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Abstract: Reports about the oncogenic mechanisms underlying nasopharyngeal carcinoma (NPC)
have been accumulating since the discovery of Epstein-Barr virus (EBV) in NPC cells. EBV is the
primary causative agent of NPC. EBV–host and tumor–immune system interactions underlie the
unique representative pathology of NPC, which is an undifferentiated cancer cell with extensive lym-
phocyte infiltration. Recent advances in the understanding of immune evasion and checkpoints have
changed the treatment of NPC in clinical settings. The main EBV genes involved in NPC are LMP1,
which is the primary EBV oncogene, and BZLF1, which induces the lytic phase of EBV. These two
multifunctional genes affect host cell behavior, including the tumor–immune microenvironment and
EBV behavior. Latent infections, elevated concentrations of the anti-EBV antibody and plasma EBV
DNA have been used as biomarkers of EBV-associated NPC. The massive infiltration of lymphocytes
in the stroma suggests the immunogenic characteristics of NPC as a virus-infected tumor and, at the
same time, also indicates the presence of a sophisticated immunosuppressive system within NPC
tumors. In fact, immune checkpoint inhibitors have shown promise in improving the prognosis of
NPC patients with recurrent and metastatic disease. However, patients with advanced NPC still
require invasive treatments. Therefore, there is a pressing need to develop an effective screening
system for early-stage detection of NPC in patients. Various modalities, such as nasopharyngeal
cytology, cell-free DNA methylation, and deep learning-assisted nasopharyngeal endoscopy for
screening and diagnosis, have been introduced. Each modality has its advantages and disadvantages.
A reciprocal combination of these modalities will improve screening and early diagnosis of NPC.

Keywords: nasopharyngeal carcinoma; Epstein-Barr virus; gene expression; LMP1; BZLF1

1. Introduction

Human gamma herpesviruses, including the Epstein-Barr virus (EBV; human her-
pesvirus 4; HHV-4) and Kaposi’s sarcoma-associated herpesvirus (KSHV; human her-
pesvirus 8; HHV-8), have oncogenic properties. EBV and KSHV are lymphotropic viruses,
but they also infect epithelial cells, and their infected cells may develop carcinomas [1]. EBV
was the first human oncovirus discovered in Burkitt’s lymphoma (BL) in 1964 [2]. Kenyan
patients with nasopharyngeal carcinoma (NPC) whose sera were selected as controls in
a BL study showed more antibody precipitation than those with BL [3]. Four years later,
EBV was identified in undifferentiated NPC cells [4]. The definite association of EBV with
NPC was confirmed by the ubiquitous identification of EBV DNA in the tumor cells of
NPC tissues in endemic and non-endemic areas for NPC [5]. Based on outstanding papers
published in the past half-century, we introduce new insights into the relevance of the
unique clinicopathological characteristics of NPC associated with EBV infection.
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1.1. Histopathology of NPC and EBV Infection

EBV infection is closely associated with pathological characteristics of NPC. The
World Health Organization (WHO) classification system, which is based on the grade of
differentiation of tumors, is generally accepted for the pathological classification of NPC.
WHO grades I, II, and III represent keratinizing, non-keratinizing-differentiated, and non-
keratinizing-undifferentiated NPC, respectively. WHO II and III are considered to indicate
EBV-associated NPC [6]. However, there has been a debate on the relevance of EBV in
WHO I NPC diagnosis. A previous prevalent opinion was that WHO I NPC was originally
an EBV-driven tumor. Throughout the tumor progression, EBV escaped or was eliminated
from tumor cells. Thus, a small amount of EBV DNA was detected in WHO type I tumors.
However, a recent prevalent opinion based on serological and histological studies is that
WHO I NPC is a squamous cell carcinoma similar to general head and neck carcinoma.

EBV-associated WHO II and III NPCs are characterized by the prominent infiltration
of lymphocytes in the tumor-surrounding area and the so-called lymphoepithelioma. This
difference in histological features has been investigated in various directions regarding the
association between EBV and the clinical features of NPC.

