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Abstract
Background: Intratumour heterogeneity is a hallmark of most solid tumours,
including breast cancers. We applied spatial transcriptomics and single-cell
RNA-sequencing on patient-derived xenografts (PDXs) to profile spatially
resolved cell populations within oestrogen receptor-positive (ER+) breast cancer
and to elucidate their importance in oestrogen-dependent tumour growth.
Methods: Two PDXs of ‘ER-high’ breast cancers with opposite oestrogen-
mediated growth responses were investigated: oestrogen-suppressed GS3 (80–
100% ER) and oestrogen-dependent SC31 (40–90% ER) models. The observation
was validated via single-cell analyses on an ‘ER-low’ PDX, GS1 (5% ER). The
results from our spatial and single-cell analyses were further supported by a
public ER+ breast cancer single-cell dataset and protein-based dual immuno-
histochemistry (IHC) of SC31 examining important luminal cancer markers
(i.e., ER, progesterone receptor and Ki67). The translational implication of our
findings was assessed by clinical outcome analyses on publicly available cohorts.
Results:Our space-gene-function study revealed four spatially distinct compart-
ments within ER+ breast cancers. These compartments showed functional diver-
sity (oestrogen-responsive, proliferative, hypoxia-induced and inflammation-
related). The ‘proliferative’ population, rather than the ‘oestrogen-responsive’
compartment, was crucial for oestrogen-dependent tumour growth, leading to
the acquisition of luminal B-like features. The cells expressing typical oestrogen-
responsive genes like PGR were not directly linked to oestrogen-dependent
proliferation. Dual IHC analyses demonstrated the distinct contribution of the
Ki67+ proliferative cells toward oestrogen-mediated growth and their response to
a CDK4/6 inhibitor. The gene signatures derived from the proliferative, hypoxia-
induced and inflammation-related compartments were significantly correlated
with worse clinical outcomes, while patients with the oestrogen-responsive
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signature showed better prognoses, suggesting that this compartment would
not be directly associated with oestrogen-dependent tumour progression.
Conclusions: Our study identified the gene signature in our ‘proliferative’
compartment as an important determinant of luminal cancer subtypes. This
‘proliferative’ cell population is a causative feature of luminal B breast cancer,
contributing toward its aggressive behaviours.

KEYWORDS
breast cancer, oestrogen receptor, intratumour heterogeneity, single-cell RNA-sequencing,
spatial transcriptomics

1 BACKGROUND

Human breast cancers were initially classified into
four intrinsic subtypes: oestrogen receptor-positive
(ER+)/luminal, basal-like, HER2+, and normal breast-
like.1 Later studies of the molecular portrait of human
breast cancers further divided the luminal epithelial/ER+
tumours into two subgroups (i.e., luminal A and B) based
on gene expression profiles, which showed differential
clinical outcomes.2,3 The luminal A cancers exhibit high
ER-related gene expression and low proliferation, while
luminal B cancers show less expression of ER-related
genes and higher proliferation. Patients with luminal B
cancers have worse prognoses. Thus, in clinical practice, a
surrogate classification of luminal breast cancer is widely
performed based on immunohistochemical evaluation
for ER, progesterone receptor (PR; an oestrogen-response
marker) and Ki67 (a proliferative marker), serving as
important criteria for therapy decisions.4
ER+ breast cancers usually depend on oestrogen for

their development and progression.5 Although the clini-
cal outcomes of ER+ breast cancers have greatly improved
with the emergence of endocrine therapies, some patients,
particularly those with metastatic cancers, do not respond
well to such treatments.6 Furthermore, despite studies
reporting wide ranges of ER positivity in patients, the
molecular basis of endocrine responses in ‘ER-low’ (<10%
ERpositivity) compared to ‘ER-high’ tumours has not been
clearly defined.7–9
Intratumour heterogeneity, which refers to variations

of cell populations with distinct genetic, epigenetic,
transcriptomic, or phenotypic profiles within a tumour
lesion, is one of the hallmarks of cancers including
breast cancers.10,11 While current treatment approaches
mostly target cancer as a homogeneous disease (e.g., ER
antagonists used to treat ER+ breast cancers), intratumour
heterogeneity often contributes to the acquisition of
therapy resistance through the expansion of pre-existing
resistant cells.12 The influence of oestrogen on individual

