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Abstract

Purpose of Review—Biomarkers are commonly used in epidemiological studies to assess 

metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and 

routes of exposure. Researchers are increasingly using multimetal panels and innovative statistical 

methods to understand how exposure to real-world metal mixtures affects human health. Metals 

have both common and unique sources and routes of exposure, as well as biotransformation and 

elimination pathways. The development of multi-element analytical technology allows researchers 

to examine a broad spectrum of metals in their studies; however, their interpretation is complex 

as they can reflect different windows of exposure and several biomarkers have critical limitations. 

This review elaborates on more than 500 scientific publications to discuss major sources of 

exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 

metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, 

nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) 

commonly used in multi-element analyses.

Recent Findings—We conclude that not all metal biomarkers are adequate measures of 

exposure and that understanding the metabolic biotransformation and elimination of metals is 

key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure 

to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and 

uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine 

is the most commonly used biomarker of exposure across metals but it should not be used to assess 

lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic 

processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather 

than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic 

arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations 

with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, 
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except in populations exposed to high levels of inorganic mercury such as in occupational and 

environmental settings. When selecting biomarkers, it is also critical to consider the exposure 

window of interest. Most populations are chronically exposed to metals in the low-to-moderate 

range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this 

regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and 

selenium. However, more research is needed to understand the role of nails as a biomarker of 

exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to 

several essential and non-essential metals such as lead, including during the prenatal window.

Summary—As metals epidemiology moves towards embracing a multi-metal/mixtures approach 

and expanding metal panels to include less commonly studied metals, it is important for 

researchers to have a strong knowledge base about the metal biomarkers included in their research. 

This review aims to aid metals researchers in their analysis planning, facilitate sound analytical 

decision-making, as well as appropriate understanding and interpretation of results.
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Introduction

Epidemiological studies traditionally examine exposure-outcome relationships one at a time. 

With the advancement of novel analytical and statistical methods and the development of 

programs such as the Human Health Exposure Analysis Resource (HHEAR) to support 

the measure of multiple exposures [1], the field of environmental epidemiology is quickly 

moving to study environmental exposures in ways that more closely resemble real-life 

exposure mixtures [2–4].

Exposure to metals and metalloids (referred to throughout as “metals” for simplicity) is 

widespread, and four of the top ten chemicals of major public health concern recognized 

by the World Health Organization are metals (arsenic, cadmium, lead, and mercury) 

[5]. Chronic exposure to certain metals contributes to the development of adverse health 

outcomes across the life course, including but not limited to cardiovascular disease [6], 

kidney disease [7–9], some cancers [10, 11], adverse birth outcomes [12–14], neurocognitive 

outcomes [15], and bone disease endpoints [16].

Biomarkers are commonly used in epidemiological studies to assess metals exposure and 

estimate internal dose, as they integrate multiple exposure sources, including air, water, and 

food. Multi-element techniques such as inductively coupled plasma mass spectrometry (ICP-

MS) can quantify metal levels with high sensitivity and specificity. In addition, relatively 

new tools such as Bayesian Kernel Machine Regression [17] and Weighted Quantile Sum 

Regression [18] enable the statistical analysis of large panels of metals. The interpretation 

of those analyses, however, can be complex. Metals have both shared and unique sources 

and routes of exposure (Fig. 1); some metals share common absorption, transformation, or 

elimination pathways, while others differ in their metabolic route; and not all biomarkers 

are effective measures of metals exposure. As metals epidemiology embraces a multi-metal/
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mixtures approach and metal panels expand to include less commonly researched elements, 

such as nickel, tin, and molybdenum, it is important for researchers to have a strong 

knowledge base about the metals studied.

In this review, we discuss sources of exposure, biotransformation and elimination, and 

biomarkers of exposure for 12 metals, including 8 non-essential elements (arsenic (As), 

barium (Ba), cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), tin (Sb), uranium (U)) 

and 4 essential elements (manganese (Mn), molybdenum (Mo), selenium (Se), and zinc 

(Zn)), commonly used in multi-metal epidemiologic analyses. This review aims to aid 

metals researchers in their analysis planning, analytical and statistical approaches, and 

interpretation of results.

Methods

Search Strategy and Data Abstraction

To identify the most informative literature for the metals included in the review, we 

searched across PubMed, Google-Scholar, and EMBASE using free text, key words, 

and MeSH terms. A separate search was conducted for each section (i.e., sources of 

exposure, biotransformation, and biomarkers), and refined for every metal, consistently 

including MeSH terms such as “biomarkers”[MeSH Terms], “biotransformationmation” 

[MeSH Terms], “absorption” [MeSH Terms], and “metabolism” [MeSH Terms]. No 

language or time window restriction was applied. We excluded non-original research, 

case reports, case series, and non-peer-reviewed literature except from institutional reports 

(i.e., Center for Disease Control and World Health Organization reports). We included a 

comprehensive selection of systematic reviews, meta-analyses, randomized controlled trials, 

and observational studies. If available, we primarily relied on longer follow-up, larger 

sample size, and more recent human studies. In vitro and animal studies were included to 

elaborate on emerging biomarkers. After the inclusion and exclusion criteria, a total of 521 

unique records were identified, including laboratory, animal, and epidemiological studies.

Results

Non-essential Metals

Table 1 includes a summary of the most commonly used biomarkers, the exposure period 

reflected, and other considerations for the non-essential metals included in this review. 

Metals are presented alphabetically. Figure 1 displays their major sources of exposure.

Arsenic

Arsenic is a metalloid found in inorganic (arsenite and arsenate) and organic (arsenobetaine, 

arsenosugars, monomethyl, and dimethyl As) forms. Their toxicity, metabolism, sources of 

exposure, and effects on human health greatly differ [19, 20]. Because inorganic arsenicals 

and their methylated metabolites are considerably more toxic than the organics (especially 

seafood arsenicals), we address them separately.
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Major Sources of Exposure—Inorganic As can be released into water from the natural 

erosion of rocks and soil [19, 21] and can be taken up by plants’ root systems [22]. 

Inorganic As contamination of soil and water is also a result of anthropogenic activities, 

such as mining; coal-burning power plants; smelting operations [23]; wood preservatives; 

agriculture, where it was used as a pesticide prior to 1960 [24]; urban runoff, and various 

industrial waste sources [19]. These activities can lead to the mobilization of As from 

soil, landfills, or residue deposits into ground and surface water [19, 25–30]. Inorganic As 

can also be found in air as a mixture of arsenite and arsenate suspended as particulate 

matter [31], although non-occupational exposure via air is thought to be minimal in most 

populations, except for areas with As-contaminated coal burning [19]. The major route 

of exposure to inorganic As is through the ingestion of contaminated drinking water and 

food. More than 100 million people worldwide rely on water contaminated with inorganic 

As above 10 μg/L [32] (the WHO, US Environmental Protection Agency, and European 

Union standard), including 2 million people in the US [20], above 10 μg/L (the WHO, US 

Environmental Protection Agency, and European Union standard). When water As exposure 

is low, food is the major source of exposure [33, 34]. The primary contributors to dietary 

inorganic As intake are vegetables, fruits and fruit juices, and rice [35, 36]. Organic As is 

found in fish and shellfish, predominantly in the forms of arsenobetaine, arsenosugars, and 

arsenolipids [37]. It is also a component of some herbicides and anti-microbial additives 

such as roxarsone and nitarsone, which were used to increase efficiency in animal poultry 

feed [38]. The approval of As-based drugs in poultry production was withdrawn by the 

FDA in 2016 in the USA, after it was found that these arsenicals could transform into 

inorganic As [39]. Additionally, organic As is the active principle of antiparasitic drugs 

such as melarsoprol, which is used as a treatment for trypanosomiasis (sleeping sickness) 

and leishmaniasis [40]. Melarsoprol and inorganic arsenic are also used in the treatment of 

certain types of leukemia, myeloma, and other neoplasia [41, 42]. Organic As in air is rare, 

except in areas with intensive use of arsenical pesticides [43].

Absorption, Biotransformation, and Elimination—Inorganic arsenic is absorbed in 

the gastrointestinal (GI) tract, transformed through a series of methylation and reduction 

processes, and excreted primarily through the urine [19]. Throughout the metabolic process, 

species with different toxicities and elimination rates are formed. Trivalent and pentavalent 

inorganic arsenicals undergo two sequential methylation reactions to form monomethyl 

(MMA) and dimethyl (DMA) As. Inorganic and monomethylated forms of As have higher 

cytotoxic activity [44]. Methylation occurs mostly in the liver and requires the enzyme 

As methyl transferase (AS3MT), with S-adenosyl methionine as the methyl donor. Once 

formed, DMA and to a lesser extent MMA are rapidly excreted in urine. Methylation plays 

a crucial role in increased As elimination and decreased tissue retention [20, 45]. Organic 

As species such as arsenobetaine and arsenocholine are not metabolized, do not enter cells, 

and are excreted mostly unchanged in the urine [46]. Arsenosugars on the other hand have 

a complex metabolism and can be transformed into up to 12 As metabolites, including 

DMA, oxo-DMA, and rare species such as oxo-DMAA, thio-DMAA, thio-DMAE, and 

thio-arsenosugar [47, 48]. Their toxicity is believed to be limited [49]. Urinary excretion is 

the main route of elimination for both inorganic and organic As species. Inorganic As is 
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excreted in three phases: the majority is eliminated within the 4 first days after exposure, and 

2 longer-term components eliminated at 1 week and up to 38 days [50].

Genetic variants in AS3MT have been associated with different As elimination rates and 

variable profiles of inorganic and methylated As species in urine, suggesting a genetic 

determination of As metabolism capacity [19]. Arsenic methylation is strongly influenced 

by the availability of methyl groups and co-factors involved in the one-carbon metabolism 

pathway, which are provided by nutrients, including vitamins B2, B6, B9 (folate) B12, 

choline, and betaine [51]. Nutritional deficiencies of B vitamins have been associated 

with increased toxicity of inorganic As in humans [52]. Supplementation with folic acid, 

other methyl donors, and compounds that interact with one-carbon metabolism have been 

associated with an increased metabolism and excretion rate of inorganic As in randomized 

clinical trials [53, 54]. Sex differences in As metabolism are well known. Women 

have a greater As methylation capacity compared with men, likely due to their higher 

phosphatidylethanolamine N-methyltransferase activity, which is involved in one-carbon 

metabolism and regulated by estrogen [55, 56]. For the same reason, As metabolism rapidly 

increases during pregnancy [57, 58]. Children have been reported to have a more efficient 

methylation activity than their parents [59, 60], potentially because of a more efficient 

second methylation step in children compared with adults [61].

