 12
compares the robot’s current elbow angle along the proposed ground truth measurement.

https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://cdn-shop.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
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Figure 12. UR3 joint movements compared to the angle measured using the IMU.

It can be observed from the above figure that the fitting between the two measures.
An MAE of 1.55° has been computed, which makes the proposed IMU a viable system to
be applied as a ground truth. However, limitations must be pointed out, as it is critical to
position the sensor perfectly in alignment with the arm and ensure that it remains fixed
throughout the tests.

4. Results and Discussion

Following the data-collection procedure for the exercises presented above, the data
were processed, and the results are presented in the following section. Each sub-section
refers to a type of exercise. The system’s effectiveness was tested from different perspectives
(frontal, lateral, and oblique views) and different distances (3 and 4 m).

Three approaches were compared, YOLO v7, as well as two other approaches proposed
in this study:

• LiDAR + AI Simple (LiDAR + AI S), using YOLO v7 for participant identification,
coupled with data collected using LiDAR by a single measurement.

• LiDAR + AI Full (LiDAR + AI F), similar to LiDAR + AI S, but using 11 measurements
to obtain an ideal mapping of the subject’s arm.

In the following section, several graphics are provided with the aim to evaluate
the efficiency of the studied approaches, organized according to the performed exercises
(shoulder abduction (RA), shoulder flexion (RF), and elbow flexion (R7)). Each graphic
presents six plots organized in two lines and three columns. The first line presents the
results at a 3-m distance, while the second line presents the results at a 4-m distance.
The columns from left to right indicate the results acquired at frontal, oblique, and lateral
views. The abscissa indicates the number of iterations the approaches underwent, where
one iteration indicates one sample taken from the approaches. In addition, the ordenada
values are represented in degrees. It is important to note that the data-acquisition sampling
frequency was set to approximately 10 Hz.

In the plots, the blue line series denotes the ground truth of the arm angle, and the
former system was elaborated in Section 3.4. The YOLO v7 and the study’s proposed
frameworks (LiDAR + AI S and LiDAR + AI F) are represented by the yellow, purple line
series and the black x’s, respectively. As previously mentioned, each subplot’s distinctive
black x’s denote the second proposed framework executed with eleven sampling itera-
tions. This representation was chosen due to the discontinuities of estimating at every
eleventh iteration.

In addition, for a comprehensive understanding of the LiDAR + AI S method, the graph-
ical representation reveals a distinct grey dotted line, denoting the calculated average of
predicted points generated, calculated for each angle step separately.

Moreover, some metrics are necessary to evaluate the quality of the approaches and
enable a comparison between them in terms of estimating angles. A combination of MAE
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and RMSE is suggested to evaluate the estimations [5]. In addition to these, other metrics
can also be used to contribute to the system’s evaluation, such as Mean Absolute Percentage
Error (MAPE), Normalized Root Mean Squared Error (NRMSE), Sample Standard Deviation
(STD), and R2 [28]. These metrics were computed by applying the sklearn.metric (version
1.2.1) library. On the other hand, the Numpy (version 1.23.5) was also applied to calculate
the sample standard deviation. The results can be consulted in Appendix A.

4.1. Shoulder Abduction (RA)

Figure 13 presents the summary of results from the shoulder abduction exercise,
with the angle estimated using the YOLO v7 and the LiDAR approaches, compared to the
ground truth.
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Figure 13. Shoulder abduction (RA) results with three approaches compared to a ground truth
reference at 4 and 3 m distances. (Green) Frontal View. (Blue) Oblique view. (Orange) Lateral view.

In the frontal view scenario, it is evident that optimal results were acquired at a 4-m
distance. YOLO v7 demonstrated impressive performance, achieving an MAE of 3.58°,
an RMSE of 4.07°, and an STD of 2.00° at 3 m. This performance is further elevated at a 4-m
distance, with an MAE of 0.98°, an RMSE of 1.26°, and an STD of 1.17°. The LIDAR + AI S
and LIDAR + AI F models also exhibited precise angle estimation. For instance, at a 4-m
distance, they report MAEs of 4.42° and 2.68°, RMSEs of 5.00° and 2.77°, and STD values of
3.47° and 2.49°, respectively.

