Skip to main content
. 2024 Jan 1;19(2):296–303. doi: 10.1016/j.jtumed.2023.12.007

Table 1.

Characteristics of the included studies.

1st author/Year Country KC Stages Total Samples/Cases AI model Diagnosis Method/parameters Validation
∗Cao et al.19 (2020) Australia Early KC 88/49 MM Pentacam/11 Internal
∗Ahn et al.16 (2022) South Korea Early KC/KC to control 69/38 FcNN, XGBoost Pentacam/4 Internal & External
∗Shi et al.17 (2020) China Early KC/KC to control 121/33 NN UHR-OCT & Pentacam HR/49 Internal
∗Kuo et al.18 (2020) Taiwan Early KC/KC to control 354/28 CNN TMS-4 Internal
Issarti et al.9 (2019) Belgium Early KC 389/77 FNN Pentacam/28 Internal & External
Cao et al.20 (2021) Australia Early KC 267/145 RF Pentacam/810 Internal & External
Castro-Luna et al.23 (2020) Spain KC to control 60/30 NB CSO/16 Internal
Tan et al.22 (2022) China KC to control 354/143 FNN Corvis ST/4 External
Kamiya et al.21 (2019) Japan KC to control 543/304 CNN AS-OCT, CASIA/6 Internal
Herber et al.24 (2021) Germany KC to control 126/93 LDA & RF Pentacam/10 Internal
∗Yousefi et al.25 (2018) Japan KC severity 3156/- DBC CASIA-OCT/420 NA

Three classifications of KC diagnosis: Early KC from control, Clinical KC from control and KC severity. Multiple methods (MMs), Linear Discriminant Analysis (LDA), Neural Network (NN), Feedforward Neural Network (FNN), (Convolutional Neural Network (CNN), Random Forest (RF), Naïve Bayes (NB), Density-based clustering (DBC). (∗) Studies not included in the meta-analysis.