Biomarkers—Total As in urine is one of the most commonly used biomarkers of As 

exposure in epidemiologic studies [62]. Several studies have reported strong correlations 

between urinary As and As in drinking water and rice intake [63–65]. Given the elimination 

phases of As, urinary As primarily accounts for exposures that occurred within the previous 

month [66, 67].

Importantly, total urine As reflects exposure to both organic and inorganic As. Thus, in 

populations with fish and seafood intake, total urinary As may primarily reflect organic 

arsenicals, in which case this biomarker will not reflect toxic inorganic As species well 

[68]. Therefore, when fish and seafood intake is prevalent, As speciation and adjustment 

for arsebonetaine is needed to distinguish between inorganic and organic arsenicals [69–71]. 

In the absence of seafood intake, the general proportions of As metabolites in urine have 

been reported to range from 10 to 30% for inorganic As, from 10 to 20% for MMA, 

and from 60 to 70% for DMA [44]. Similar to urinary As, blood As also reflects both 

organic and inorganic As. However, As speciation in blood is more complex than that in 

urine because concentrations are generally much lower [19]. In the absence of seafood 

consumption, the proportions of As metabolites in blood are different from those found 

in urine. Previous studies have reported the following proportions for blood: 43% for 

DMA, 30% for MMA, 13% for As III, and 13% for As V [72]. Inorganic arsenic travels 

through the blood and has a high affinity for keratin-rich tissues [50]. Hair, clipping from 

all ten toenails, and/or fingernails are used as biomarkers of past exposure. Fingernails 

generally represent exposures that occurred in the previous 6 months, while toenails, 

which have a slower growth rate, represent exposures from the previous 6 to 12 months 

[20]. For hair, every 1 cm from the scalp represents exposure from a prior month [73]. 

Environmental decontamination is needed to obtain reliable measurements from these 

tissues [19]. Moderate to high correlations have been reported between toenail, fingernail, 
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hair, and urine As concentrations, particularly in populations with high levels of inorganic 

As exposure [74]. Increasing evidence suggests that a toenail sample at a single point in 

time could represent a good biomarker for long-term exposure, when external exposures 

are consistent. However, validated protocols are needed to reduce measurement error from 

analytical methods in As toenail determination [19, 74]. Inter-individual differences in 

toenail growth rates may also contribute to differences in the time window of exposure 

that is reflected by the biomarker. Although few studies have investigated placental As as 

a biomarker of exposure, a study of private well users in the USA reported positive and 

significant correlations between As concentrations in the placenta and As concentrations in 

maternal urine, maternal and infant toenails, and drinking water [75].

Barium

Barium is rarely found in its inorganic form. It is usually combined with other elements, 

forming species such as barite (BaSO4), Ba chloride (BaCl2), or carbonates (e.g., Ca 

(Ba) CO3). These species have different solubilities, which has implications for their 

bioavailability [76, 78].

Major Sources of Exposure—Barium is an alkaline metal that occurs naturally in 

the earth crust, rocks, and coal [76, 78, 79]. It can be released into water from natural 

erosion. Traces of Ba from natural sources are ubiquitously present in food and water. 

Recent anthropogenic activity has intensified the burden of exposure to this metal [80]. 

Several activities, particularly petroleum and steel industries, drilling activity, and shale gas 

exploration [78], have increased the amount of Ba in soil, water, and air. Barium compounds 

are also used in the production of plastics, electronic devices, bricks, paper, glass, and 

cosmetics [77, 81, 82], pigments, aluminum, and sugar refining and fertilizers [76, 83]. In 

the last 40 years, Ba has also been widely used as a contrast medium in esophageal and GI 

tract function testing, and as a treatment for lower GI tract bleeding, among other medical 

applications [84, 85]. The main route of Ba exposure in the general population is through 

ingestion of contaminated food and water [76, 78], followed by inhalation from ambient air 

[76, 78]. Plants that grow in soil with high Ba concentrations can accumulate this metal, 

contributing to dietary intake [86]. Major dietary sources of Ba exposure include legumes 

and nuts, such as pecans, peanuts, and brazil nuts, which may contain Ba concentrations as 

high as 4,000 μg/g [76, 77, 87–90]. Other foods such as cabbage, soybeans, dairy products, 

and some processed foods have high Ba concentrations [77, 88, 91, 92]. Ba levels in water 

are variable. Ba in groundwater is frequently associated with radium, adding its toxicity to 

radium radionuclides such as 226Ra and 228Ra, with half-lives of more than 1000 years and 

6 years respectively [78]. Ba is commonly found in urban air pollution particulates (mostly 

as BaCl2 and BaSO4) due to fuel exhaust and waste burning[76].

Absorption, Biotransformation, and Elimination—The absorption of Ba in the GI 

and respiratory tracts depends on the solubility of its chemical form. For example, highly 

soluble species such as BaCl2 and BaCO3 are more likely to be absorbed than others 

(e.g., BaSO4). The absorption of Ba compounds into the bloodstream is highly variable 

and ranges from 1 to 60% of total intake [76], with higher absorption rates observed after 

longer durations of exposure [93] and among fasting individuals. In contrast, Ba absorption 
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decreases if there is a high concentration of competitive ions in the GI tract, such as 

calcium, phosphorus, and zinc [78]. Substances such as sodium alginate [94] have also 

been shown to reduce Ba absorption in the GI tract; in contrast, lysine and lactose [95] 

facilitate its absorption. Ba prevents calcium absorbance in pancreatic islets, which can lead 

to an increased release of insulin [96]. Ba does not undergo metabolic transformation in the 

body [62]. Once absorbed, it is rapidly cleared from the bloodstream, with 90% distributed 

to bone, followed by teeth, heart, lung, skin, adipose, connective, and other tissues [76, 

97]. Barium has relatively short half-life and is eliminated from the body within 3 to 42 

days; the half-life of barium in bone tissue is 50 days. Ninety percent of Ba administered 

intravenously for medical procedures as well as for other routes of absorption is excreted 

into feces and urine within this period [76, 97], with ~ 75% eliminated within 3 days. In the 

kidney, Ba is reabsorbed in the renal tubules, which decreases its urine excretion rate [77]. 

The rate of fecal Ba elimination is at least 2–3 times higher than the elimination through 

urine, and it is mediated by mechanisms such as pancreatic secretions, saliva, or direct 

excretion through the intestine wall; biliary excretion is only responsible for a small fraction 

of its fecal elimination [98]. Ba can act as an antagonist of potassium, and vice versa, by 

blocking the potassium channels of sodium–potassium pumps located in cell membranes 

[99], which reduces the concentration of extracellular potassium leading to hypokalemia 

[92]. Potassium can be used as an antidote for acute Ba intoxication [100–102].

Biomarkers—Barium can be detected in blood, urine, feces, and other biological tissues 

such as the placenta, teeth, and bone [77, 103–107]. Fecal and urinary Ba concentrations 

reflect recent exposure, within the previous 3 days and up to 2 weeks [97]. Overall, there is 

a need for studies which investigate correlations between environmental Ba concentrations 

and levels in urine and other biomarkers [76, 78, 108].

Cadmium

Major Sources of Exposure—Cadmium can naturally occur combined with other metals 

such as Zn, Pb, and copper in Cd-containing ores [109]. Human activities, including mining, 

smelting, industrial production of batteries, plastic and solar cells [110], fossil fuel and 

waste burning, and phosphate fertilizers, are the main sources of environmental Cd and the 

primary sources of soil and water Cd-contamination [90, 111]. Plants, including tobacco, 

can bioaccumulate Cd when they are grown in contaminated soils, incorporating this 

toxicant into the food chain and tobacco products [112, 113]. Tobacco smoke is a major 

source of Cd exposure. It is estimated that exposure to Cd in smokers is at least 10 times 

higher than in nonsmokers, adjusting for dietary intake [111]. Cd exposure can also occur 

as a result of secondhand smoke [114]. Decreases in population mean blood Cd levels have 

been reported in epidemiologic studies following reductions in smoking prevalence [20, 

115]. The main source of Cd exposure among non-cigarette smokers is diet. Green-leaf 

vegetables such as spinach and lettuce and grains and seeds such as peanuts, soybeans, 

and sunflower seeds contain particularly high concentrations of Cd [111]. Consumption 

of shellfish and offal/ organ meat also contributes to Cd exposure [116, 117]. Cadmium 

can also be found in air as a component of particulate matter air pollution, especially in 

areas with high levels of ambient air pollution, such as urban areas and areas with heavy 

industrialization [118].
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Absorption, Biotransformation, and Elimination—Cadmium absorption rates 

through the GI tract and inhalation are variable and range from 1 to 25% [111, 119, 120]. 

Absorption rates are influenced by several factors, including particle size for inhalation 

exposures, the solubility of certain Cd salts in biological fluids (e.g., Cd chloride is highly 

soluble), and the availability of cellular transporters. In drinking water, Cd is typically 

found in its ionic form, while in food it is usually linked to proteins (e.g., metallothionein) 

and other molecules [111]. Cadmium can use several transporters, including zinc and iron 

transporters, calcium channels, glutathione transporters, and divalent metal transporters 

(DMT1), which facilitate Cd absorption [111]. An inverse correlation between body iron 

and Cd absorption has been identified by previous studies [121]. While the molecular 

mechanisms are unclear, a dysregulation of DMT1, a metal transporter protein in the GI 

tract may partially explain this phenomenon. On average, the accumulation of Cd is higher 

in women compared with men at equal exposure levels, possibly due to differences in 

DMT1 expression and to the lower iron stores in women compared to men [20, 121, 122]. 

Zinc supplementation can reduce Cd absorption in the GI tract and induce the synthesis of 

metallothionein and a favorable redox homeostasis, suggesting a potential antagonist effect 

on Cd [123]. A recent study identified a 28% heritability for urinary Cd concentrations. 

