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Methods: This study used a systematic review and meta-
analysis following the 2020 Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. We searched selected databases using a com-
bination of search terms: “((Artificial Intelligence) OR
(Diagnostic Modality)) AND (Keratoconus)” from
PubMed, Medline, and ScienceDirect within the last 5
years (2018—2023). Following a systematic review pro-
tocol, we selected 11 articles and 6 articles were eligible
for final analysis. The relevant data were analyzed with
Review Manager 5.4 software and the final output was
presented in a forest plot.

Results: This research found neural networks as the most
used Al model in diagnosing KC. Neural networks and
naive bayes showed the highest accuracy of Al in diag-
nosing KC with a sensitivity of 1.00, while random forests
were >0.90. All studies in each group have proven high
sensitivity and specificity over 0.90.

Conclusions: Al potentially makes a better diagnosis of
the KC with its high performance, particularly on
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sensitivity and specificity, which can help clinicians make
medical decisions about an individual patient.

Keywords: Artificial intelligence; Diagnostic modality; Ker-
atoconus; Meta-analysis; Systematic review
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Introduction

Artificial intelligence (AI) has been utilized to enhance
diagnostic management and guide treatment. The use of Al as
a sophisticated diagnostic modality has not only improved the
feature of cornea evaluation in ocular imaging but also has
unlocked new pathways for biomechanics, which generates a

better understanding of disease pathology.l"2 It has been
developed to diagnose keratoconus (KC), but the challenges
presented are the need for clinical signs, uniform screening
criteria available,” and a low disease prevalence.z"4 The
healthy cornea shows a convex aspherical surface and a high
refractive index, making it the most vital refractive element
of the eyes.5 By contrast, KC develops in both eyes with a
progressive and asymmetric ectasia corneal disease,
characterized by abnormal thinning and bulging of the
cornea, resulting in severe vision impairment(’ and patient
dependence on visual aids.” KC primarily starts in
adolescence and is more aggressive than in adults.® Thus,
for a medical diagnosis, Al can assist in capturing most of
the pertinent clinical elements’ complex data, providing
prior interpretable outcomes and choosing appropriate
treatment strategies.9

The challenges in diagnosing KC have prompted scholars to
analyze the use of Al in diagnosing the disease.'’ The latest

[ Identification of studies via databases and registers ]
= . .
S Records identified from .
‘5 Databases: (n = 343) ?;ZZZ:Z r'emoved before
P * PubMed (n = 136) — g:
= . _ * Duplicate records removed
s = Medline (n=113) (n=122)
= = Sciencdirect (n = 94)
\ 4
)
Records excluded by title and
= >
Records screened (n =221) abstract (n = 102)
\4
Reports sought for retrieval
o (n E 119) ue v — | Reports not retrieved (n = 0)
=
)
g
S v
C Reports excluded: (n = 108)
R for el 1
egorts assessed for eligibility —| = Do not match the topic of the
n=119)
study (n = 62)
= Review (n=19)
= Not scholarly journal (n = 3)
= Inaccessible article (n = 14)
= Case report (n = 3)
— v = Not in English (n = 6)

Studies included in review
(n=11)

Figure 1: PRISMA 2020 flow diagram.
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systematic reviews provided a significant report on KC
classification and machine learning algorithm accuracy in
detecting KC,'"!? whereas another study focused on imaging
modalities in examining deep learning algorithms.13
However, these studies did not specifically analyze the
accuracy of AI models. Therefore, this study analyzed the
accuracy of KC diagnosis based on its classification and the
Al model used.

Materials and Methods
Source of data and search strategy

A systematic review and meta-analysis were used to
examine Al as a diagnostic modality for KC. We followed the
2020 Preferred Reporting Items for Systematic Reviews and
Meta-Analysis (PRISMA) guidelines. '* The data source was
accessible studies in three databases: PubMed, Medline, and
ScienceDirect. The search strategy used was a combination
of search terms: “((Artificial Intelligence) OR (Diagnostic
Modality)) AND (Keratoconus).” We narrowed the search
to studies published within the last 5 years (2018—2023).
The study protocol can be found on PROSPERO (www.
crd.york.ac.uk; Registration No. CRD42023433737).