WHO I NPC accounts for less than 20% of NPC cases globally. This rate is relatively
low in endemic areas, such as Southeast Asia and southern China. In other words, the
prevalence of non-keratinizing (WHO II, III) NPC is higher in endemic areas (>95%) and
is predominantly associated with EBV infection. However, patients with NPC present
elevated IgG and IgA concentrations in response to the viral capsid antigen (VCA) and
early antigen (EA) of EBV regardless of endemic or non-endemic area [7]. For WHO I
NPC, initial studies reported similar pathology and EBV serologic profiles similar to those
of other head and neck carcinomas [8,9], whereas other studies have suggested that all
types of NPC result in elevated concentrations of EBV antigens [10]. Recent high-resolution
analyses, such as duplex multiplex assays for EBV IgA and IgG antibodies, have shown
that very fine adjustment of sample sera is mandatory for the precise quantification of
antibody titers [11,12]. Presumably, the mixed review of the serological association of WHO
I NPC is attributable to technical problems. However, it is generally accepted that WHO
I represents NPC that is unrelated to EBV, and WHO II and III represent EBV-associated
NPC. The clinical characteristics of WHO I NPC differ from those of WHO II and III NPCs.
A multicenter prospective trial revealed that patients with WHO I NPC had no distant
metastatic recurrence, and all relapsed sites were locoregional areas. This pattern is similar
to the patterns of conventional head and neck cancers. In contrast, patients with WHO II
and III NPCs had significantly higher rates of distant metastatic recurrence. These results
indicate that EBV contributes to the high metastatic properties of WHO II and III NPCs [13]
(Table 1).

Table 1. Nasopharyngeal cancer histology and clinicopathological features.

WHO I WHO II WHO III

Differentiation status well differentiated moderately to poorly
differentiated undifferentiated

Histological category
in WHO classification keratinizing nonkeratinizing-

differentiated
nonkeratinizing-
undifferentiated

TIL infiltration fair to moderate heavy
EBERs in tumor (−) or faint (+)
EBV antibodies not elevated elevated

Chemoradiosensitivity moderate good
Metastatic property low to moderate high

Epidemiology
20% in non-endemic

area;
<5% in endemic areas

80% in non-endemic areas;
>95% in endemic areas

EBERs; EBV-encoded small RNAs, TIL; tumor-infiltrating lymphocytes, WHO; World Health Organization.
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Recent trends of human papillomavirus (HPV) infections in head and neck carcinomas,
especially oropharyngeal carcinomas, have been incorporated into NPC research. HPV
was detected in two of the 58 NPC tissues at our institute. The HPV-positive cases were
classified as WHO II, and EBERs were detected using in situ hybridization. One case had
HPV18, and the others had HPV16 and 18 [14].

Reports have been inconsistent, likely because of the limited number of patients and
the ethnic and geographic differences among the study populations. Several studies have
detected HPV in NPC, with some demonstrating a dichotomy between EBV and HPV
infections predominantly in non-endemic regions [15–17]. Others have reported cases
of EBV and HPV co-infection, predominantly in patients from endemic regions [18–20].
Similar to EBV, a serological test has been developed for HPV and applied to screening for
HPV-associated diseases [21].

1.2. EBV Gene Expression in NPC

The default program for EBV infection in nasopharyngeal epithelial cells is lytic
infection. Therefore, switching the mode of infection from lytic to latent and maintaining
latent infection are essential steps in NPC pathogenesis. EBV latency programs can be
categorized into three types. Latency affects various diseases and infected cell types [22–24].
Two EBV-encoded genes, EBER and EBNA1, are expressed in all three types of latencies.
Type I latency is characteristic of Burkitt’s lymphoma, and it is defined as the expression
of a minimal number of latent EBV genes, which are EBER and EBNA1. For type II
latency, LMP1 and LMP2A are expressed in addition to EBER and EBNA1. Type II latency
is observed in NPC, Hodgkin’s disease, and T/NK-cell lymphoma. Type III latency is
recognized in lymphoproliferative diseases in immunocompromised hosts such as organ
recipients or HIV patients [25,26]. The remarkable expression of BART-miRNAs in NPC
and EBV-associated gastric cancer strongly suggests an important carcinogenic role for
BART-miRNAs in EBV-associated epithelial malignancies [27].

NPC is an EBV type II latency malignant tumor that expresses three EBV-encoded
proteins (EBNA1, LMP1, and LMP2) and two EBV-encoded transcripts, EBERs and
BARTs [22,23,25]. Among the EBV genes, we have mainly focused on the EBV primary
oncogene LMP1 as it promotes all aspects of “the hallmark of cancer” advocated by
Hanahan and Weinberg [28,29].