Genetic variants linked to an increased expression of glutathione transporter ABCC1 may 

have a role in individual susceptibility to Cd absorption and internal dose [124]. Cadmium 

does not undergo metabolic transformation. Once it enters the bloodstream it primarily binds 

to metallothionein, forming metallothionein-Cd complexes. These complexes are distributed 

through the body, accumulating in the liver, bones, and kidneys [125].

In the kidney, [90, 111, 126] metallothionein is filtered by the glomeruli and reabsorbed 

in the proximal renal tubule, where free ionic Cd is released into the kidney cortex. Ionic 

Cd can cause renal toxicity by inducing oxidative stress, inactivation of metal-dependent 

enzymes, and activation of calmodulin and other enzymes, among other mechanisms [111, 

127]. When free Cd concentrations in the renal cortex exceed 50 μg/g, Cd cannot be 

captured by metallothionein, causing nephrotoxicity. Less than 0.01% of the Cd body burden 

is eliminated by urinary excretion every day, which leads to a chronic accumulation of Cd 

in the kidney. This accumulation usually peaks after 50 to 60 years of exposure and then 

stabilizes due to the onset of Cd-induced renal injury, as well as the physiological loss in 

the renal cortex due to aging, which results in higher excretion of Cd in urine [128]. The 

half-life of Cd in the kidney is estimated to range between 6 and 38 years [129]. In contrast 

with chronic exposure, short-term exposure to Cd does not typically cause visible impacts 

on renal function. Cadmium also accumulates in the liver, where its half-life is estimated to 

range from 4 to 19 years [111].

Biomarkers—Cadmium can be measured in blood, urine, feces, placenta, and 

preferentially in soft tissues, including the liver and kidneys. Blood Cd is commonly used 

to assess recent exposure. Cd accumulates in erythrocytes and its half-life is around 100 

days [20]. However, there is a slow component in blood, for which the half-life is 7–16 

years; this component can also be indicative of internal body burden [90, 111]. Urine Cd is 

a biomarker of total body burden and long-term cumulative exposure due to its accumulation 

in the renal cortex for years and its slow rate of elimination in urine [130, 131]. However, 
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in populations where kidney function is compromised (e.g., renal injury from Cd-induced 

damage, age, other comorbidities) urinary Cd should be interpreted with caution. In these 

populations, the rate of Cd excretion increases, and urinary Cd no longer reflects body 

burden [111, 132]. Previous studies have documented a high correlation between total 

Cd exposure and urinary Cd concentrations [133–135] and low intra-individual variability, 

even in populations exposed to low levels [132, 136, 137]. Therefore, a single spot urine 

measurement can likely be used as a reliable biomarker of chronic exposure. Emerging 

biomarkers to detect early stages of Cd-induced nephrotoxicity include urinary measures of 

Kim-1 and beta2-microglobulin. However, their use is still generally limited to in vitro and 

animal studies [127]. Fecal Cd is reported to be a good biomarker of dietary Cd intake and 

indicates recent exposure, reflecting a combination of absorbed Cd, which is eliminated at 

a similar rate in urine and feces, and unabsorbed Cd from the diet [111]. Hair, fingernail 

and toenail Cd concentrations are not good biomarkers of exposure and are poorly correlated 

with smoking. The use of nails as biomarkers of exposure has been implemented in pilot 

studies identifying a low correlation between nail and blood Cd [138]. Cadmium levels 

in organs including the liver and kidneys can also be directly assessed using non-invasive 

techniques such as X-ray fluorescence analysis or neutron activation analysis. However, 

these measurements are limited by low sensitivity and are usually reserved for monitoring 

highly exposed workers rather than the general population [111]. Maternal smoking and Cd 

concentrations in both maternal blood and urine have each been associated with placental Cd 

concentrations across multiple studies [139–147]. In contrast, correlations between placental 

and cord blood Cd have been less consistent, likely because the placenta serves as a partial 

barrier to this metal; placental Cd concentrations have been reported to be higher than in 

maternal blood [139, 143, 148].

Lead

Major Sources of Exposure—The general population is exposed to Pb from air, 

drinking water, food, and indoor dust [149]. Lead does not undergo degradation over time 

in the environment. As a result, most individuals, particularly those living in urban areas, 

are exposed to high levels of Pb from previous decades’ emissions. Before the 1990s, the 

main sources of Pb exposure were the combustion of leaded gasoline and Pb-based paint. 

Although Pb fuel additives were banned in 1995 in the USA [150], some are still in use 

for farm equipment, aircraft, and marine engines [149, 151, 152]. Other sources of exposure 

include waste, coal and oil burning, renovation of historical Pb-based paints or Pb-based 

paints in older housing, tobacco products, secondhand smoke, cosmetics, and electronic 

products [20]. The increasing amount of e-waste (discarded electronic devices) is also an 

emerging source of metal exposure, from dumpsites and informal recycling activities for 

Pb, Hg, and other toxicants [153]. Lead contamination in drinking water is mainly due 

to the corrosion of Pb-based pipes [154, 155]. Lead has also been documented in certain 

foods and herbs, including spices imported into the USA, as a result of athmospheric 

deposition, bioaccumulation from contaminated soils, and adulteration during processing 

and preparation [149, 156, 157]. While Pb concentrations in plant-based foods in the USA 

are usually low, this route of exposure is particularly relevant for children under 5 years, 

as Pb contamination has been found in some formulas, infant toddler cereal, cocoa powder 

and chocolate products, and candy ingredients and wrappers [20, 158–160]. Preparation of 
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baby formula with contaminated tap water also contributes to this burden of exposure [149]. 

Soil and dust ingestion of Pb is particularly relevant for young children because of the high 

ingestion rate related to repetitive mouthing behavior and hand contamination [161–166]. 

Consumption of fish and shellfish captured in water with high Pb contamination is also a 

relevant source [149]. The burden of exposure is higher for populations living in urban areas 

and those close to sites with Pb emissions (e.g., smelters, Pb battery recycling plants, and 

mines) and accumulation from other industrial activities. In the USA, the reference value 

for blood Pb in children was updated to 3.5 ug/dL in 2021 [167]. However, no safe level of 

blood Pb for human health has been identified [168].

Absorption, Biotransformation, and Elimination—The absorption rate from 

inhalation of inorganic Pb is almost 100% for small particles (< 2.5 μm) [149]. The 

absorption rate in the GI tract is variable. Adults absorb between 3 to 10% of ingested 

Pb, while children can absorb up to 50% [169–172]. Fasting status [146, 169–171, 173–

175] and iron deficiency [176, 177] contribute to higher Pb absorption [178, 179]. Dermal 

absorption has been documented in animal models, but its contribution to body burden is 

minimal [149]. In the bloodstream, 99% of Pb enters red blood cells where it binds to 

various proteins [149]. Sigma-aminolaevulinic acid dehydratase (ALAD) has the highest 

affinity for Pb; the binding of Pb displaces zinc from this protein, impairing its function [20, 

180]. The majority of lead is transported from blood into bone tissue, which accumulates 

90% of the body burden. In the bone, Pb can replace calcium and bind phosphate, forming 

stable complexes that substitute the original calcium-phosphate salts within the bone matrix 

[181]. The accumulation of Pb in the bone is age-dependent and occurs mostly in areas that 

are undergoing calcification and remodeling at the time of exposure [182]. As a result, Pb 

primarily accumulates

in the trabecular bone of children and in cortical and trabecular bone in adults, where 

it can remain for more than 30 years [183]. From the bone, Pb can be transported back 

into the bloodstream and into other tissues when bone is resorbed [20]. Physiological 

and pathological processes that increase bone resorption, including pregnancy, menopause, 

pronounced weight loss, and osteoporosis, increase Pb concentrations in blood [20, 149, 

184–189]. Organic Pb is metabolized in the liver where it undergoes oxidative dealkylation 

by P-450 enzymes. The main elimination routes are urine and feces, although excretion is 

very low [149]. Lead can also be eliminated in smaller proportions through sweat, saliva, 

hair, nails, and seminal fluids [190–198]. Lead can cross the placenta and is excreted in 

human milk, resulting in potential sources of Pb exposure during vulnerable developmental 

windows [199, 200].

Biomarkers—Total Pb can be measured in blood, bone, teeth, nails, hair, and urine [201, 

202]. Whole blood Pb is the most used biomarker for recent and long-term exposures. If 

exposures are constant, one spot measurement of blood lead can be a reasonable indicator 

of long-term exposure [20, 149]. Although only 2% of the body burden of Pb is stored in 

blood [149], there is a constant recirculation of Pb from bone into the bloodstream. Blood 

Pb therefore reflects an integrated mixture of exposure from the past few months and has a 

longer-term exposure component over the years [20, 203]. However, short-term changes in 
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exposure can rapidly influence blood levels of Pb. To understand the burden of chronic Pb 

exposure, the cumulative blood Pb index (CBLI) can be calculated [149]. This index is based 

on repeated blood samples over time and provides an integrated measurement of average 

blood Pb levels over that time period [20, 201, 204–212]. Lead can be measured in bone 

tissue using noninvasive procedures such as K-Shell and L-Shell X-ray fluorescence (XRF) 

[213–215]. This is a biomarker of cumulative exposure since the primary reservoir of Pb 

in the body is bone. Accumulation of Pb in trabecular bone is preferably measured in the 

patella, calcaneus, and sternum; Pb in cortical bone is measured in the tibia, phalanx, or ulna 

[149]. Previous studies have reported high correlations between bone Pb measured by XRF 

and CBLI [20, 208]. However, this biomarker has important limitations, as several factors, 

including bone mass, body mass index, gender, age, and inter-laboratory variability may 

affect its accuracy [216]. Furthermore, even at low doses, XRF involves the use of radiation 

[182]. Chelatable Pb, which is measured using chelating agents such as dimercaptosuccinic 

acid (DMSA) and ethylenedi-aminetetraacetic acid (EDTA) administered prior to urine 

collection, is considered a biomarker of bioavailable Pb stores and Pb body burden. 

Chelation with EDTA requires intravenous administration [217, 218]. The best time for 

measuring chelatable Pb is 3–4 h after administering the chelating agent [219].