cell populations within ER+ breast cancers, as well as
the importance of their oestrogen-dependent growth
responses have yet to be better defined.
In this study, we performed spatial transcriptomics (ST)

and single-cell RNA sequencing (scRNA-seq) analyses on
patient-derived xenograft (PDX) models with distinct bio-
logical responses to oestrogen. Our ST analyses identified
heterogeneous cell populations that were physically sep-
arated and were found in both tumours with and without
oestrogen treatment.We also estimated the spatial, genetic
and functional relationships of these spatially resolved cell
populations within ER+ tumours. These cell populations
were further defined by scRNA-seq on the same experi-
mental models. Investigations using additional scRNA-seq
datasets and dual immunohistochemistry (IHC) analysis
on tumours from in vivo experiments with a CDK4/6
inhibitor supported our findings from ST analyses and
characterised distinct roles and responses to oestrogen
from proliferative cells in ER+ breast cancers. Finally, we
analysed public clinical datasets using the gene signatures
from the spatially distributed cell populations, exploring
the potential translational value of identifying distinct
functional compartments in ER+ breast cancers, especially
with respect to luminal A and B breast cancers.

2 METHODS

2.1 ST experiments on GS3 and SC31

Two ‘ER-high’ PDXs named GS3 and SC31, which were
previously established from metastatic lesions and pos-
sessed definitive and contrasting growth responses to
oestrogen, were used (Table S1). GS3 (80−100% ER)
was shown to be suppressed by oestrogen treatment
(‘oestrogen-suppressed’) and to present molecular fea-
tures of a luminal B cancer.13,14 SC31 (40−90% ER)
showed ‘oestrogen-dependent’ growth and was previously
defined as a luminal A cancer model despite its HER2
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expression.13–15 Tumour pieces of GS3 and SC31 were
implanted intomammary fat pads of 8−10-week-old NOD-
SCID/IL2Rγ−/− (NSG) mice.13–15 Once the implanted
tumours were established, placebo or 17β-oestradiol (E2;
1 mg) pellets were implanted subcutaneously. To ensure
that enough tumour mass remained for the analysis,
‘oestrogen-suppressed’ GS3 tumours were implanted in
intact mice and treated with E2 in vivo only for 7
days, whereas ‘oestrogen-dependent’ SC31 tumours were
implanted in ovariectomised mice and treated for 6 weeks,
as described in our previous scRNA-seq study.14 After the
treatment periods, the mice were euthanised, and tumour
samples were collected.
Tumour tissues were trimmed to fit the fiducial frame of

Visium Spatial Gene Expression Slide (10×Genomics, PN-
2000233) while avoiding tumour core regions with large
necrotic tissues. The tissue pieces were embedded on opti-
mal cutting temperature compounds and stored at −80◦C.
Cryosections were prepared at 10 μm thickness, stained
with haematoxylin and eosin (H&E) and captured with
Zeiss Observer II (Carl Zeiss). Tissue permeabilisation
was performed for 6 min as optimised using Visium Spa-
tial Tissue Optimization Kit (10×Genomics, PN-3000394).
The sequencing libraries from each section were pre-
pared with the Visium Spatial Gene Expression Reagent
kit (10× Genomics, PN-1000187) according to the manu-
facturer’s instruction and sequenced with NovaSeq 6000
(Illumina). Raw sequencing data were processed using the
10× Genomics Space Ranger pipeline and Loupe browser
and aligned to GRCh38 human or mm10 mouse genome.