1.3. Effect of LMP1 Expression in NPC

LMP1 expression is generally observed in moderate-to-severe dysplastic lesions in
the EBV-infected nasopharyngeal epithelium or preinvasive NPC. Thus, LMP1 plays an
important role in driving EBV-infected premalignant cells into the early stages of NPC [30].
The comprehensive study on LMP1 revealed its oncogenic properties by activating mul-
tiple cellular signal pathways such as NF-κB, AP-1, and PI3 kinase [31]. Among them,
the activation of the NF-κB pathway is a major characteristic of LMP1. Several steps
of carcinogenesis, including anti-apoptosis, anti-cellular stresses, cell metabolism, acqui-
sition of cancer stemness, and immune attacks, are mediated by the NF-κB-associated
pathway [32–39]. Moreover, the contribution of LMP1 to the highly metastatic features
of NPC, represented by the downregulation of cell adhesion, upregulation of stromal
destruction, and angiogenesis, is also attributable to this NF-κB signaling [40–44] (Figure 1).

Interestingly, the mutually exclusive relationship of LMP1 expression with somatic
mutations of negative regulators that are located upstream of the NF-κB pathway in NPC
has been reported from the endemic region. These findings indicate a special role of
NF-κB activation via constitutive activation through somatic mutations dominated by
CYLD, TRAF3, NFKBI, and NLRC5, or LMP1 in the pathogenesis of NPC [45,46]. These
somatic alterations of NF-κB regulators may supplant the need for LMP1-mediated NF-κB
activation in tumor cells during tumor progression [46].
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Figure 1. Activation of multiple cell signaling pathways by LMP1. LMP1-mediated signal activation 
promotes cell survival, proliferation, angiogenesis, invasion, metastasis, metabolic reprogramming, 
and cytokine production. LMP1 downregulates E-cadherin expression, which ultimately affects cell 
adhesion. As a result, LMP1 promotes six generations of “hallmarks of cancer.” Factors downregu-
lated by LMP1 are indicated by light blue-colored boxes. 
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ever, this lytic cascade terminates without producing mature EBV virions; this is called 
the abortive lytic infection [49]. Thus, the BZLF1 protein ZEBRA can affect host cells dur-
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Figure 1. Activation of multiple cell signaling pathways by LMP1. LMP1-mediated signal activation
promotes cell survival, proliferation, angiogenesis, invasion, metastasis, metabolic reprogramming,
and cytokine production. LMP1 downregulates E-cadherin expression, which ultimately affects cell
adhesion. As a result, LMP1 promotes six generations of “hallmarks of cancer.” Factors downregu-
lated by LMP1 are indicated by light blue-colored boxes.

2. Effect of BZLF1 Expression in NPC

Two EBV infection modes, the latent and lytic phases, are believed to be tightly
regulated by specific gene expression patterns; however, evidence of the simultaneous
expression of latent and lytic genes within the same cell has been accumulated. Among
lytic EBV gene products, we focus on BZLF1 as it is the most studied and well-known
initiator of the EBV replication switch.

BZLF1, identified in studies on the defective EBV genome, is a trigger gene that fa-
cilitates the progression of EBV infection from the latent to the lytic phase [47,48]. The
induction of BZLF1 in latently infected cells usually activates the EBV lytic cascade. How-
ever, this lytic cascade terminates without producing mature EBV virions; this is called the
abortive lytic infection [49]. Thus, the BZLF1 protein ZEBRA can affect host cells during
abortive lytic infection [49].

The roles of ZEBRA in EBV infection, the lytic cycle, and oncogenesis have been
extensively studied. ZEBRA is an AP-1 mimicking transcriptional factor. Thus, ZEBRA
transactivates EBV genes, as well as various host cellular genes related to proliferation,
inflammation, angiogenesis, and metastasis. ZEBRA downregulates apoptosis-related
genes, MHC class II genes, and interferon regulatory factors, eventually acquiring resistance
to cell death and evasion during immune surveillance [38]. ZEBRA also interacts with
various cellular proteins, including NF-κB, and changes their functions [50–52]. Thus, the
effects of ZEBRA are complex. The fate of EBV-infected cells during abortive lytic infection
requires further investigation.

Both LMP1 and ZEBRA expression have been identified in NPC tumor tissues [48,52].
However, ZEBRA is still clinically valuable. The expression of the protein in NPC tissues
and elevation of anti-ZEBRA IgG concentrations in sera are biomarkers for poor prognosis
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in patients with NPC, as well as the diagnosis of early-stage NPC [50,53–55]. In addition,
elevated concentrations of IgA antibodies against the EBV VCA are high-risk markers
for NPC development [56]. Studies on EBV strains isolated from NPC and other EBV-
associated diseases suggest the existence of aberrant strains predisposed to spontaneous
lytic replication and specific EBV-associated diseases [57–61].