Both the proposed approaches excel for the oblique view, with a slight advantage
observed at 3 m. In this scenario, the LiDAR + AI S consistently provided angle estimation
within a range of ±6°, while the LiDAR + AI F the range was ±4°. At 4 m, the LiDAR + AI
F provided a satisfactory accuracy ranges of 2.41° ± 2.39°.

All approaches provide relatively low MAE, RMSE, and MAPE values for both the
frontal and oblique views, indicating good accuracy. However, a different scenario unfolds
in the lateral view, where all approaches encounter challenges in accurately tracking angles
during lateral movements. In this regard, none of the approaches can be proposed as a
valuable method. Figure 14 provides a summarized representation of the MAE, mean,
and STD for all of the investigated tests related to RA rotation.
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Figure 14. MAE, mean, and standard deviation for the RA rotation angle with different views and
distances . (Green) Frontal View. (Blue) Oblique view. (Orange) Lateral view.

4.2. Shoulder Flexion (RF)

Figure 15 offers an overview of the obtained results for the shoulder flexion (RF) rotation.
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Figure 15. Shoulder flexion (RF) results with three approaches compared to a ground truth reference
at 4 and 3 m distances. (Green) Frontal view. (Blue) Oblique view. (Orange) Lateral view.
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When analyzing Figure 15, which represents the results according to the shoulder flex-
ion (RF), one can note that the LiDAR + AI F, in general, outperforms the other approaches
in terms of MAE, RMSE, and MAPE at a distance of 3 m. At the same time, LiDAR + AI S
has metrics where it outperforms the other approaches at a 4-m distance. As for the oblique
and lateral views, the same observation is made, where the LiDAR + AI F outperforms the
other methods consistently. The other proposed approach, LiDAR + AI S, has some metrics
that perform better than the third-party approaches and others that underperform them.
Figure 16 provides a summarized representation of the MAE, mean, and STD for all of the
investigated tests related to RF rotation.
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Figure 16. MAE, mean, and standard deviation for the RF rotation angle with different views and
distances. (Green) Frontal view. (Blue) Oblique view. (Orange) Lateral view.

4.3. Elbow Flexion (R7)

With its three perspectives, the last exercise is represented in Figure 17, wherein the
frontal view, LiDAR + AI F, and YOLO v7 approaches perform better by a significant range
against the other approach despite the distance. Regarding the isometric view, the proposed
approaches perform consistently better than the other approach, whereas, in some metrics,
the LiDAR + AI S performs better. In others, the LiDAR + AI F performs better. Finally,
the worst performance for all tests and exercises is once again the lateral view for the
elbow flexion. This is expected where the least number of informative data can be acquired,
i.e., most of the acquired data are ambiguous, increasing the error metrics.
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Figure 17. Elbow Flexion (R7) results with three approaches compared to a ground truth reference at
4 and 3 m distances. (Green) Frontal view. (Blue) Oblique view. (Orange) Lateral view.

Figure 18 provides an overview of the Mean, MAE, and STD for each approach at
different distances and views.
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In addition, the overall algorithm accuracy for all the approaches, distances, exercises,
and views (excluding lateral view) was investigated. The error distribution was obtained
and is shown in Figure 19.
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Figure 19. Histogram, probability plot, mean, MAE, and standard deviation of errors for the dif-
ferent approaches, computed with the data from all the exercises, views, and distances (excluding
lateral view).

Based on the comprehensive test results, it is evident that the distance does not signif-
icantly influence the quality of results obtained with the YOLO v7 approach. In con-
trast, for the LiDAR + AI S approach, observations reveal a nuanced impact of dis-
tance, with marginally improved results at a 3-m distance compared to a 4-m distance in
most scenarios.

Moreover, substantial variations in accuracy become apparent across different viewing
angles and test conditions, particularly for the LiDAR + AI S approach, where a higher
degree of variance is observed during elbow flexion. This variance can be attributed to the
relatively lower probability of detecting points in a single iteration. However, the LiDAR +
AI F approach remains unaffected by this variation due to its ability to perform a complete
arm scan, consequently enhancing prediction quality.

A noteworthy observation is the resemblance between the approaches. In the best-case
scenarios, the LiDAR approach exhibits a minimal advantage over YOLO v7, with an
angular difference of less than 1° in frontal views. Conversely, LiDAR-based approaches
consistently outperform YOLO v7 when considering oblique views, with the LiDAR +
AI F approach particularly noteworthy for consistently predicting angles below 10° in
most cases.