2.2 ST data analyses

ST data were processed using the Seurat R package unless
otherwise noted.16 Details for initial assessment of the ST
datasets are described in SupplementaryMethods. The log-
normalised data were obtained from the raw count data
using the NormalizeData function and used for the cell
cycle analysis (using the CellCycleScoring function) as
well as visualisation of gene expressions.
The spots in the ST dataset were classified based on

ESR1, PGR andMKI67 expression (EPK classification). We
evaluated bimodal expression patterns of each gene as
reported in a previous study (Figure S1),17 and then picked
a cutoff value of 0.2 to maximise the detection of positive
spots. The spots were classified as ‘Negative’ or ‘Positive’
according to the cutoff expression level. Each charac-
ter of the class represents the status of ESR1, PGR and
MKI67 expression (e.g., PNP represents a ESR1-positive,
PGR-negative,MKI67-positive spot).
Raw count data on each tissue were normalised with

the SCTransform (SCT) function. The normalised data

from the four tissues (GS3-Placebo, GS3-E2, SC31-Placebo
and SC31-E2) were integrated according to the developer’s
vignette. Then, principal component analysis (PCA), Uni-
form Manifold Approximation and Projection (UMAP)
dimension reduction and cluster detection with the Lou-
vain algorithm were performed (dims = 30, res = 0.6).
To identify the genes highly expressed in each cluster,
the differentially expressed genes (DEGs) were analysed
using the Wilcoxon rank sum test implemented in the
FindAllMarkers function on the SCT normalised data
(logfc.threshold = 0.25, min.pct = 0.1). The top 10 genes
for each cluster were visualised using the DoHeatmap
function.
To identify the gene signatures enriched in each clus-

ter, the gene signature scores were calculated using the
VISION R package18 and ‘hallmark’ gene sets fromMolec-
ular Signature Database.19 The Z-score for each gene
signature among clusters was calculated and visualised
using the Complexheatmap R package.20 To assess the
effect of E2 treatment on the gene signatures, the gene
signature scores were compared between the individual
clusters from placebo- and E2-treated tissues in each
model.

2.3 scRNA-seq analyses

The scRNA-seq datasets prepared from GS3-Placebo/E2
and SC31-Placebo/E2 in our previous study were
analysed.14 An additional scRNA-seq dataset on ‘ER-low’
GS1 model (5% ER; Figure S2), which was defined as lumi-
nal B subtype in our previous publication,13 was prepared
as described in Supplementary Methods. The numbers of
cells included in the datasets were summarised in Table
S2. A human ER+ breast cancer dataset was obtained
from the Broad Institute Single Cell portal.21 After data
integration as described in Supplementary Methods, PCA,
UMAP dimension reduction and cluster detection, as
well as cell cycle analysis, DEG detection, VISION gene
signature scoring and EPK classification were performed
as described in the ST analyses. To compare the clusters
identified in the ST dataset (ST clusters) and the clusters
in the scRNA-seq dataset (SC clusters) fromGS3 and SC31,
Pearson’s correlation coefficients of the hallmark gene
signature scores were calculated between each ST and SC
cluster and visualised using the corrplot R package. The
absolute value of a correlation coefficient between 0 and
0.2, 0.2 and 0.4, 0.4 and 0.6, 0.6 and 0.8 or 0.8 and 1.0 were
considered as ‘no’, ‘weak’, ‘moderate’, ‘strong’ or ‘very
strong’ correlation, respectively. In addition, mapping of
SC clusters on the ST section was performed by calculating
AUCell scores22 of ST spots using top 50 genes from SC
clusters according to a previous literature.21
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Using the VISION R package and mammary ‘Stem’
gene set curated in our previous article,23 the gene sig-
nature scores of the cells in each SC cluster were calcu-
lated. For the analyses on normal epithelium, a mouse
dataset established in our previous paper,23 which includes
distinct epithelial lineages and their progenitors [i.e.,
basal, mammary stem cells/basal-progenitor (MaSC/B-
pro), luminal hormone-sensing (L-Hor), L-Hor progenitor
(LH-pro), luminal alveolar (L-Alv) and L-Alv progenitor
(LA-pro)], was obtained. The mouse orthologs of human
ESR1/PGR/MKI67 (i.e., Esr1/Pgr/Mki67) were used for the
EPK classification as described in the ST analyses.