2.1. Genetic and Epigenetic Alteration in NPC Host Genome

LMP1 and BZLF1 are key EBV genes that drive EBV-infected epithelial cells toward
NPC. However, the expression of EBV genes alone is insufficient for the development
of clinical NPC. The accumulation of multiple irreversible somatic genetic alterations, in
addition to EBV infection, is required for the development of NPC [22]. To date, there have
been several reports of frequently identified genetic changes in patients with EBV-associated
NPC. The frequent identification of allelic loss at chromosomal loci 3p21.3 and 9p21 in both
EBV-positive and -negative pre-invasive lesions suggests that these genetic changes have
occurred before EBV infection [22,62,63]. These genetic alterations imply inactivation of
tumor suppressor genes. Among the genes, RAS association domain family 1A (RASSF1A)
and cyclin-dependent kinase inhibitor 2A (p16/CDKN2A) are candidate genes involved in
the initiation of NPC [22,64], as inactivation of RASSF1A and p16 may provide a growth
advantage for the clonal expansion of EBV-infected premalignant epithelial cells.

Recent genome-wide analyses of invasive and pre-invasive NPC have elucidated
common somatic alterations in the NPC host genome. Focal loss of alleles on chromosomes
3p, 9p, 11q, 13q, 14q, and 16q and amplification of chromosome 11q13, where the cyclin
D1 loci are located, are frequently observed [64–66]. Among these genes, the inactivation
of p16/CDKN2A by homozygous deletion and promoter hypermethylation has been
consistently found in almost all NPC samples examined [67], suggesting that the expression
of the p16 gene product is commonly downregulated in NPC.

Epigenetic changes can be induced by EBV infection, and they eventually play a role
in tumorigenesis [68]. CpG hypermethylation is a common mechanism involved in the
inactivation of tumor suppressor genes in human cancers and has been observed in EBV-
associated malignant tumors, including Burkitt’s lymphoma, NPC, and EBV-associated
gastric cancer [69,70]. A specific EBV epigenetic signature has been more thoroughly
studied in EBV-associated gastric cancer, whereas that in EBV-associated NPC is slightly
less defined. Nonetheless, promoter methylation of multiple genes at chromosomes 3p21.3
(including RASSF1A [71]), 6p22.1-21.3 (including the MHC locus [72]), and 9p21 (including
CDKN2A (p16), CDKN2B (p15) [73], and others [74]) has been identified. To date, the
relationship between latent EBV infection and the methylation profile observed in NPC has
not been fully elucidated.

ZEBRA acts as a pioneer factor. Considering that ZEBRA is a homologue of c-Fos and
binds to the AP-1 site, it is reasonable to speculate that ZEBRA expression in NPC tumor
cells could modulate gene expression in both heterochromatin and euchromatin regions.
Further studies are needed to explore the broad effects of ZEBRA expression in NPC.

2.2. Potential Risk Factors Other Than EBV

In addition to host genetics and EBV infection, other potential risk factors identified
by epidemiological studies include the family history of nasopharyngeal carcinoma, active
and passive tobacco smoking, consumption of preserved foods and alcohol, and oral
hygiene [75–79]. In addition to these traditional carcinogenic factors, the role of microbiota
in the pathogenesis of NPC has been gradually elucidated.

Microorganisms within the gut and other niches may contribute to carcinogenesis,
influence cancer immunosurveillance, and respond to immunotherapy. Thus, targeting
the gut and tumor microbiota in cancer is an issue of interest [78]. The association of EBV
has been firmly established as a microbial risk factor for NPC. However, the crucial role
of the nasopharynx as a niche of the upper respiratory tract microbiome and the clinical
implications of the microbiota in NPC tissues remain largely obscure.
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Qiao et al. conducted a transcription study on 12 paired NPC tissues with either high
or low bacterial loads. Proliferative genes in cell cycle pathways and metastasis-associated
pathways were upregulated in tumors with a high bacterial load. Conversely, both T-
and B-cell-mediated immune responses and interferon pathways, as well as O-linked
glycosylation, are activated in tumors with a low bacterial load [80]. Subsequently, they
conducted a multicenter cohort study that included 802 patients with NPC. They confirmed
the existence of microbiota mainly originating from the nasopharynx within NPC tissues.
Moreover, the intratumoral bacterial load was negatively associated with tumor-infiltrating
immune cells and positively associated with poor prognosis in patients with NPC [81]. The
results also showed that the levels of expression of various immune-related genes, such
as CXCL13, were negatively associated with the load of intratumoral bacteria, particularly
Porphyromonas. Butyrate produced by Porphyromonas gingivalis contributes to the regulation
of histone acetylation, which reactivates EBV, implying the existence of crosstalk between
the bacteria and EBV [82].