Several laboratory techniques have been developed over the past decades to allow the 

measurement of Pb and other metals in teeth dentine and enamel [220–223]. Teeth are 

a minimally invasive biomarker that can provide chronological information on cumulative 

exposure across the life course. Deciduous teeth can be used to assess exposures during the 

prenatal period and childhood [224, 125, 226]. Previous studies in children have reported 

strong correlations between dentine Pb and blood Pb concentrations (Spearman’s p = 0.64, p 
< 0.0001) and cord blood Pb (Spearman’s p = 0.69, p < 0.0001) [225, 227] [149] Placental 

Pb correlates well with maternal blood Pb [30, 228] and with Pb concentrations in drinking 

water [228]. However, similar to Cd, correlations between placental Pb and concentrations 

in cord blood have been inconsistent [229]. Hair, nails, urine, and plasma are not established 

biomarkers for measuring the internal dose of Pb; previous studies have reported low 

correlations between environmental Pb exposure, bone Pb, and Pb concentrations in these 

biospecimens, particularly at lower concentrations, therefore the potential exposure windows 

reflected by these biomarkers remain unclear [20, 230]. Urine and plasma Pb may be 

acceptable among populations exposed occupationally or at higher levels [230]. However, 

their utility for general populations is unclear.

Mercury

Major Sources of Exposure—Mercury can be found naturally in the environment 

as a result of volcanic activity and corrosion of rocks containing Hg [231, 232]. 

However, environmental contamination and resulting exposure to Hg occurs mostly due 

to anthropogenic activities, such as mining and smelting, coal combustion in thermal power 

plants, waste burning, and bioaccumulation of Hg in the food chain [233–236].

Mercury is found in several chemical forms. Humans are predominantly exposed to organic 

Hg (e.g., methylmercury) [237, 238], which can be found in seafood, poultry, a variety 

of pesticides, insecticides, thimerosal-containing vaccines, and in some herbal supplements 

Martinez-Morata et al. Page 11

Curr Environ Health Rep. Author manuscript; available in PMC 2024 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and alternative medicines [239]. Plants can also bioaccumulate organic Hg from soil [240, 

241]. Inorganic Hg (Hg + 2) is used as an additive in some prescription drugs, such as 

laxatives or diuretics, and other products including teeth powdering and certain cosmetics 

[237]. Inorganic Hg can also be an intermediate product of metabolized organic Hg [242]. 

Metallic Hg (Hg0, also known as elemental Hg), which is the only metal found in a liquid 

state at room temperature, has been used in dental amalgams in the past, [243, 244], as well 

as in thermometers and as an additive to paint and other materials [237, 245]. Metallic Hg 

evaporates easily, contributing to human exposure through inhalation [235].

The main route of Hg exposure in the general population is oral ingestion from diet [246]. 

Fish consumption, which contains high levels of organic Hg, contributes to more than 90% 

of Hg exposure in the US [247]. Recent studies in populations that consume large quantities 

of rice have shown that Hg-contaminated rice may also contribute to exposure [248, 249]. 

Direct contact with metallic Hg used in medical equipment such as dental amalgams is a 

secondary route of exposure which occurs through inhalation of metallic Hg as a vapor 

[250]. Some cosmetic products like skin-lightening and whitening cosmetics may contain 

small amounts of inorganic Hg and constitute an additional source of exposure [251, 252]. 

The most relevant occupational exposures occur in metal and waste processing plants, 

manufacturers of electrical equipment and building materials, and medical professions, 

including dentists and other healthcare providers [236, 253, 254].

Absorption, Biotransformation, and Elimination—Organic Hg has the highest 

bioavailability of the three forms, being easily absorbed in the GI tract, with absorption 

via oral intake ranging between 50 and 100%. The absorption of metallic and inorganic 

Hg in the GI tract is minimal; however, more than 80% of inhaled metallic Hg is absorbed 

in the lungs entering the systemic blood circulation [255]. The organic and metallic forms 

of Hg can easily cross the blood–brain barrier, entering the central nervous system, which 

is a relevant target of Hg toxicity [256]. After absorption, both organic and inorganic 

Hg undergo a series of oxidation–reduction cycles [246]. Metallic Hg (Hg0) is mostly 

transformed into inorganic Hg in the bloodstream, where it enters red blood cells and it 

is oxidized to inorganic Hg (Hg + 2) by catalase enzymes [257]. This process also occurs 

in the lungs, the brain, and the liver [246, 258], and can be inhibited by substances such 

as ethanol, which can impair Hg uptake by red blood cells [259]. The metallic Hg that is 

not transformed into inorganic Hg is mostly eliminated through exhaled air in the lungs 

[246]. The main routes of elimination for organic Hg are the feces, followed by urine and 

hair; biliary elimination plays a particularly important role in the elimination of organic Hg 

and urinary excretion accounts for less than one-third of organic Hg elimination from the 

body. The half-life of organic Hg in blood ranges from 50 to 100 days. Hair mercury can 

reflect the levels of organic mercury in blood during the previous 100 days, with every cm 

of hair reflecting exposure during the previous month [246, 260, 261]. Inorganic Hg has a 

terminal half-life of approximately 1–3 months in the body [262]. The majority of organic 

and inorganic Hg forms accumulate in the kidneys and the brain, which are the main targets 

of Hg toxicity. The primary route of elimination for inorganic Hg is urine. The Hg urine 

elimination rate is representative of the overall body elimination rate of inorganic Hg [246]. 

Acute exposure to inorganic Hg has been shown to be followed by two elimination phases: 
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an initial phase of rapid elimination of high Hg concentrations from tissues (4–5 days) [246, 

263] followed by a slower phase that can be prolonged due to persistent accumulation of Hg 

in tissues such as the brain which can last for years [264]. Both inorganic and organic Hg 

can be excreted in human milk [265, 266]. Mercury levels in cord blood are higher than in 

maternal blood, indicating placental transfer of Hg [267, 268].

Biomarkers—Mercury can be measured in several biospecimens, with urine, hair, and 

blood being used most frequently [246]. It can also be measured in feces, human milk, 

nails, and placenta [269, 270]. The different chemical forms of Hg have implications for 

its distribution, toxicity, accumulation, and elimination. As a result, different biospecimens 

reflect exposure to certain forms of Hg more accurately than others [250]. Hair is the 

biomarker of choice for measuring chronic exposure to organic Hg, as keratin binds to 

organic Hg [271, 272] Fingernails and toenails similarly reflect organic Hg for the same 

reason. Clippings from all ten toenails reflect exposure over the previous 6 to 12 months 

[273]. Prior studies have shown a high correlation between hair concentrations of Hg and 

brain tissue and whole blood at a ratio of 250:5:1. This ratio is recommended by the WHO 

for converting hair Hg concentrations to blood Hg concentrations [274]. Similarly, high 

correlations between nail and hair Hg (r > 0.9, p < 0.05) [273] and dietary Hg (Spearman’s 

p = 0.48, p < 0.01)[275] have been reported. Hair is not a good biomarker for measuring 

the burden of exposure to metallic Hg (Hg0). To understand the distribution of Hg species 

(organic vs. metallic) in hair samples, measuring Hg-stable isotopic signature has been 

successfully used in previous studies [276].

During pregnancy, organic Hg concentrations in hair are highly correlated with fetal blood 

levels, indicating that it is a good biomarker for prenatal exposure [269]. Maternal nails 

collected in early pregnancy and at delivery are useful biomarkers of prenatal exposure to 

organic Hg over the previous ~ 3 months. Prior studies identified a high correlation between 

maternal nail Hg at parturition and hair segments at 0–3 cm from the scalp [273]. The 

utility of placental Hg as a biomarker may depend on the specific Hg species evaluated. 

A study in Sweden which measured inorganic Hg in the placenta and maternal blood and 

collected information on the number of dental amalgams reported moderate correlations 

with inorganic Hg in cord blood [277]. The same study also reported positive correlations 

between placental methylHg and concentrations in both maternal and cord blood and 

freshwater fish consumption. However, results have been less consistent for total Hg [30, 

145, 148].

Urine Hg is considered the biomarker of choice for measuring exposure to inorganic Hg, 

both for the general population and for capturing occupational exposures [246]. Urine 

excretion reflects the internal dose of inorganic Hg accumulation in the kidney after acute 

exposure [274, 278], but also can be used as a measure of internal dose in chronically 

exposed populations [250]. Urine Hg can reflect exposure to inorganic Hg as well as to 

organic Hg that is de-methylated and excreted through the kidney. However, the proportion 

of organic Hg that gets demethylated and excreted in the urine remains unclear as previous 

studies have reported mixed findings [246, 279–282]. Blood reflects exposure to all 

chemical forms of Hg [250, 272, 283]. Organic Hg primarily accumulates in red blood 

cells where it binds to hemoglobin, whereas inorganic Hg is distributed between both red 
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blood cells and plasma [283]. The half-life of Hg in blood is approximately 50 days [284]. 

As a result, blood Hg is a reliable biomarker of recent exposure, although it can also be 

used as a biomarker of long-term exposure in populations chronically exposed to this metal. 

Maternal blood Hg concentrations during pregnancy can be used as a biomarker of prenatal 

exposure [269].

Nickel

Major Sources of Exposure—Nickel is found in soil, dust, and the atmosphere as a 

result of natural emissions. Anthropogenic sources of Ni include waste burning, combustion 

of fossil fuels, and steel production, among others, which also results in soil, water, and 

air contamination [285]. Nickel is also used as an alloy compound in jewelry, coins, and 

stainless steel materials and in other industrial activities such as fabrication of electric 

appliances and batteries [286].

Diet is the main route of exposure to Ni, as Ni can bioaccumulate in plant species 

that grow in contaminated soils [287], followed by inhalation and dermal contact [288]. 

Certain vegetables, such as spinach, asparagus, carrots, broccoli and green beans, tomato, 

cocoa, chocolate, and nuts can contain high concentrations of Ni [287, 289]. Smoking 

also constitutes a source of exposure [287, 290]. Populations that live near refineries and 

industrial sources of Ni are at higher risk of exposure [291]. Similar to other metals, 

household dust contamination with Ni is of particular concern for children [292]. In recent 

years, there is also concern about the use of metallic coils which contain Ni (nichrome) as an 

additional exposure among users of e-cigarette devices [293, 294].

Absorption, Biotransformation, and Elimination—The absorption rate of ingested 

Ni is highly variable and ranges from 2 to 30% [285, 286]. Approximately 20 to 35% of 

inhaled Ni is absorbed in the lungs. The solubility of Ni compounds has an impact on 

their absorption through cell membranes [288, 295]. While soluble Ni compounds tend 

to be easily absorbed by diffusion or transported by calcium channels or divalent cation 

transporters, insoluble particles can only be absorbed by phagocytosis [296, 297]. Fasting 

status and iron deficiency may also increase Ni absorption [286, 298] in the GI tract. 