2.4 In vivo evaluation of palbociclib
treatment on SC31

After the SC31 tumours were established, E2 pellets (1 mg)
were implanted into the mice. Then, the mice were ran-
domised into either E2 group (n = 5) or E2 + palbociclib
group (n = 4). Palbociclib (LC Laboratories) was dissolved
in phosphate-buffered saline and administered at 50mg/kg
daily via oral gavage. After 4 weeks of treatment, the
mice were euthanised and tumour samples were collected.
The tumour tissues were fixed with 10% neutral buffered
formalin and were embedded in paraffin.

2.5 Dual IHC of SC31 for ER/Ki67 and
Ki67/PR

The dual IHC (ER/Ki67 and Ki67/PR) was performed
by the Pathology Solid Tumor Core at City of Hope
using Ventana Discovery Ultra IHC Auto Stainer (Roche
Diagnostics). Primary antibodies used for the immunos-
taining include human ERα rabbit monoclonal anti-
body (Roche Diagnostics, 790−4325), human PR rabbit
monoclonal antibody (Roche Diagnostics, 790−4296) and
human Ki67 rabbit monoclonal antibody (Roche Diagnos-
tics, 790−4286). Images were captured with VENTANA
iScan HT (Roche Diagnostics) and analysed using the
Cell Detection and Cell Classification functions imple-
mented in Qupath software.24 Staining protocol details are
described in Supplementary Methods.

2.6 Clinical outcome analysis on public
cohorts with ST signatures

Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC) dataset25 was obtained from
cBioPortal26,27 using the cBioPortalData R package.28 ER+
metastatic breast cancer cohort data (GSE12464729) were

obtained fromNational Center for Biotechnology Informa-
tion Gene Expression Omnibus data repository. The gene
signature scores onmicroarray data fromeach patientwere
calculated with the GSVA R package30 using the top 20
genes from the clusters identified in the ST analyses (Table
S3). For a gene annotated with multiple probes, a mean
value was calculated to represent its expression level. In
the METABRIC dataset, the signature scores were com-
pared among the breast cancer intrinsic subtypes. Then,
the patients were divided into three groups based on the
calculated scores, and the patients in the top and bottom
tertiles were assigned as high and low groups, respec-
tively. The patients were further classified based on the
combination of ST_0 and ST_2 scores into four groups.
Overall survival of each group was visualised with the
Kaplan–Meier method. Details for an additional cohort
[The Cancer Genome Atlas (TCGA)31] are described in
Supplementary Methods.

2.7 Statistical analysis

Statistical analyses were performed using R software. Two-
group comparison was tested by Student’s t-test and mul-
tiple comparison was adjusted by Bonferroni correction.
Multiple group comparison was performed by one-way
ANOVA followed by post hoc Tukey-Kramer test. The dif-
ference of overall survival among the groups was tested
by log rank method. p < .05 was considered statistically
significant.

3 RESULTS

3.1 Study design

Although the clinical features of two subtypes of luminal
ER+ breast cancers are well recognised, their molecu-
lar basis and biological origins have not yet been clearly
defined. To address this gap, we designed our study using
ST and scRNA-seq on ER+ breast cancer PDXs (Figure 1).
PDXs are recognised as valuable models for evaluating
tumour responses to a given agent, in addition to under-
lying mechanisms of action.32 We previously established a
set of ER+ breast cancer PDXs with different levels of ER
positivity and varying responses to oestrogen.13,15 Among
them, we investigated two ‘ER-high’ GS3 and SC31models,
which was suppressed by and totally depended on oestro-
gen treatment for their growths, respectively. Additionally,
an ‘ER-low’ GS1 model, whose growth was not totally
dependent on, but accelerated by oestrogen (‘oestrogen-
accelerating’), was investigated for validating our findings
from the two ER-high tumours. These models enable us
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F IGURE 1 The schematic diagram of the research design in this study.