2.3. Prognostic Relevance of Cell-Free EBV DNA

The UICC/AJCC staging system has been evolving, and the eighth system is of clinical
use [83]. However, this diagnostic system is anatomically based and has limitations in
predicting the prognosis or treatment benefits because it is affected by other clinical factors
and molecular biomarkers. Several researchers have attempted to incorporate these factors
into the system to establish better predictive markers of clinical outcomes.

Among the candidate factors, the combination of pretreatment plasma EBV DNA and
clinicopathological variables is a reliable system for arriving at a more accurate prognosis
for patients with NPC [84]. Other biomarkers, such as somatic and EBV DNA methylation
and miRNA and mRNA expression, have also shown prognostic value and potential
clinical applications in patients with NPC [85,86]. Genome-wide screening techniques
have revealed the prognostic value of gene expression-based signature analysis and may
be beneficial in selecting patients for more intensive treatments [85,86]. However, the
diagnostic and prognostic value of circulating EBV DNA is commonly accepted, and
quantification kits for circulating EBV, including serum, plasma, and whole blood samples,
are now commercially available. These findings have promoted the use of circulating EBV
DNA in NPC treatment.

The successful incorporation of pretreatment plasma EBV DNA into the eighth edition
has been reported [87,88]. Furthermore, both pretreatment and EBV DNA responses after
induction chemotherapy or post-treatment are useful predictors of clinical outcomes [89,90].
These observations have suggested that EBV DNA is a promising liquid biopsy-based
biomarker for risk-stratified treatment adaptation.

Longitudinal EBV DNA quantification during and after NPC treatment is now ac-
cepted as a valuable method of monitoring NPC. Despite the well-established value of
EBV DNA in NPC monitoring, international standardization of assay methods, such as
variations in the number of target repeats in the EBV genome, has been a huge obstacle for
prospective large-scale trials, even when applying the same assay system [91,92]. In 2016,
at the National Cancer Institute EBV testing harmonization workshop for nasopharyngeal
carcinoma, NPC and laboratory medicine experts presented the limitations of current
assays for EBV DNA quantification and discussed methods for improving combination
assays in the future [93]. Studies on the application of EBV DNA as a biomarker for NPC
staging are ongoing.

3. Immune Microenvironment of NPC and EBV

As mentioned above, EBV-associated NPC is characterized by the prominent infiltra-
tion of lymphocytes in the tumor-surrounding area and the so-called lymphoepithelioma.
Based on the unique pathological features of NPC, the relationship between the immune
system and NPC tumor cells has been intensively investigated.
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The nasopharynx contains a unique lymphoid tissue called the nasopharynx-associated
lymphoid tissue (NALT), which differs from other lymphoid tissues involved in organo-
genesis. NALT plays an important role in the mucosal immune system [94]. The secretion
of anti-EBV IgA from the NALT into the airway lumen and serum is a marker for NPC
screening and diagnosis. New insights into the tumor microenvironment of NPC have been
growing, including the tumor–immune microenvironment (TIME). The tumor microenvi-
ronment is mainly composed of heterogeneous cellular components such as tumor cells,
fibroblasts, endothelial cells, and leukocytes. It also contains various mediators, such as
cytokines and exosomes, which influence the behavior of NPC tumors and, eventually, the
prognosis of NPC patients. The TIME consists of immunostimulant and immunosuppres-
sive components. Thus, the TIME component also serves as a prognostic biomarker and a
potential target for novel therapies [95].

Tumor-infiltrating lymphocytes (TIL) in NPC tissue contain various immune cells, and
the proportion of the immune population dynamically changes with tumor progression
and treatment. However, TIL levels usually reflect the treatment outcomes of patients.
Abundant intratumoral and stromal TILs are predictive markers of favorable outcomes in
patients with NPC [96].

3.1. Immune Evasion Mechanism in NPC

Malignant tumor cells begin the construction of the TIME once they are recognized as
targets of immune cells. Subsequently, the tumor cells escape the immune attack. Generally,
viral proteins are presented as antigens combined with MHC class I molecules to recruit CD
8-positive cytotoxic T cells (CTL) to the virus-infected tumor cells. Three EBV genes, EBNA1,
LMP1, and LMP2, are expressed in NPC. However, EBV-encoded gene products expressed
in NPC cells must escape from immune cells, mainly from CTL, for the development
of NPC.