Inclusion and exclusion criteria

We included studies that address Al as a diagnostic
modality for KC. The criteria for the inclusion of studies
were as follow s: (1) published in scholarly journals; (2)
published in English; (3) not case reports; and (4) targeted
the use of AI to diagnose KC. We excluded reviews,
comments, protocols, and reply articles from this review.
Moreover, we excluded studies published before 2018.

Data extraction and quality assessment

After removing duplicate results of records, we reviewed
abstracts and titles to identify eligible articles for full-text
review. Then quality of the evidence of included articles
that met the inclusion criteria was assessed by following
Cochrane’s recommendation of risk of bias and level of
evidence.'” The criteria to determine the evidence for the
level of risks followed QUADAS-2 (which is designed to
assess the quality of primary diagnostic accuracy studies),
with the assistance of the RevMan 5.4 tool.

Statistical analyses

All studies were configured in RevMan 5.4 from
Cochrane for Windows. We compared each study’s sensi-
tivity and specificity value in the 95 % confidence interval
(CI). Then we fit hierarchical summary receiver-operating
characteristic curves. Studies on Al models are presented
as different shapes, represented by a summary point with a
dot surrounded by the 95 % CI.

Results

Study selection

We identified 343 records in databases and retrieved 221
studies after removing 122 duplication records assisted by

Table 1: Characteristics of the included studies.

Validation

Diagnosis

AT model

Total

KC Stages

Country

Ist author/Year

Method/parameters

Samples/Cases

88/49
69/38

Pentacam/11 Internal

Pentacam/4

MM

Early KC

Australia

*Cao et al.' (2020)
*Ahn et al.'® (2022)

Internal & External

FcNN,

Early KC/KC to control

South Korea

XGBoost
NN

Internal

UHR-OCT &

121/33

Early KC/KC to control

China

*Shi et al.'” (2020)

Pentacam HR /49

TMS-4

Internal & External

Internal & External
Internal

Internal
External
Internal

Pentacam/28
Pentacam/810

CSO/16
Corvis ST/4

CNN
FNN
RF
NB
FNN

354/28
389/77
267/145
60/30
354/143

Early KC/KC to control

Early KC
Early KC
KC to control
KC to control

Australia

Taiwan
Spain

Belgium
China

*Kuo et al.'® (2020)

Issarti et al.” (2019)

Cao et al.>’ (2021)
Castro-Luna et al.>> (2020)
Tan et al.”> (2022)

Internal

NA

Three classifications of KC diagnosis: Early KC from control, Clinical KC from control and KC severity. Multiple methods (MMs), Linear Discriminant Analysis (LDA), Neural Network

(NN), Feedforward Neural Network (FNN), (Convolutional Neural Network (CNN), Random Forest (RF), Naive Bayes (NB), Density-based clustering (DBC). (*) Studies not included in

the meta-analysis.

AS-OCT, CASIA/6

Pentacam/10
CASIA-OCT/420

CNN
LDA & RF
DBC

543/304
126/93
3156/-

KC to control
KC to control
KC severity

Germany

Japan
Japan

Kamiya et al.”! (2019)
Herber et al.”* (2021)
*Yousefi et al.>> (2018)
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Endnote 20 application. We screened the titles and abstracts
of 221 studies, excluded 102 records, and retrieved 119.
Furthermore, we excluded 108 studies as they failed to meet
the inclusion criteria, and retrieved 11 eligible studies for the
analysesg’mf25 (see Figure 1).

The studies were conducted in several countries including
China (n = 2),'7?? Australia (n= 2),19:20 Japan (n = 2),21’25
Germany (n = 1),24 Belgium (n = 1),9 Spain (n = 1),23 South
Korea (n = 1),'° and Taiwan (n = 1)."* The earliest studies
included were published in 2018, and the latest studies were
published in 2021.