5. Conclusions

This study aimed to investigate the feasibility and the potential application of a LiDAR-
based approach dedicated to upper-limb angle detection. Both of the proposed approaches
involve the collection and utilization of point cloud data from a LiDAR device. Subse-
quently, a Machine Learning technique and its various joint points are applied for subject
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identification. The point cloud data are then integrated into the person. The corrected joint
coordinated is then utilized to calculate the targeted joint.

A ground truth system was concurrently developed to facilitate the assessment of the
proposed approach’s accuracy. In addition, both approaches were also compared to YOLO
v7, which has already demonstrated good abilities in this matter. In total, 18 different
poses were evaluated, encompassing three exercises (RA, RF, and RF) from three different
perspectives (frontal, oblique, and lateral views) and at two different distances (3 and 4 m).

One notable observation from the results is the slight enhancement of prediction
accuracy, achieved by utilizing multiple measurements (LiDAR + AI F) for the different
performed rotations, especially at an oblique view. However, this slight increase in accuracy
comes at the cost of a decrease in prediction fluidity, where the approach requires 11
iterations for prediction. This leads to a more discontinuous process that requires the
person to remain in a fixed position during data acquisition. The LiDAR + AI S also showed
promising results for RA and RF, where there are higher chances to encounter the hand at
any iteration, in contrast with the R7 where, in some iterations, not enough body points are
captured with the LiDAR, thus increasing variance.

Undoubtedly, both of the proposed approaches introduce innovative methods for
wireless angle calculation. However, it is essential to acknowledge certain drawbacks
associated with the proposed approach. The primary concern pertains to the system’s costs,
as the LiDAR sensor considerably increases the overall system cost, making it much more
expensive than the YOLO v7 sole requirement of a standard camera.

A further in-depth investigation could explore alternative frameworks for person and
joint identification, as well as the incorporation of vertical, angular, and in-depth robot
movement for a complete person scan. Furthermore, the normal distribution depicted in
Figure 19 not only underlines the robustness of our experimental results but also paves
the way for potential improvements, where it might be considered a fusion between the
LiDAR + AI S approach and the YOLO v7’s output angle prediction to further improve
estimation quality.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-Dimensional
AI Artificial Intelligence
CNN Convolution Neural Network
FPS Frames per Second
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging
MAE Mean Absolute Error
ML Machine Learning
NRMSE Normalized Root Mean Squared Error
POF Photonic-based Optical Fiber
POV Point of View
RMSE Root Mean Squared Error
ROM Range of Motion
ROS Robot Operating System
STD Standard Deviation
TCP/IP Transmission Control Protocol/Internet Protocol
UR3 Universal Robot 3

Appendix A

Appendix A.1. RA Shoulder Flexion

Table A1. Results of the RA shoulder flexion—frontal view.

RA—Frontal View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 3.58 3.07 3.57 0.98 4.42 2.28

RMSE [°] 4.07 4.26 4.64 1.26 5.00 2.77

NRMSE 0.03 0.03 0.03 0.01 0.04 0.02

MAPE [%] 7.71 5.52 5.99 2.23 11.23 5.73

Mean [°] 3.54 1.14 2.70 0.46 −3.59 −1.21

STD [°] 2.00 4.10 3.78 1.17 3.47 2.49

Table A2. Results of the RA shoulder flexion—oblique view.

RA—Oblique View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 4.30 3.29 1.78 9.70 5.68 2.41

RMSE [°] 5.24 4.40 2.34 10.44 7.21 2.97

NRMSE 0.05 0.04 0.02 0.09 0.06 0.02

MAPE [%] 10.52 8.70 7.57 21.87 10.46 6.69

Mean [°] 0.85 −1.66 −0.28 4.95 −3.91 −0.51

STD [°] 5.17 4.07 2.32 9.19 6.06 2.93
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Table A3. Results of the RA shoulder flexion—lateral view.

RA—Lateral View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 44.81 35.98 35.69 35.28 27.51 23.47

RMSE [°] 49.05 41.32 39.94 39.05 32.63 28.90

NRMSE 0.38 0.32 0.35 0.28 0.23 0.20

MAPE [%] 72.35 58.45 63.98 61.87 52.89 42.74

Mean [°] 31.08 28.14 35.46 18.82 20.34 19.05

STD [°] 37.95 30.25 18.39 34.21 25.52 21.73

Appendix A.2. RF Shoulder Flexion

Table A4. Results of the RF shoulder flexion—frontal view.