In the EBV latent infection program, the most efficient strategy for immune escape is
to keep the level of expression of the EBV antigen per cell as low as possible. Maintaining
low antigen expression leads to low CTL epitope presentation in EBV-infected cells. Crotzer
et al. reported that the presentation of PRIYDLIEL-like epitopes in EBNA3C is less than
one epitope per cell [97], resulting in very low or no detection of EBV-transformed B-cells
by CTL clones with high affinity to the peptide [98].

In addition to the low levels of latent gene expression, EBNA1 contains a Gly-Ara
repeat domain that suppresses the translation of EBNA1 and prevents the processing of
EBNA1, resulting in the inhibition of antigen presentation by MHC class I [99].

Upon activation, LMP1 localizes and aggregates within lipid rafts on the cell
membrane [100]. LMP1 mutants that lose their aggregating properties at lipid rafts
are recognized by HLA epitope-sensitized CTL, whereas wild-type and LMP mutants
that retain their aggregating properties at lipid rafts are not. These results suggest
that the aggregation of LMP1 in lipid rafts protects LMP1 from being processed and
presented with MHC class I, which allows LMP1 expression in NPC cells to escape
immune surveillance [101].

In contrast, lytic infection involves the expression of more than 60 viral gene products
with high copy numbers per cell [102]. For the transmission of EBV from carriers who
have established T-cell immunity to the EBV gene to other individuals, cells with EBV lytic
infection must escape T-cell recognition long enough to produce mature EBV particles.
Even in cells under abortive lytic infection, the expression of immunogenic ZEBRA should
affect the tumor–immune cell interactions.

BZLF1 suppresses the transcription of inflammatory factors TNF-α and IFN-γ and
prevents their response during the EBV lytic infection. This implies that the EBV lytic cycle
employs a distinct strategy to evade the antiviral inflammatory response [103].
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3.2. Superantigen Induction by EBV

One theory states that despite these mechanisms of immune evasion, some EBV
gene expression leads to lymphocyte infiltration. This is one theory. The other theory
is the induction of superantigens by EBV genes. Superantigens are microbial pathogen-
derived proteins that induce strong T-cell responses. HERV-K18 was the first human
endogenous provirus to originate from a retrovirus with superantigen activity [104]. HERV-
K18 preferentially activates human TCRBV13 T cells [105]. Essentially, it exists in a dormant
state. However, the expression of its env gene was observed in latently infected EBV
cells. Sutkowski showed that both LMP1 and LMP2A are able to transactivate the HERV-
K18 superantigen. Both LMP1 and LMP2A are expressed in NPC cells [106]. HERV-K18
may induce heavy T-cell infiltration, and the secretion of cytokines by the interaction of
superantigen-expressing tumor cells with activated T-cells can contribute to the highly
metastatic features of NPC [107,108].

3.3. Modulation of Immune Checkpoint in NPC

Generally, the number of intratumoral and stromal TILs is associated with a favorable
prognosis in patients with NPC [96]. The programmed death-1/programmed death-ligand
1 (PD-1/PD-L1) axis plays an important role in T-cell tolerance and immune escape of
tumor cells. PD-L1 expression is higher in EBV-positive than in EBV-negative NPC cell lines.
It can be due to the abundant IFN-γ induction by EBV infection. In addition, LMP1 and
IFN-γ pathways cooperate to regulate PD-L1 [44]. LMP1 knockdown suppresses PD-L1
expression in EBV-positive cell lines. IFN-γ upregulates PD-L1 expression independently
and synergistically with LMP1 in NPC tissue [109].

PD-1 is expressed on TIL, while PD-L1 is expressed in tumor and stromal cells. The
interaction between PD-1 and PD-L1 suppresses CTL attacks on tumor cells [109]. Thus,
the co-expression of PD-1 and PD-L1 in the tumor microenvironment usually predicts the
recurrence and metastasis of NPC after initial therapy. Antibodies that block this pathway
have been clinically used against various cancers, including NPC [95,110]. Adoptive T-cell
therapy targeting the EBV gene products is a potential therapeutic strategy for NPC. PD-
L1 expression in cancer cells can inhibit the effector functions of adoptively transferred
EBV-specific T-cells. The combination of EBV-specific adoptive T-cell and PD-L1 blockade
therapies has been reported to be more effective [111].