Dermal absorption is generally low because little ionized Ni crosses the skin barrier [299]. 

This absorption increases with skin abrasions and can be relevant in occupational settings, 

particularly those where Ni nanoparticles are manipulated [300]. Dermal contact also leads 

to symptoms of contact dermatitis in 10–20% of the population [286]. In the bloodstream, 

Ni primarily binds to albumin, but also can be found in combination with amino acids and 

peptides [300]. The main elimination pathways for all sources of Ni exposure are urine 

and feces [285], and its half-life and accumulation in the body is relatively short, from 

12 to 48 h [286, 301]. Nickel primarily accumulates in the lungs and the kidney, but can 

also accumulate in the heart, diaphragm, and spinal cord [302]. Magnesium and zinc can 

accelerate the elimination rate of Ni and decrease its systemic accumulation [303]. Cadmium 

and chromium can interact synergistically with Ni, increasing its toxicity [304, 305]. The use 

of chelation agents such as triethylenetetramine (TETA) and Cyclam, have been used to treat 

Ni toxicity successfully [286]. Nickel is also chelated by EDTA [306].
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Biomarkers—As soluble Ni compounds are more likely to be absorbed, serum and plasma 

Ni reflect exposure to soluble Ni compounds most accurately [286]. However, Ni can also 

be measured in urine, feces, serum, and hair, which are the biomarkers of choice to assess 

exposure and internal dose [307]. High correlations between exposure to Ni and urine and 

serum Ni concentrations have been reported in several occupational studies [308–311]. 

Serum and urine Ni reflect short-term exposures, over the past 24–48 h [307]. Population 

levels of Ni in serum and urine are estimated to range from 0.2 and 1–3 μg/L, respectively. 

Whole blood is not a good biomarker of Ni [312]. Ni can accumulate in the placental 

tissue [313]. However, to our knowledge, no studies have investigated relationships between 

placental concentrations of Ni and more established biomarkers.

Tin

Major Sources of Exposure—Tin can be found in its divalent (Sn 2 +) or tetravalent 

form (Sn + 4) in soil, rocks, and water. Tin is used in several industrial activities in 

its inorganic form, including the production of glass, paints, perfumes and cosmetics 

production and food packages. Tin may also form organic compounds, such as tributyltin 

or triphenyltin, among others [314]. Organotin compounds are used as heat stabilizers, 

agrochemicals, and antifouling paints [314, 315]. The use of tributyltin in boat paints is a 

contamination source for marine ecosystems and its potential bioaccumulation in fish could 

be a source of exposure to Sn in the diet [315]. Tin is used in e-cigarette soldered joints 

and has been documented in e-cigarette aerosols [293, 316]. The main routes of exposure to 

Sn are oral ingestion, inhalation, and dermal contact [314, 317]. In the general population, 

ingestion of contaminated water [318], food, and beverages [319, 320] is the major source of 

exposure. Tin-lined cans, widely used in food packages, constitute a relevant dietary source. 

Populations with higher canned food consumption have a higher body burden of inorganic 

Sn [314, 321]. Similarly, marine food contributes to a relevant burden of exposure to organic 

Sn, as high levels of these compounds have been reported in the blood of individuals with 

high fish intake [322, 323]. It is estimated that ~ 90% of the US population has detectable 

levels of Sn in urine [324]. Dermal contact is most relevant in occupational settings [314].

Absorption, Biotransformation, and Elimination—After absorption, the majority of 

Sn is distributed from the blood stream into soft tissues and bone. The half-life of Sn in 

blood and soft tissue ranges from 1 to 3 days in animal models [314], compared with 2–3 

months for bone [314].

The main route of elimination for both inorganic and organic Sn is urine [314], although a 

biliary route of elimination has been described as well [325]. There is limited data on the 

absorption kinetics, mechanisms of action, and measurement of Sn body burden in humans.

Biomarkers—Tin levels can be estimated in blood, urine, soft tissues, and bone. Inorganic 

Sn is usually measured in biological specimens, as the measurement of organic Sn 

requires sampling speciation for specific organic forms (e.g., alkyltin compounds) and 

their metabolites. Blood Sn is a biomarker of recent exposure to inorganic Sn within the 

previous 2 to 15 days [314]. Inorganic Sn accumulates in bone for an estimated period of 

2–3 months [314]. However, only invasive techniques are available for measuring bone Sn, 
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which limits its practical applicability. Urinary measurement of both inorganic and organic 

Sn is a good biomarker of exposure, as urine is the main route of elimination. Urine samples 

can be digested with acid to eliminate organic matter and then oxidized to extract Sn(+ 

4). Measurements of inorganic Sn in urine can be used as a marker of exposure in human 

studies [326]. The collection of urine in plastic tubes compared to glass vials can reduce the 

ability of measuring organic Sn species by 70% [326].

Uranium

There are three main forms of U: natural U, enriched U, and depleted U [327, 328]. Their 

chemical properties, however, including chemical toxicity, are identical [328]. Radioactivity 

in U takes thousands of years to naturally decay, which gives this element an extremely 

long halflife [328]. For this section, we will focus on the chemical toxicity of natural U, as 

radiation effects are outside the scope of this review.

Major Sources of Exposure—Uranium is a component of rocks and soil and can occur 

naturally in groundwater. Uranium can also undergo oxidation–reduction reactions and 

combine with organic compounds in the environment. The mining of U-containing rocks 

for nuclear fuel and the production of phosphate fertilizers, which are also a source of Cd 

[329, 330], are the main anthropogenic sources of U [331–335]. These activities can result in 

contamination of soil, water, and air with U [334]. The main routes of exposure to U in the 

general population are through drinking water and diet [336]. Drinking water contamination 

with U is particularly relevant in the Western US, where the leaching from abandoned mines 

into the water systems disproportionately affects American Indian communities [337–339].

Uranium can be adsorbed from the soil into the roots of plants, while the reported 

bioaccumulation rates in plants and fish are low, tubercules and root vegetables can adsorb 

U on its surface [340]. The daily dietary intake of U is estimated to range between 1 and 

20 μg [341, 342]. Dermal absorption and inhalation [343, 344] absorption can occur as well. 

Inhalation is the main route of exposure in occupational settings such as mines, and dermal 

exposure is notable in military personal [345]. Occupational exposure can occur in workers 

involved in U mining and milling and individuals working with U weapons and phosphate 

fertilizers, as well as populations working and living close to fossil fuel plants [336].

Absorption, Biotransformation, and Elimination—The toxicity of U depends on its 

solubility, particle size, and exposure duration [346]. Water-soluble U compounds (e.g., 

hexavalent U, uranyl nitrate, uranyl fluoride) are more toxic than those with low solubility 

(e.g., tetravalent U, sodium diuranate). Insoluble U compounds mostly exhibit toxicity when 

they are inhaled directly into the lungs, where they can accumulate [328].

Bioavailability and absorption are low in all routes of exposure. The absorption in the GI 

tract ranges from 0.1 to 6%, depending on the solubility of the ingested compound [347]. 

The absorption rate through inhalation is also low and ranges from 0.2 to 5% [348]. Overall, 

previous population studies have documented an absorption rate of less than 2% [349–351]. 

Fasting status and low-iron diet have been shown to increase absorption [347]. Some studies 

hypothesize that the DMT1 transporter may be involved in U absorption in the GI tract 

[347], but no studies have demonstrated this.
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From the bloodstream, U is mostly distributed into bone, kidneys, and liver [331], with bone 

tissue accumulating most of the body burden [352, 353]. In animal models, U has been 

shown to cross the placenta [327]. The half-life of U is estimated to be 70–200 days in the 

bone and between 2 to 6 days in the kidney. Uranium usually undergoes some metabolic 

transformations, including the oxidation of tetravalent U to hexavalent U then a uranyl ion. 

Uranium compounds have high affinity for proteins in plasma, mostly transferrin, and the 

proximal tubule where they tend to bind [354–357]. For absorbed U, urine is the main route 

of elimination; it is estimated that more than 70% of the body U is filtered by the kidney 

[342], which is the main target organ for toxicity [358, 359]. A study in veterans exposed 

to high doses of U was able to document U in urine up to 7 years after exposure concluded 

[360]. Other elimination routes include feces, sweat, and exhaled breath. The main route of 

elimination for non-absorbed U is feces.

Biomarkers—Uranium can be measured in urine, feces, nails, hair [361–364], bone, and 

soft tissues. Total urinary U, including the determination of U isotopes, is the biomarker 

of choice for exposure [328]. Urine U is considered a good biomarker from all sources 

of exposure, as kidney filtration is the main route of elimination for this chemical [346, 

354, 365–371]. Urinary U is representative of exposure over the past 2 weeks, one spot 

measurement can be used as an indicator of chronic exposure in populations with constant 

exposures [360, 372–374]. Previous studies have reported a high correlation between urine 

U and environmental U in air, water, and food in chronically exposed populations [375]. 

For every 1 μg/dL intake of U, an increase of 2.06 ng/dL, 37 ng/g, and 0.05 ng/g of 

this compound is expected in urine, hair, and nails respectively [363]. Hair and nail U 

are positively correlated, and increasing evidence suggests that both may reflect exposure 

from the previous weeks to months; however, more studies are needed to establish these 

measures as biomarkers of exposure [376]. The determination of hair U requires sample 

decontamination [364]. Uranium also be measured in bone and soft tissues, as it distributes 

within these organs in the body; previous studies have reported a significant association 

between water and bone U in adult men [377]. However, noninvasive methods for the 

assessment of U in bone tissue are not available, which is a major limitation [377].

Essential Metals

Table 2 includes a summary of the most frequently used biomarkers, sample sources, 

their half-lives, and other considerations for the essential metals included in this review. 

Essential metals have several physiological functions in the human body. Essential metals 

are tightly regulated in the body by metabolic mechanisms to guarantee their availability for 

cellular functions. Both low and high levels of essential metals are associated with adverse 

health effects. However, while the health impacts of essential metal deficiencies are well 

characterized, there is still a need to further assess the impact of excessive levels of essential 

metals on human health.