to better understand the biology of ER+ breast cancers as
well as the mechanisms of oestrogen-dependent tumour
growth.
ST has been recognised for its potential in localis-

ing different cell populations within a tissue of interest
and linking those populations to various physiological
and pathological processes.33 With the availability of the
oestrogen-responsive ER+ PDXs in our laboratory, we
applied ST to determine the space-gene-function relation-
ship of tumour cell populations and the oestrogen response
of two types of ER+ breast cancers, which could not be
accomplished by previous studies using surgically col-
lected clinical specimens. In addition to the lack of a direct
assessment of hormone or drug response, controlling the
quality and quantity of clinical specimens is often difficult,
limiting the translational value of results generated from
such samples.
Visium, a well-established ST method from 10×

Genomics and utilised in our study, analyses the transcrip-
tome for each arrayed spot, which typically contains more
than one cell.34 To compensate for the lower resolution
of the ST data and to ensure reproductivity of obtained
results, we also analysed scRNA-seq data from a separate
batch of PDX samples14 and evaluated these two datasets
together. Combining both ST and scRNA-seq analyses
provides a comprehensive view of the intratumour hetero-
geneity while maintaining spatial arrangement of cancer
cells. Although our intention was to define physically
separated and functionally unique cell clusters within the
two types of ER+ breast cancers through ST technology,
we recognised that many studies utilise single-cell datasets
in tandem with ST to detect localisations of single-cell
populations in tumour tissues.21 Thus, for further inves-
tigation of our findings, we estimated the location of the
cells from our single-cell dataset mapped to our ST results,
primarily focusing on single-cell clusters correlating to
a single ST cluster important for oestrogen-mediated
cancer growth. The results from our spatial and single-cell
analyses were further validated by similarities to a human

ER+ breast cancer single-cell dataset21 and protein-based
dual IHC of SC31 showing the importance of clinical
markers co-localisation [i.e., ER, PR and Ki67].
It is difficult to collect paired tumour samples from

primary and metastatic sites especially for ER+ cancers,
first, because the metastasis of such cancers typically take
place many years later and second, there are many logis-
tical challenges to locating primary tumours, which can
be kept at separate institutions. Last, subtype changes can
sometimes occur duringmetastasis,35 further complicating
paired sample collection. Recognising these challenges,
we have decided to evaluate the value of gene expression
signatures identified in our ST dataset by analysing sev-
eral clinical cohorts including luminal as well as other
subtypes25 together with metastatic ER+ breast cancers.29
The gene signatures from our ST clusters have been shown
to have prognostic values beyond ER+ breast cancers. As
described in detail below, for the first time, cells expressing
genes regulated by oestrogen were found to be physi-
cally separated from cells involved in oestrogen-mediated
proliferation. The ‘proliferative’ cell compartmentwas sug-
gested to be a causative feature of luminal B cancers and
shared characteristic with luminal epithelial cell progeni-
tors, based on the analysis using curated gene signatures
from a normal mammary epithelial cell atlas.23

3.2 Oestrogen dependency of ER+ breast
cancers

To understand how different ER+ breast cancers respond
to oestrogen, our laboratory prepared and characterised
a set of ER+ PDXs (Table S1). These PDXs had vary-
ing levels of ER positivity and responses to E2 including:
E2-dependent (SC31,15 GS4), -accelerating (SC1,15 GS1,
GS2) and -suppressed (GS314) tumours (Figure S3A).
These results support the clinical observation that not all
ER+ patients respond to oestrogen and endocrine ther-
apies in the same fashion,6 and that there is no direct
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correlation between ER levels and oestrogen responsive-
ness. This furthers the importance of understanding the
molecular and cellularmechanisms of oestrogen activity in
tumours/tumour models with different response patterns,
which can lead to more effective targeted therapies.
‘Oestrogen-suppressed’ cancers are uncommon, but

they have been found clinically and linked to aro-
matase inhibitor resistance, like our GS3 which was
established from a patient who failed such treatment. A
recent clinical trial has been launched aimed at inves-
tigating the oestrogen-suppressed features of endocrine-
resistant cancer.36 Our study included the oestrogen-
suppressed GS3, which can be a valuable tool to charac-
terise oestrogen-mediated growth by comparing it to the
oestrogen-dependent SC31.