Several immunotherapies have been explored for NPC; however, these trials have
yielded inconsistent conclusions, probably due to different immune
microenvironments [109,110,112–115]. For example, LMP1 promotes myeloid-derived
suppressor cell (MDSC) expansion in the tumor microenvironment by promoting extra-
mitochondrial glycolysis in malignant cells. In addition to RAGE, LMP1 promotes the
expression of multiple glycolytic genes, such as GLUT1. This metabolic reprogramming in-
duces the NOD-like receptor family protein 3 inflammasome and activates the arachidonic
cascade, which in turn activates various cytokines such as IL-1β, IL-6, and GM-CSF. These
changes in the tumor environment result in NPC-derived MDSC induction [116].

3.4. Challenge for EBV Vaccine Development

The close association of EBV infection with NPC suggests that controlling EBV infec-
tion and targeting EBV-infected cells are effective strategies for preventing NPC develop-
ment and managing developed NPC. However, despite the urgent need for prophylactic
or therapeutic solutions, there has been no licensed EBV vaccine thus far [117]. The major
obstacles to developing a prophylactic vaccine include the global prevalence of EBV and
the fact that infection typically occurs during early childhood to adolescence, resulting in
a limited number of control cohorts without EBV infection. In addition, the complexity
of the EBV replication system and its infectivity to T lymphocytes and NK cells present
challenges in eliminating all EBV target cells [117]. With recent advancements in messenger
RNA vaccines, exemplified by their successful application in the COVID-19 pandemic,
various viruses, including EBV, have been considered candidates for this technique [118].
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Moderna has announced the initiation of a phase 1 study for its mRNA Epstein-Barr virus
(EBV) vaccine, code-named mRNA-1189. mRNA-1189 comprises five mRNAs encoding
envelope glycoproteins (gp320, gH, gL, gp42, and gp220) that bind to target cell surface
receptors, playing key roles in initiating EBV infection of target cells. The administration of
mRNA-1189 aims to induce a broad immune response that could prevent EBV infection
in various types of cells, ultimately reducing the symptoms of infectious mononucleosis.
According to the manufacturer, preclinical testing of mRNA-1189 in mice and nonhuman
primates demonstrated high and durable levels of antigen-specific antibodies against B
cell and epithelial cell infection [119]. The announced phase 1 clinical trial (NCT05164094)
will assess the safety and tolerability of three different doses of mRNA-1189 in healthy
adults aged 18 to 30. The humoral immune response will be evaluated up to day 197 [120].
(https://clinicaltrials.gov/study/NCT05164094 (accessed on 11 October 2023)).

mRNA-1189, which encodes additional latent EBV genes, may serve as a candidate
for therapeutic vaccines. Certainly, mRNA technology is poised to bring about significant
progress in the future of vaccinology.

4. Early Diagnosis of NPC

The prognosis of patients with advanced-stage disease, including NPC, has not im-
proved despite various treatment modalities and the systematic clinical trials that have been
developed. Currently, patients with early-stage NPC are treated with radiotherapy alone,
whereas those with an advanced stage are treated with a combination of chemotherapy and
radiotherapy. Patients with advanced-stage NPC have worse survival rates and quality of
life than those with early-stage disease [9,117]. Thus, early detection and timely treatment
of NPC is an effective strategy to improve prognosis and quality of life and reduce the med-
ical burden of patients with NPC [118,119]. Nasopharyngeal endoscopy, EBV serology, and
plasma EBV DNA have been introduced and assessed by several researchers for the early
detection of NPC. Here, we discuss the advantages and disadvantages of these modalities
(Table 2).

Table 2. Comparison of modalities for NPC screening and early diagnosis.

Screening Procedure Swab Cytology Serological Test Circulating EBV-DNA Cell Free DNA
Methylation

Nasopharyngeal
Endoscopy

Benefits Easy sampling Most popular methods Higher sensitivity and
specificity

Higher sensitivity and
specificity

Higher positive
predictive value of
approximately 90%

Quick detection Possible combination of
multiple antibody types

Higher positive
predictive value but

still <20%

Higher positive
predictive value of
approximately 90%

Combination of deep
learning model improve

accuracy
Applicable for EBV

negative NPC
Applicable for EBV

negative NPC

Drawbacks
Influenced by sample

quality, physician’s skill,
cytologist’s skill

Low level of positive
predictive value (10%)

Influenced by
laboratory skill

More advanced
technique required

Large scale screening is
not possible

Not globally
standardized Lack of large-scale study Higher cost

Higher cost

Nasopharyngeal endoscopy with pathological examination of suspected lesions is the
gold standard for the diagnosis of NPC [120]. However, it is primarily used for individuals
with suspected NPC. Therefore, it is not suitable for early screening, especially large-scale
screening. In addition, current laboratory blood tests (e.g., anti-EBV antibody screening
and EBV DNA testing) can provide high specificity and sensitivity, but they still have
low positive predictive values (PPVs) and produce more false-positive results, leading to
repeated nasal endoscopic examinations, biopsies, and follow-up. To improve the early
diagnosis rate of NPC, He et al. developed a deep-learning-based NPC detection model
based on a large-scale video frame dataset for nasopharyngeal endoscopy, which enabled
more accurate biopsy site selection during endoscopy [121].