RF—Frontal View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 4.69 5.20 4.13 4.80 3.67 4.88

RMSE [°] 5.11 5.71 5.06 5.25 4.51 5.84

NRMSE 0.04 0.04 0.04 0.04 0.04 0.05

MAPE [%] 10.78 20.56 19.03 7.99 9.70 20.18

Mean [°] 4.45 4.77 1.43 4.68 2.85 2.08

STD [°] 2.52 3.15 4.85 2.38 3.50 5.45

Table A5. Results of the RF shoulder flexion—oblique view.

RF—Oblique View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 14.23 13.08 9.98 16.07 19.73 12.48

RMSE [°] 16.68 16.39 12.91 19.29 22.75 15.64

NRMSE 0.13 0.13 0.10 0.16 0.19 0.13

MAPE [%] 28.00 36.64 27.10 46.80 78.50 40.06

Mean [°] 8.75 8.50 7.38 13.73 13.96 9.77

STD [°] 14.20 14.01 10.60 13.55 17.96 12.22



Sensors 2024, 24, 530 21 of 23

Table A6. Results of the RF shoulder flexion—lateral view.

RF—Lateral View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 17.82 10.15 10.53 21.84 12.43 10.59

RMSE [°] 21.08 11.10 10.96 26.40 13.64 11.82

NRMSE 0.17 0.09 0.09 0.21 0.11 0.10

MAPE [%] 49.22 47.27 53.50 34.16 28.42 20.57

Mean [°] 10.33 6.43 5.74 13.77 10.48 9.41

STD [°] 18.38 9.05 9.34 22.53 8.74 7.16

Appendix A.3. R7 Elbow Flexion

Table A7. Results of the R7 elbow flexion—frontal view.

R7—Frontal View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 2.28 10.55 2.26 5.92 19.04 5.04

RMSE [°] 2.68 12.56 2.72 14.33 22.58 6.05

NRMSE 0.01 0.05 0.01 0.06 0.09 0.02

MAPE [%] 2.24 10.14 2.03 5.81 19.80 4.88

Mean [°] 0.54 −9.82 −0.53 −5.15 −18.52 −3.04

STD [°] 2.63 7.83 2.67 13.38 12.93 5.23

Table A8. Results of the R7 elbow flexion—oblique view.

R7—Oblique View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 16.56 7.33 11.97 10.79 12.21 8.93

RMSE [°] 17.31 9.49 12.44 11.30 16.17 9.80

NRMSE 0.07 0.04 0.05 0.05 0.07 0.04

MAPE [%] 14.96 6.70 11.45 10.31 13.10 9.02

Mean [°] 16.56 4.44 11.97 10.79 0.08 8.88

STD [°] 5.04 8.39 3.36 3.37 16.16 4.14
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Table A9. Results of the R7 shoulder flexion—lateral view.

R7—Lateral View

3 m 4 m

YOLO v7 LiDAR + AI S LiDAR + AI F YOLO v7 LiDAR + AI S LiDAR + AI F

MAE [°] 85.80 81.94 75.85 83.64 78.08 49.72

RMSE [°] 90.32 95.17 85.65 89.30 87.81 70.34

NRMSE 0.39 0.41 0.37 0.37 0.37 0.29

MAPE [%] 70.86 65.13 62.02 72.25 66.65 38.23

Mean [°] 85.80 80.65 75.11 83.64 77.50 46.70

STD [°] 28.22 50.51 41.17 31.29 41.29 52.60

References
1. Mao, C.Y.; Jaw, W.C.; Cheng, H.C. Frozen shoulder: Correlation between the response to physical therapy and follow-up shoulder

arthrography. Arch. Phys. Med. Rehabil. 1997, 78, 857–859. [CrossRef] [PubMed]
2. Jaggi, A.; Lambert, S. Rehabilitation for shoulder instability. Br. J. Sport. Med. 2010, 44, 333–340. [CrossRef] [PubMed]
3. Altschuler, E.L.; Wisdom, S.B.; Stone, L.; Foster, C.; Galasko, D.; Llewellyn, D.M.E.; Ramachandran, V.S. Rehabilitation of