Characteristics of the studies

We reviewed 11 studies on Al and KC and categorized
them into three groups: early KC from controls, KC
eyes from controls, and KC severity.g’l(’_25 To maintain
consistency with a previous systematic review, we used the
term “early KC” to refer to subclinical or forme fruste
KC'? (See Table 1).

Quality evidence and risk of bias

This study used Cochrane’s recommendation for
QUADAS-2 to assess the quality evidence and risk of bias
with the assistance of the RevMan 5.4 tool. Seven of eleven
(63.6 %) studies were evaluated with a high risk of bias; the
remaining studies were either unclear or had lower risks
(Figure 2A, B). High risk of bias studies failed to explain the
population (selection of patients), no index test (no data
split or cross-validation unreported), or deal with the study
flow and time. As no gold standard exists for diagnosing KC,
the risk of bias in the models may be influenced by various
definitions.

Use of Al as a diagnostic modality for KC

A meta-analysis was conducted on 6 of 11 studies. Five
studies'® "% were omitted due to insufficient data for
calculating true positive (TP), false negative (FN), false
positive (FP), and true negative (TN). The analysis
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Figure 2: A. Risk of bias and applicability concerns summary table. B. Risk of bias and applicability concerns graph.
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Figure 3: Al performances in KC diagnosis.

followed a KC classification, and Al models were used as
diagnostic modalities. Two studies in the meta-analysis of
KC classification used corneal topography parameters to
evaluate Al models in early KC from controls, varying from
28 to 810 parameters.g’20 Those studies had more parameters
than those used to identify KC from controls, with only 36

parameters.zl*24 Diagnostic reviews encompass the results
of sensitivity and specificity from multiple studies.”® Thus,
we selected and compared either the Al model with the
highest sensitivity and specificity from each study or
overall sensitivity and specificity scores. We found that the
most used imaging machines were Pentacam (including
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Figure 4: Summary receiver-operating characteristic curve of Al diagnostic performance for KC.
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Pentacam HR). Three studies in this meta-analysis used
Pentacam data,()’zo’24 one study used CASIA,21 and each of
the remaining studies used CSO* and Corvis ST.”

Most studies (n = 5) used a single machine learning
algorithm,‘)’zof23 and one study24 compared several
algorithms. Those studies explored machine learning
algorithms and deep learning including naive bayes (NB),
neural networks (NNs), and random forest (RF). NNs
(feedforward neural networks [FNN] and convolutional
neural networks [CNN]) are the most used Al models for
diagnosing KC. Three studies successfully detected KC
using a NN system, and two studies employed a FNN to
deal with corneal topography for detecting KC.>*

The high sensitivity of diagnosing KC was obtained from
these two studies in the NN group, which was retrospectively
0.97 (0.91, 1.00) and 0.99 (0.96, 1.00), while the specificity for
each study was 0.96 (0.93, 0.98) and 1.00 (0.97, 1.00). One
study by Kamiya et al. used deep learning with a CNN al-
gorithm to classify six color-coded maps for detecting KC,
resulting in high sensitivity of 1.00 (0.98, 1.00) and specificity
of 0.98 (0.96, 0.99)! (see Figure 3).

The second most used AI model to detect KC is RF. Two
studies”** investigated RF as an Al algorithm to compare
KC with normal eyes, which resulted in a sensitivity of 0.97
(0.93, 0.99) and 0.94 (0.86, 0.98) and a specificity of 0.98
(0.93, 0.99) and 0.91 (0.76, 0.98). One study23 employed
NB to evaluate normal and KC eyes, which had the
highest sensitivity and specificity of 1.00 (0.88, 1.00) and
1.00 (0.88, 1.00). Thus, of the three AI models developed,
NNs and NB have the highest sensitivity and specificity
compared to the RF group.