There are currently three common clinical EBV antibody detection targets: VCA-IgA,
EBNA1-IgA, and EA-IgA [122]. The responses to these antibodies are markedly heteroge-

https://clinicaltrials.gov/study/NCT05164094
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neous, and the response to a single antibody is not sufficient for NPC screening. Moreover,
the traditional immunoenzyme labeling method is complicated, and sometimes the results
are reproducible. Therefore, it is gradually being replaced by ELISA. With the development
of new techniques for the detection of dual and triple antibodies, the sensitivity and speci-
ficity of the serological diagnosis of NPC have significantly improved [123]. In recent years,
researchers have made efforts to improve the sensitivity, specificity, and PPV for detecting
early-stage NPC. However, an acceptable PPV (<10%) has not been achieved.

The IgA serological test is the most generally accepted NPC screening method, but
the quantification of plasma EBV DNA originating from the tumor is a more sensitive
biomarker for screening, as well as for predicting and detecting recurrent NPC disease.
Compared with serological screening, plasma EBV DNA detection is more sensitive and
specific. The PPV of plasma EBV DNA is also better than that of antibody testing but
still lower than 20%. In addition, the cost of EBV DNA testing is high. EBV DNA testing
requires advanced equipment and standardization among laboratories that use this method,
making it more difficult to scale out EBV DNA testing in populations from all high-risk
areas [123].

In a recent review by Yuan et al., EBV detection in nasopharyngeal swabs as an
additional test for EBV serology in high-risk individuals reduced the number of candidates
for close follow-up. This method achieved a 40% improvement relative to serological
examination alone [124]. However, the PPV remained low. The hypermethylation status of
gene promoters in nasopharyngeal swabs can also be used for NPC screening. However,
the sample sizes of the relevant studies were not sufficiently large. Large-scale studies are
necessary to assess its effectiveness for NPC screening [125,126] (Table 2).

The anti-BNLF2b total antibody (P85-Ab), a novel biomarker, was validated through a
large-scale prospective screening program and compared with the two standard antibodies,
EBNA1-IgA and VCA-IgA.

Forty-seven patients with NPC (38 with early-stage disease) were identified from
a cohort of 24,852 prospectively eligible participants. P85-Ab showed higher sensitiv-
ity (97.9% vs. 72.3%; ratio, 1.4 [95% CI, 1.1 to 1.6]), specificity (98.3% vs. 97.0%; ratio,
1.01 [95% CI, 1.01 to 1.02]), and PPV (10.0% vs. 4.3%; ratio, 2.3 [95% CI, 1.8 to 2.8]) than the
combination of EBNA1-IgA and VCA-IgA. The combination of anti-BNLF2b total antibody
with anti-EBNA1-IgA and anti-VCA-IgA improved the PPV to 44.6% (95% CI, 33.8 to 55.9),
with a sensitivity of 70.2% (95% CI, 56.0 to 81.4). Serological screening using these three
antibodies may provide a promising novel biomarker [127].

5. Conclusions

Clinicopathological features of NPC are mostly attributable to EBV infection and,
eventually, virus–host and tumor–immune interaction. The infection program of EBV in
NPC is basically a type II latent infection; however, EBV genes involved in the lytic infection
program are also expressed. Among both program genes, latent gene LMP1 and lytic gene
BZLF1 are the main players in organizing the clinicopathological characteristics of NPC.
The elevation of EBV antibodies and cell-free DNA in both patients and future candidates
for NPC represents crucial features. These features provide valuable insights into the
development of more sensitive and cost-effective screening and diagnostic methods. The
unique TME characterized by an intense infiltration of immune cells also offers clues for
potential therapeutic targets in NPC. In fact, specific inhibitors aimed at immune evasion
mechanisms, such as immune checkpoint inhibitors, are now in clinical use. Early detection
and the development of novel drugs for advanced NPC constitute effective strategies to
enhance the prognosis of patients with NPC. Efforts to clarify the mechanism of EBV-
mediated NPC pathogenesis and apply the findings to NPC treatment are ongoing. With
the rapid technological advances, further evidence is expected to be revealed.
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