hemiparesis after stroke with a mirror. Lancet 1999, 353, 2035–2036. [CrossRef]
4. Franco, T.; Sestrem, L.; Henriques, P.R.; Alves, P.; Varanda Pereira, M.J.; Brandão, D.; Leitão, P.; Silva, A. Motion sensors for knee

angle recognition in muscle rehabilitation solutions. Sensors 2022, 22, 7605. [CrossRef] [PubMed]
5. Argent, R.; Drummond, S.; Remus, A.; O’Reilly, M.; Caulfield, B. Evaluating the use of machine learning in the assessment of

joint angle using a single inertial sensor. J. Rehabil. Assist. Technol. Eng. 2019, 6, 2055668319868544. [CrossRef]
6. Testa, E.J.; Gil, J.A.; Lakomkin, N.; Hansen, H.; Cruz, A.I., Jr. Visual Joint Angle Assessment: Does Accuracy Improve with a

Higher Level of Orthopaedic Surgery Training? Rhode Isl. Med. J. 2022, 105, 53–56.
7. Wochatz, M.; Tilgner, N.; Mueller, S.; Rabe, S.; Eichler, S.; John, M.; Völler, H.; Mayer, F. Reliability and validity of the Kinect V2

for the assessment of lower extremity rehabilitation exercises. Gait Posture 2019, 70, 330–335. [CrossRef]
8. Banskota, B.; Lewis, J.; Hossain, M.; Irvine, A.; Jones, M. Estimation of the accuracy of joint mobility assessment in a group of

health professionals. Eur. J. Orthop. Surg. Traumatol. 2008, 18, 287–289. [CrossRef]
9. Piriyaprasarth, P.; Morris, M.E. Psychometric properties of measurement tools for quantifying knee joint position and movement:

A systematic review. Knee 2007, 14, 2–8. [CrossRef]
10. Chellal, A.A.; Lima, J.; Gonçalves, J.; Fernandes, F.P.; Pacheco, M.F.; Monteiro, F.C.; Valente, A. SmartHealth: A Robotic Control

Software for Upper Limb Rehabilitation. In CONTROLO 2022, Proceedings of the 15th APCA International Conference on Automatic
Control and Soft Computing, Caparica, Portugal, 6–8 July 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 667–676.

11. Chellal, A.A.; Lima, J.; Gonçalves, J.; Fernandes, F.P.; Pacheco, F.; Monteiro, F.; Brito, T.; Soares, S. Robot-Assisted Rehabilitation
Architecture Supported by a Distributed Data Acquisition System. Sensors 2022, 22, 9532. [CrossRef]

12. Zulkifley, M.A.; Mohamed, N.A.; Zulkifley, N.H. Squat angle assessment through tracking body movements. IEEE Access 2019,
7, 48635–48644. [CrossRef]

13. Chhoeum, V.; Kim, Y.; Min, S.D. A convolution neural network approach to access knee joint angle using foot pressure mapping
images: A preliminary investigation. IEEE Sens. J. 2021, 21, 16937–16944. [CrossRef]

14. Valencia-Jimenez, N.; Leal-Junior, A.; Avellar, L.; Vargas-Valencia, L.; Caicedo-Rodríguez, P.; Ramírez-Duque, A.A.; Lyra, M.;
Marques, C.; Bastos, T.; Frizera, A. A comparative study of markerless systems based on color-depth cameras, polymer optical
fiber curvature sensors, and inertial measurement units: Towards increasing the accuracy in joint angle estimation. Electronics
2019, 8, 173. [CrossRef]

15. Hii, C.S.T.; Gan, K.B.; Zainal, N.; Ibrahim, N.M.; Rani, S.A.M.; Abd Shattar, N. Marker Free Gait Analysis using Pose Estimation
Model. In Proceedings of the 2022 IEEE 20th Student Conference on Research and Development (SCOReD), Bangi, Malaysia, 8–9
November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 109–113.

16. Klein, L.C.; Chellal, A.A.; Grilo, V.; Gonçalves, J.; Pacheco, M.F.; P, F.F.; Monteiro, F.C.; Lima, J. Assessing the Reliability
of AI-based Angle Detection for Shoulder and Elbow Rehabilitation. In Proceedings of the International Conference on
Optimization, Learning Algorithms and Applications (OL2A 2023), Ponta Delgada, Portugal, 27–29 September 2023; Springer:
Berlin/Heidelberg, Germany, 2023.
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