Manganese

Manganese is an essential element, which plays important roles in bone and cartilage 

formation as well as wound healing [378, 379]. At the molecular level, Mn is a cofactor for 

several enzymes (e.g., glutamine synthetase) and is involved in developmental, reproductive, 
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immune, and energy production processes including glucose metabolism and mitochondrial 

function [380]. However, at elevated levels, Mn can exhibit neurotoxic effects [381].

Major Sources of Exposure—Manganese is usually found in combination with other 

elements, forming oxides, carbonates, or silicates [382]. The most frequent metallic forms 

are Mn (+ 2) and Mn (+ 3) [380]. Due to its chemical properties, Mn is used in 

several industrial processes including batteries, steel, cosmetics, leather, glass, and ceramics 

manufacturing. Gas and fossil fuel combustion can lead to the emission of Mn phosphate 

[383]. This compound is also used as an additive to pesticides and fungicides in agriculture. 

Recently, it has been proposed as a “less toxic” alternative contrast agent to gadolinium 

in medical procedures such as magnetic resonance imaging (MRI) [384, 385], and it is 

commonly added to parenteral nutrition preparations for children [386]. The main route of 

exposure to Mn in the general population is ingestion through diet and water. The mean 

daily Mn intake in the diet is estimated to range between 0.7 to 10.9 mg/day [383, 387]. 

Foods with high-Mn concentrations include rice, nuts, whole grains, and legumes. Tea, 

chocolate, and some seafoods have high levels of Mn as well. The mean intake of Mn from 

drinking water is estimated to be around 0.02 mg/day [387]. However, some populations, 

such as private well users in the US, may be exposed to higher levels [388]. Inhalation 

can be the main route of exposure to Mn in the occupational setting [380], particularly for 

miners, welders, and smelter workers [389, 390].

Absorption, Biotransformation, and Elimination—The absorption rate of Mn in 

the GI tract is estimated to range from 3 to 5% [391]. Mn can be absorbed by passive 

diffusion or by transporters including DMT1, which is used by other divalent cations, such 

as iron and calcium [392]. As a result, higher Mn absorption rates have been documented 

in iron-deficient populations due to the overexpression of DMT1 transporters [393, 394]. 

Absorption rates are higher in women compared with men, which may be influenced by 

iron status [395], and in children compared with adults [396]. Similar to iron, high dietary 

calcium intake has an antagonistic effect on Mn absorption [397].

Inhaled Mn can enter the bloodstream from the lungs or be transported directly from the 

olfactory bulb into the brain [398, 398–400]. From the bloodstream, Mn is distributed and 

accumulated in the liver, the pancreas, the bone tissue, the kidneys, and the brain [401–403]. 

Blood Mn levels are tightly regulated. Mn has a high affinity for proteins, including albumin 

and transferrin [404], as well as transporters such as DMT1, found in the red blood cells 

[405]. Endogenously, Mn is mostly found in its divalent and trivalent oxidation forms, which 

can undergo oxidation and reduction reactions. The liver is responsible for Mn conjugation 

into the bile, which leads to its excretion in the feces, the main route of elimination [380, 

391]. Mn can also be eliminated in urine and sweat [406] and has been documented in 

human milk [407–411]. Studies using animal models have reported that the half-life of Mn 

ranges from 5 to 74 days in the brain and up to 690 days in bone [412–414]. For humans, the 

estimated average half-life of Mn for bone is 9 years [415]. Mn can accumulate and cross 

the placenta, and both high and low Mn exposures during the prenatal period have been 

associated with adverse health outcomes and DNA methylation changes in the offspring 

[416, 417].
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Biomarkers—Urine and blood are the most frequently used biomarkers of Mn exposure. 

However, they present several limitations. Studies examining the correlation between 

environmental Mn and its concentrations in blood and urine have been heterogeneous. While 

some occupational studies found high correlations between dust or airborne Mn with blood 

Mn in groups of workers [400, 408, 418–421], findings among non-occupationally exposed 

individuals have been inconclusive [408, 419, 420, 422, 423]. Mn in the bloodstream 

is rapidly cleared through the liver and excreted into the bile and therefore has a short 

half-life in blood [424]. Blood Mn has a high intra-individual variability, which limits its 

sensitivity as a biomarker. As urine is a minor elimination pathway for Mn, its usefulness as 

a biomarker of exposure is limited [425–427]. Mn can also be assessed in other biological 

assays including feces, hair, nails, saliva, teeth, bone, and cerebrospinal fluid. Hair Mn 

correlates well (r = 0.48) with environmental Mn exposure from drinking water [428]. 

It has been proposed as a biomarker of exposure within the previous months and it is 

considered the best biomarker of exposure in children [428–431]. However, hair requires 

decontamination, and Mn concentrations can vary with hair color, as Mn has a high 

affinity for pigments [432]. Water Mn at concentrations exceeding 9.8 μg/L has a moderate 

correlation with toenail Mn (r = 0.38), suggesting the possible use of nail Mn as a biomarker 

of moderate to high Mn exposure [433]. Imaging diagnostic techniques such as MRI also 

allows for the identification of Mn accumulation in the brain [434]. Animal models have 

shown a high correlation between Mn concentrations in teeth and blood (r = 0.69, p < 0.001) 

and also between teeth and bone (r = 0.76, p < 0.001) [432].

Molybdenum

Major Sources of Exposure—Molybdenum is an essential micronutrient for plants and 

animals that is widely present in soil and water, but can also be found in the atmosphere. It 

is typically present as a mineral forming molybdenite, ferrimolybdenite, and jordisite [435, 

436], and as isopolyanions such as molybdate, which form Mo salts. Mo has 5 oxidation 

states, with Mo (IV) and Mo (VI) being the most common. The environmental pH has an 

influence on this oxidation state, which determines Mo bioavailability and soil adsorption 

[437, 438]. Mo is widely used in industrial and mining activities, including metallurgical 

applications, followed by its use as a catalyst and as a pigment [439]. Some fertilizers 

also contain Mo salts [440]. Typically, it is used in combination with other metals such as 

chromium, Ni, Mn, tungsten, and cobalt, among others [441]. A radioactive isotope of Mo 

(99Mo) is used in nuclear medicine to conduct imaging scans [442] and can be a source of 

exposure to ionizing radiation in the hospital setting [435].

For the general population, the main route of exposure to Mn is ingestion from the diet. 

Leafy vegetables, grains, legumes such as beans, animal organs, and milk constitute the 

main sources of Mo in the diet [443]. Exposure from drinking water and air is relevant 

in mining and industrial occupational settings, as well as for populations living near 

contaminated areas [441]. Mo has also been found to cooccur with As and tungsten in 

groundwater samples in Bangladesh [388, 444].

Biotransformation/elimination—The absorption of Mo in the GI tract is variable and 

strongly depends on the dose and its ingestion with other compounds. When ingested with 
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food, its bioavailability ranges from 20 to 60% [445]. Nevertheless, it goes up to 80–100% 

in experimental studies when stable isotopes were administered orally and intravenously 

to healthy volunteers [446–448]. Its transportation through the GI tract mucosa has not 

yet been elucidated, but anion transporters may be involved, according to animal models 

[446–448]. The absorption of inhaled Mo depends on particle size and solubility. Large 

particles are deposited in the bronchi and transported into the GI tract, and small particles 

can be directly absorbed from the alveoli into the bloodstream. Hexavalent Mo is the most 

soluble compound [436]. From the bloodstream, Mo is mostly distributed to the liver and the 

kidney, its main organs of accumulation [88, 449–455]. Mo can cross the placenta and be 

distributed to the fetus during pregnancy and it has been documented in human milk [456]. 

Mo can undergo oxidation and reduction processes after absorption. Physiologically, Mo in 

its molybdate oxidation form is incorporated into the cell where it binds to a molybdopterin 

and forms the enzymatic cofactor Moco (a sulfur-molybdate complex) [457–459], which 

plays a role in cell metabolism [460]. The main route of Mo elimination is through the 

kidney. Urine concentrates up to 90% of the absorbed dose of Mo from all routes of 

exposure. The presence of copper and sulfates accelerates Mo elimination by inhibiting its 

tubular reabsorption [461]. Biliary excretion is the second major route of elimination [457].

Biomarkers—Molybdenum can be measured in urine, blood, plasma, hair, and some 

tissues. Given that urine is the main route of Mo elimination, urinary Mo is a useful 

biomarker of exposure and is sensitive to changes in dietary Mo intake [445, 446, 448]. 

Plasma Mo has also been correlated with dietary intake. However, significant changes in 

plasma Mo only occur at high doses (> 460 μg/day). As a result, urine Mo is the preferred 

biomarker for assessing short-term exposure to this metal [379]. Blood Mo increases for a 

few hours after dietary intake; however, because the half-life is very short, blood Mo is not 

an established biomarker of exposure. Hair and toenails are not reliable biomarkers of Mo 

exposure as there is a high inter-laboratory variability. Additionally, their correlations with 

blood, urine, and dietary Mo exposures are low and the window of exposure they reflect is 

unclear [457, 462].

Selenium

Selenium is a metalloid and an essential micronutrient for humans. It is a fundamental 

component of selenoproteins, a family of 25 proteins all of which require the proteinogenic 

amino acid selenocysteine for their functionality [463]. Selenoproteins play a role in thyroid 

hormone metabolism, the immune system, antioxidant defense processes (e.g., glutathione 

peroxidase), and control of oxidation and reduction reactions intracellularly [464]. Despite 

its role as an essential nutrient, Se has a narrow safety margin, and excessive exposure to Se 

can cause adverse health effects [465, 466].

Major Sources of Exposure—Selenium is naturally found in rocks and soils and to a 

lesser extent in surface and groundwater [467]. Se can be found as inorganic Se mostly in 

soil and water in different oxidation states: as Se (+ 0), selenide (−2), which are insoluble 

metals, and as selenites (+ 4), and selenates (+ 6), which are soluble alkali. Organic Se 

compounds such as selenomethionine, selenocysteine, and dimethyl selenide are the most 

common sources of Se in food. The main anthropogenic sources of environmental Se are 
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the burning of coal and fossil fuels, mining, smelting, and agricultural activities, as well as 

the industrial production of photocells and glass [468, 469]. The main route of Se exposure 

for the general population is diet, with foods such as organ meat and seafood, cereals 

and grains, brazil nuts, and other unshelled nuts, generally being rich in Se [465]. Some 

dietary supplements also contain high levels of Se [470]. Plants and aquatic organisms 

can bioaccumulate Se from soil and water, incorporating it into the food chain. Runoff 

from agriculture, industrial waste, and sewage treatment plants can directly contaminate 

surface and ground water sources [468]. Se bioaccumulation strongly depends on the soil 

concentration, environmental pH and solubility of the Se species [471, 472].