RFs had the lowest sensitivity and specificity. In addition,
one study excluded from the meta-analysis developed a clas-
sification of KC severity. A study by Yousefi et al. used
density-based clustering as an algorithm from CASIA diag-
nostic labeling to distinguish KC from normal eyes and
classify KC severity into several clusters.” Although this
unsupervised machine learning identifies distinctive clusters
in the data, it showed a high sensitivity of 97.7 % and
specificity of 94.1 %. As all studies showed a sensitivity and
specificity >0.90, the overall performance of Al models
showed significant results. Moreover, from all the studies
that used Al, one study on NB, one study on RFs, and two
studies on NNs investigated the KC diagnosis compared to
the control group, while one study on NN and one study on
RF included early KC versus the control group. The
summary of the performance of Al-assisted diagnosis can be
seen in Figure 4.

Discussion

The meta-analysis on KC and Al demonstrated that Al can
be reliable for differentiating KC eyes from control eyes by
utilizing data from various corneal imaging devices. However,
as Al models have been developed for various imaging systems,
they are not literally exchangeable due to different selected
inputs and expectations. NN, for instance, has been proven to
have greater sensitivity in diagnosing KC. Nevertheless, the
study conducted by Cao et al., which used multilayer percep-
tron NN, showed that the algorithm has significantly low
sensitivity (0.80) and specificity (0.20) compared to other Al

models.'” This result differs from a study conducted by Valdés-
Mas et al., which found that multilayer perceptron showed the
best results from all models they proposed.27 Meanwhile, using
similar Pentacam data, Tan et al. discovered that the
performance of the FNN model with sensitivity and
specificity was higher than 0.90.%

Our research discovered that NN is the most frequently
used AI model for diagnosing KC with high accuracyg’zl’22
Lavric et al. argued that the accuracy of the NN lies in the
simultaneous use of the topographic parameters to both
eyes, which enhances its discriminative ability.28 The more
cases used as input, the more this Al makes the output
more predictable and accurate, as a learning process can
enhance it, and the program keeps learning that generates
changes in its behavior.”’

NB has a sensitivity and specificity of 1.00 even in the
presence of very significant noise. It is a probabilistic
classifier that is well suited for high dimensional datasets.
The results of this review are in line with the study by Luis
et al., which demonstrated that the best performing clas-
sification algorithm was NB with an accuracy of 0.9401
(95 % CI: 0.93 to 0.94) compared to other algorithms for
KC detection.”

RF was found to be the second most commonly used
model for detecting KC, with a ensitivity and specificity
>0.90.">* The advantage of this model is that the forest is
relatively stable, even though the data and performances of
individual trees change due to the combination of many
trees.’"’! Lopes et al. assessed the accuracy of this model
compared with other models, and found that RF had the
best performance in detecting subclinical eyes, with a
sensitivity of 85.2 %A study detecting KC severity also
discovered that RF has the highest classification
performance compared with other parameters with an
accuracy of 98 %.> Al can potentially make better
diagnoses of the KC with their high performances,
particularly on sensitivity and specificity. The main
objective of Al in healthcare services is to support
clinicians in making medical decisions concerning patients.
The diagnosis of KC should distinguish between the early
and later stages of KC in order to provide the appropriate
treatment. Finally, given that the problem with KC
diagnosis is selecting the input to be analyzed that affects
the high or low performance of diagnosis, further studies
need to select the most suitable inputs for each Al classifier
to maximize the Al performance.

Conclusion

This study presents the prospect of using AI models to
diagnose KC. Pentacam is the most commonly used ma-
chine learning method, whereas the NN is the Al algo-
rithm frequently used to help find a more accurate
diagnosis. The AI models with the highest sensitivity and
specificity detection are NNs and NB with a sensitivity
reaching 1.00. Due to the complexity of quantifying the
pooled sensitivity and specificity for more than one Al
model in each group, this study was limited to conducting
a meta-analysis on one Al model for each study. Thus,
additional studies are needed on more Al models as
diagnostic modalities for KC with sufficient data on TP,
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FN, FP, and TN. As the challenges in conducting
a diagnosis are the selection of inputs, it is recommended
that the clinician determine the most appropriate inputs
for each Al model. Despite the limitations, this study
significantly contributes to providing evidence of Al’s ac-
curacy as a diagnostic modality for KC.
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