Absorption, Biotransformation, and Elimination—In the GI tract, Se has a high 

bioavailability with absorption ranging from 55 to 90% [473]. The absorption rate can vary 

across inorganic and organic Se species [474]. Selenomethionine and selenocysteine are 

predominantly found in animal foods [475], while selenate and selenite are predominant in 

fish [476], and γ-glutamyl methylselenocysteine is predominant in plants that bioaccumulate 

Se [477]. However, the distribution of Se species in food needs to be further studied to 

understand its bioavailability [473, 478]. Once in the bloodstream, Se tends to bind to 

proteins such as albumin but is also transported as free species by mechanisms still under 

research [479]. The liver is the main organ where Se undergoes metabolism and distribution, 

transforming into selenoproteins that are then distributed to other tissues. From plasma, Se 

can also be absorbed by the kidney, the testis, and the brain [480, 481]. The main route 

of Se elimination is urinary excretion. Under physiological conditions, excess Se is mostly 

transformed into monomethylated Se, which is a selenosugar, and excreted into the urine 

[482]. Under high exposure conditions, Se is largely transformed into di- and tri-methylated 

Se and excreted into urine [483].

Biomarkers—Selenium can be measured in blood, urine, hair, nails and feces. Plasma 

Se is the biomarker of choice for Se status, with a half-life of a few days [484]. Plasma 

Se decreases with age and is generally lower in smokers, people with malnutrition, and 

during acute inflammatory processes, reflecting poor Se status [485]. Red blood cell Se 

is also a good biomarker of Se with a half-life of two months [20]. Selenoprotein P (the 

most abundant selenoprotein) has been proposed as biomarker of exposure within the 

previous 2 to 4 weeks, with heterogeneous findings among studies. While some studies 

in healthy children and adults have reported high correlations between Selenoprotein P 

in plasma and Se supplementation, Selenoprotein P levels can also increase due to other 

factors including age, body mass index, alcohol intake, and underlying comorbidities such 

as fatty liver disease [486–488]. Whole blood and serum Se correlate well with dietary Se 

intake (r = 0.78 and 0.74, respectively) [489]. Selenium is excreted in urine as a methylated 

product and its methylation status depends on Se body burden. Under conditions of low 

exposure and within its physiological range, the main product in urine is monomethylated 

Se, a selenosugar. However, under higher exposure conditions, Se is mostly methylated into 

di- and trimethylated forms. Measurement of the different methylated products in urine 

has been proposed as a possible excess and body burden indicator as their proportions 

vary with different exposure doses [483]. Toenail Se represents a good biomarker of past 

exposure ranging from the prior 6 months to a year. The correlation with dietary Se 
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intake is moderately high (p = 0.67) [489]. Hair Se, however, is subject to substantial 

contamination from hair products and is not considered an adequate biomarker of exposure 

[490, 491]. External contamination of hair Se is particularly relevant as Se is used as an 

active ingredient in anti-dandruff shampoo and hair growth serums [492, 493]. Maternal and 

cord blood Se correlate well with Se concentrations in the placenta [148, 494–496].

Zinc

Zinc is an essential nutrient [497], and is the second most abundant trace element in the 

body after iron [498]. Zn deficiency has been associated with impaired development [499] 

and deleterious effects in the central nervous system, fertility, wound healing, and immune 

function, among others [497]. Exposure to excess levels of Zn can have direct negative 

health effects on the lungs, cardiovascular, GI, and immune systems. The inhalation of Zn 

oxide is particularly toxic, leading to metal fume fever [500–502]. Increased Zn body burden 

can also interfere with the metabolism of other essential elements, including iron and copper 

[497].

Major Sources of Exposure—Zinc is commonly found in soil, air, surface, and 

groundwater, usually as a Zn oxide or forming sphalerite (ZnS) [497]. The main route 

of exposure to Zn in the general population is diet, with meat products and shellfish 

being major dietary sources of Zn [497, 503]. However, several anthropometric activities, 

including mining, smelting, electroplating, metallurgic operations, and the use of products 

that contain Zn as an additive (e.g., paints, rubber, alloys), contribute to Zn contamination 

[504–506]. Workers from those industries are particularly exposed to high levels of metallic 

Zn and Zn compounds primarily via inhalation [507]. Water and soil Zn concentrations are 

also high in industrial and mining areas, which constitutes an additional source of exposure 

for nearby populations [508].

Absorption, Biotransformation, and Elimination—Zinc can be absorbed by passive 

diffusion or mediated by transporters, with absorption rates of ingested Zn ranging from 

20 to 30% [497]. The bioavailability of Zn in the GI tract is increased by citric acid and 

decreased by iron, calcium [509], phosphorus [497, 510], fiber, and phytate [511]. As a 

result, individuals with diets rich in vegetables have lower rates of Zn absorption. In the 

bloodstream, Zn binds to metalloproteins intracellularly in the red blood cells or travels in 

plasma, mostly bound to albumin and alpha-2 macroglobulin, which represents the active 

pool of Zn for metabolism [498]. Zinc is widely distributed within body tissues, with 

the musculoskeletal system accumulating 90% of the body burden [512], followed by the 

GI tract, brain, kidneys, heart, lungs, and pancreas [497, 501, 513–515]. Zinc primarily 

undergoes transformation and elimination in the liver. Zinc is mostly excreted in the bile 

[516, 517], where it can undergo enterohepatic circulation. The elimination rate in feces is 

2–4 mg/ day. Urinary elimination accounts for a smaller fraction, with a net elimination 

rate of 0.5 mg/day [498]. Urinary excretion of Zn can increase in the presence of metabolic 

disorders, especially uncontrolled diabetes, in which case urinary Zn levels reflect impaired 

glucose metabolism rather than Zn exposure or status [518]. Zinc can also be eliminated 

through the skin and hair [519] and has been documented in human milk [520]. Evidence for 
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placental Zn is very limited, although weak positive correlations have been reported between 

placental Zn and maternal and cord blood Zn [148].

Biomarkers—Zinc can be measured in plasma, urine, nails, hair, and other biological 

fluids and tissues [497]. However, Zn is mostly distributed intracellularly in the 

musculoskeletal system and has a slow turnover, with the functional pool of Zn remaining 

under 10% of the body burden [521]. As a result, the use of any single biomarker may have 

limited validity [498] and there is a need for the development of highly sensitive biomarkers 

for Zn body burden. Zinc in plasma can be used as an indicator of recent exposure but the 

sensitivity and specificity are low [497]. Plasma Zn tends to increase after supplementation, 

although findings have not been consistent in previous experimental studies [521, 522]. 

Plasma Zn does not represent intracellular accumulation and it is only representative of 

0.1% of the body burden [523] and should be interpreted carefully in situations when there 

is an expansion of plasma (e.g., during pregnancy [524] or after surgery), in situations 

of acute Zn deficiency [525], or in the presence of other comorbidities (such as diabetes) 

[526]. Adequate sample collection and processing for blood Zn is fundamental for its 

correct interpretation, as contact with gel separators, rubber, and heparin can lead to sample 

contamination and hemolysis which can artificially increase plasma Zn levels [527]. Urinary 

Zn can be used as a biomarker of recent exposure [527]. In contrast, whole blood Zn is 

nota good biomarker of changes in Zn exposure or depletion because the levels of Zn in red 

blood cells remain stable after supplementation or depletion [528, 529]. Additionally, nails 

and hair are not established biomarkers of Zn exposure, as their correlations with urine and 

blood Zn concentrations are low and the exposure window reflected is unclear [530, 531]. 

Given the limitations for most Zn biomarkers, assessment of dietary Zn intakes has been 

proposed as the best method for estimating Zn exposure [529, 532].

Discussion

In this review, we provide up-to-date knowledge of the strengths and limitations of 

biomarkers for 12 metals that are frequently used in multi-metal epidemiologic analyses 

and discuss major sources of exposure (Fig. 1) to aid metals researchers as they plan their 

analyses and interpret their results.

Recommendations

Key takeaways and recommendations for biospecimens are highlighted in Figs. 2 and 3, 

respectively. Understanding the major pathways of metal exposure is critical for making 

sound analytical decisions and interpretations. For metals such as As and Hg, it is important 

to consider, ideally before the analysis stage, whether it is sufficient to measure total As 

or total Hg without speciation. For example, if the study population regularly consumes 

seafood, the predominant As species in blood and urine will be arsenobetaine, which 

is non-toxic, rather than the toxic inorganic As species [68]. Thus, biomarkers which 

reflect total As may not represent the exposure of interest and may lead to inappropriate 

interpretations of results. For some populations, measurement of speciated arsenic may even 

be insufficient, as some organic arsenicals are metabolized to DMA, which is also the 

predominant metabolite of inorganic arsenic [70], adjustment for arsenobetaine levels can 
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be useful in these cases. Organic Hg species are also found in seafood [237–239]. Thus, 

if seafood consumption is common in the population, total Hg measures will primarily 

reflect organic Hg, which is the most toxic/neurotoxic species due to its ability to cross the 

blood–brain barrier, unless there is an additional source of exposure to consider. If organic 

Hg is of interest, and speciation is not an option, hair or toenails could be used [271–274]. 

Alternatively, if inorganic Hg is of interest, and seafood consumption is low in the study 

population, urinary Hg may be used as an appropriate biomarker [246, 250, 279]. There is 

no single biological matrix that is the best for all metals. For some metals, such as Pb, blood 

better reflects exposure than urine [20, 62, 68, 230, 246, 307, 326, 328, 361–364, 533]. 

However, for other metals, such as Ba and Mn, there is not yet an established biomarker that 

reliably reflects environmental exposure [76, 78, 108, 425–427, 534]. While most urinary 

markers reflect recent metal exposure, urinary Cd and Sn are exceptions, reflecting chronic 

exposure to these metals [130, 131]. Emerging biomarkers such as non-invasive XRF in 

bone allow for the assessment of chronic exposure to Pb and may help researchers overcome 

some of the limitations of blood Pb [208, 213–215, 225, 227]. Further, essential metals 

such as Mo and Zn are tightly regulated by homeostatic processes; thus, elevated levels in 

urine may reflect body loss and metabolic processes rather than excess exposure [445, 498]. 

These differences are important to keep in mind when interpreting results from multi-metal 

analyses.

In addition to understanding metal-specific exposure sources and analytical considerations, 

other important considerations when using a multi-metal approach include dilution 

adjustment (i.e., urinary creatinine, specific gravity), and adjustment by indicators of renal 

function (i.e., eGFR, serum creatinine) when using urine biomarkers [535, 536]. Growth 

rate, matrix-dependent factors, and environmental contamination when using nails and hair, 

as well as potential contamination from collection tubes and storage vials and the limits of 

detection of the analytical procedures.

When selecting biomarkers, it is also critical to consider the exposure window of interest. 

Chronic exposure to metals is typically most relevant, especially for populations exposed in 

the low-to-moderate range, yet many biomarkers reflect recent exposures. If metal exposures 

vary over time (e.g., due to fluctuations in diet, changes in the environment, implementation 

of regulatory policies), biomarkers that reflect integrated exposures over longer durations 

may be preferable. Toenails are attractive in this regard, and they seem to be reliable 

biomarkers of exposure for As, Hg, Mn, and Se [74, 376, 462]. However, for other metals 

such as Cd, Pb, or Ni, toenails seem to be inadequate or need additional study [376]. 

Toenail growth rate may also influence toenail metal concentrations and may therefore be an 

additional source of measurement error and bias. It is particularly important to consider the 

exposure window reflected by a biomarker when the goal is to identify vulnerable windows, 

such as critical periods of development. For example, while many metals can be measured 

in cord blood and the placenta, these biospecimens can only be collected non-invasively at 

birth and thus typically reflect exposures which occurred in late pregnancy. The collection of 

maternal biospecimens during pregnancy, such as blood and urine, or the postnatal collection 

of biospecimens that reflect long-term exposures, such as toenails, may therefore be more 

appropriate for capturing earlier windows in pregnancy. Deciduous teeth also hold promise 

as a unique tool for identifying susceptible windows of exposure in children, as metals 
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accumulate in primary teeth incrementally beginning in utero and can therefore be measured 

in distinct tooth layers, allowing for precise estimates of exposure timing [537, 538]. As 

a result, children’s health cohorts which did not collect biospecimens during pregnancy or 

in early childhood can use deciduous teeth to retrospectively reconstruct metal exposures 

which occurred during the pre- and postnatal periods. Adult teeth are also increasingly being 

used to assess the burden of exposure over the previous years.

Conclusions

As a result of the unique biotransformation and elimination pathways of different metals, 

not all biomarkers are adequate measures of exposure. For example, whole blood is a good 

biomarker of As, Cd, Pb, Hg, and Sn exposure, but it is not a good indicator for Ba, Ni, 

or U. For essential metals, whole blood estimates have a challenging interpretation, as these 

metals are tightly regulated by physiological mechanisms. Urine is not a good biomarker 

of Pb exposure. Hair and nails are good biomarkers of exposure to As, organic Hg, U, 

and essential metals such as Mn and Se. However, they are not established biomarkers for 

Cd, Pb, Mo, or Zn This review aims to aid metals researchers in their analysis planning, 

analytical approaches, and interpretation of results. As metals epidemiology moves towards 

embracing a multimetal/mixtures approach and expanding metal panels to include less 

commonly researched metals, an in-depth understanding of metal biomarkers and their 

limitations is key for making sound analytical decisions and appropriately interpreting 

results.
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Figure 1. Graphic summary of the main sources of exposure for the metals included in the 
review.

Martinez-Morata et al. Page 54

Curr Environ Health Rep. Author manuscript; available in PMC 2024 January 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Key takeaways box.
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Figure 3. Key takeaways for biospecimens.
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Table 1.
Summary of the most commonly used biomarkers for non-essential metals, their timing 
and important considerations when including in a study.

Timing is divided into 4 categories according to the half-lives of the biomarkers in the body: Acute (1–3 days 

prior), Recent (up to 1 month prior), Sub-Chronic (1 to 6 months prior), Chronic (>6 months prior).

Metal Biomarker Timingc Established 
Biomarker

Considerations

Arsenic

Whole Blood Recent Yes Requires speciation of metabolites to aid assessment of 
toxicity
Has analytic limitations

Urinea Recent Yes Requires speciation of metabolites to aid assessment of 
toxicity

Hairb Sub-Chronic Validated protocols for sample processing are needed. High 
interindividual variability in growth rate
Predominantly reflect inorganic AsToenail/Fingernailb Sub-Chronic/ 

Chronic
Yes

Placenta Sub-Chronic Unclear Limited studies

Barium
Urinea Acute Yes Limited studies

Feces Recent Unclear Limited studies

Cadmium

Whole Blood Recent and Sub-
Chronic

Yes Reflects ongoing and short-term exposure but has a long-term 
component too

Red Blood Cells Recent and Sub-
Chronic

Yes Reflects exposure over past 100 days.
Similar half-life as whole blood

Urinea Chronic Yes Reflects long-term exposure
Low intraindividual variability
Renal injury can limit validity

Hairb Unclear No Window of exposure relfected is unclear

Toenail/Fingernailb Unclear No Window of exposure relfected is unclear

Placenta Sub-Chronic Unclear Correlates well with maternal blood and urinary Cd

Feces Recent Unclear Captures dietary intake

Liver/Kidney Chronic Unclear Low sensitivity 
Reserved for occupational biomonitoring

Lead

Whole Blood Recent Yes Good indicator in low exposed populations

Cumulative Blood 
Lead Index

Chronic Yes Integrated measurement of average blood Pb levels over time

Urine Unclear No Not a good biomarker

Hairb Unclear No Window of exposure relfected is unclear

Toenail/Fingernailb Unclear No Window of exposure relfected is unclear

Placenta Sub-Chronic Unclear Correlates well with maternal blood concentrations, 
inconsistent findings for cord blood

Bone Chronic Yes Non-invasive
Intra-individual and inter-laboratory variability

Teeth Chronic Yes Decidious and adult teeth reflect different windows of 
exposure.

Chelatable urine Chronic Requires intravenous EDTA

Mercury Whole Blood Recent Yes Indicator of total mercury, but mostly organic mercury in 
populations with seafood intake

Curr Environ Health Rep. Author manuscript; available in PMC 2024 January 28.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Martinez-Morata et al. Page 58

Metal Biomarker Timingc Established 
Biomarker

Considerations

Valid as measurement of internal dose in chronically exposed 
populations
Indicator of pre-natal exposure in maternal blood

Red Blood Cells Sub-Chronic Yes Indicator of organic mercury

Urine Recent Yes Indicator of inorganic mercury
Represents internal dose in chronically exposed populations
Can also reflect demethylated organic mercury

Hairb Chronic Yes Indicator of organic mercury
Indicator of pre-natal exposure (maternal hair)

Toenail/Fingernailb Sub-Chronic Yes Indicator of organic mercury

Placenta Sub-Chronic Unclear Emerging biomarker

Nickel
Plasma/Serum Acute Yes Reflect exposure to soluble Ni compounds

Urine Acute Yes High correlation with serum Ni

Tin

Whole Blood Recent Yes Speciation needed for organic forms

Urine Chronic Yes Indicator of inorganic tin, after digestion with acid and 
oxidation, extracting (Sn+4)

Bone Chronic Unclear Only invasive techniques available

Uranium

Urine Acute and 
Recent

Yes Uranium isotopes can be determined
Can reflect chronic exposure if exposure is constant

Hairb Sub-Chronic Unclear High correlation with nail U

Toenail/Fingernailb Sub-Chronic Unclear High correlation with hair U

Bone and soft tissue Chronic Unclear Only invasive techniques available

a
Needs adjustment for urine dilution (creatinine or specific gravity)

b
Sample requires environmental decontamination

c
Timing refers to the exposure window that the biomarker reflects relative to sample collection.
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Table 2.
Summary of the most commonly used biomarkers for essential metals, their timing and 
important considerations when including in a study.

Timing is divided into 4 categories according to the half-lives of the biomarkers in the body: Acute (1–3 days), 

Recent (up to 1 month), Sub-Chronic (1 to 6 months), Chronic (>6 months).

Essential Metal Biomarker Timing Established 
Biomarker

Considerations

Manganese

Whole Blood Acute Yes Limited sensitivity
Good marker in occupational studies

Urinea Unclear No Limited validity, urine is a minor elimination 
pathway

Hairb Sub-chronic Yes Variability with hair color

Toenail/Fingernailb Sub-chronic Unclear Similar to hair manganese

Teeth Chronic Unclear Correlates well with bone and blood manganese

Exhaled Breath Acute Unclear Occupational studies only

Brain Chronic Unclear Requires MRI

Molybdenum

Whole Blood Unclear No Window of exposure relfected is unclear

Urinea Recent Yes Sensitive to changes in dietary intake

Hairb Unclear No Window of exposure relfected is unclear

Toenail/Fingernailb Unclear No Window of exposure relfected is unclear

Selenium

Whole Blood Acute/Sub-
chronic

Yes Tightly regulated levels

Red Blood Cells Sub-chronic Yes Tightly regulated levels

Plasma Acute Yes Decreases with smoking, malnutrition, older age, 
inflammatory processes

Selenoprotein P in 
plasma

Sub-Chronic Unclear Heterogeneous findings

Urinea Recent Yes Integrates selenosugars and inorganic selenium

Hairb Unclear No Hair decontamination is very difficult

Toenail/Fingernailb Chronic Yes Good correlation with dietary intake

Placenta Unclear Unclear Emerging biomarker

Zinc

Whole Blood Acute Tightly regulated levels

Plasma Acute Yes Low sensitivity and specificity, high variability when 
plasma expansion (e.g., pregnancy)
0.1% of the body burden

Urinea Acute Unclear Sensitive to Zn supplementation but less sensitive to 
Zn depletion Influenced by conditions that increase 
protein catabolism such as strenuous exercise and 
diabetes Changes during pregnancy and lactation

Hairb Unclear No Window of exposure relfected is unclear

Toenail/Fingernailb Sub-Chronic Unclear Subject to seasonal variations

a
Needs adjustment for urine dilution (creatinine or specific gravity)

b
Sample requires environmental decontamination
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