3.3 ST on two ER+ breast cancer PDX
models with opposite responses to
oestrogen

To identify phenotypical diversity within ER+ breast can-
cers and to reveal how E2 affects their growths, we
performed ST analyses on ‘ER-high’ GS3 and SC31, both
treated with and without E2 (Figure 1). Although PDX
models are known to have ‘phenotypic drift’,37 growth
suppression of GS3 and promotion of SC31 by E2 were
maintained over the passages used in this study (Figure
S3B).
To assess the quality of our ST experiments, we first

evaluated the H&E images of tissue sections (Figure S4).
GS3 sections mostly consisted of tumour cells and small
patches of stromal and/or necrotic areas. In SC31 sections,
we observed both tumour cells and scar-like areas which
were possibly derived from the replacement of necrotic tis-
sues during tumour growth. In the datasets obtained from
the four tissue sections, a total of 9323 spots were included
(2330 spots from GS3-Placebo, 2863 spots from GS3-E2,
1967 spots from SC31-Placebo and 2163 spots from SC31-
E2) with an average number of 19 327 nCount and 4824
nFeature for human genes. Although the spots located on
the necrotic and/or scar-like areas showed lower values of
both nCount and nFeature, the spots consisting of tumour
cells had better quality control (QC) metrics (i.e., higher
nCount/nFeature and low mitochondrial gene %; Figure
S5), confirming that the overall experimental procedures
were successful.
A well-recognised challenge of PDXs is the presence of

mouse stromal cells, preventing investigation into the orig-
inal tumour microenvironment.37 In the ST datasets, we
observed mouse-derived stromal cell marker expressions
(Figure S6), but almost no human-derived stromal cell
marker expressions (Figure S7). However, less than 5% of

the spots included more mouse than human genes (Figure
S8). Furthermore, ‘mouse’ spots (spots with more mouse
than human genes) were mostly located near the edge of
tumour areas. These results indicated that most of the cells
making up the ST spots in our dataset were human-derived
epithelial cells. Our previous and current studies showed
that the effect of oestrogen on the chosen PDXs has been
maintained in multiple passages,14,15 suggesting that the
oestrogen-dependent growth in our model depends on the
epithelial cells of the originated tumour tissues and that
the impact of mouse stromal cells was minimal. There-
fore, in this study, we focused our analyses on the human
transcriptome from the epithelial cells.
To confirm the oestrogen-mediated tumour responses

observed in our previous studies14,15 as well as to get a
brief insight of spatial gene expression pattern in our ST
datasets, we performed cell cycle analysis and examined
the expressions of ESR1, PGR, andMKI67 genes (encoding
the three important markers ER, PR, and Ki67, respec-
tively) (Figures 2A and B). Our results indicated that the
proportion of proliferating spots (in S and G2M phases)
greatly decreased in GS3 and increased in SC31 with E2
treatment, confirming that our ST datasets reflected the
discrete tumour growth responses of these PDX mod-
els (Figures 2A and S9). Furthermore, MKI67 expression
decreased in GS3 following E2 treatment (Figure 2B).
We found that the number of spots expressing ESR1 and
their expression levels decreased in GS3 and increased in
SC31 in E2-treated specimens, consistentwith our previous
results.14 Remarkably, PGR expression was found in both
GS3 and SC31, but onlywhen treatedwith E2. For compari-
son, anotherwell-knownoestrogen-regulated gene,AREG,
was found in tumours without E2 treatment, especially
in GS3, and was up-regulated by E2 treatment. Although
known oestrogen-regulated genes can be expressed in the
absence of oestrogen, the expression of PGRwas suggested
to be entirely oestrogen-dependent. These observations are
important to indicate that oestrogen-regulated genes, such
as PGR, can be up-regulated independently from the differ-
ential oestrogen-mediated tumour growth responses. IL24,
encoding for an oestrogen-induced suppressor as indicated
in our previous report,14 was only detected in GS3-E2, sup-
porting the conserved features of our PDX models (Figure
S10). Intriguingly, the expression levels of these genemark-
ers were not consistent throughout spots on the tissues,
which reflected intratumour heterogeneity even among
the canonical marker expressions of luminal breast can-
cers. Considering that the changes in ESR1/PGR/MKI67
expression in the ST dataset were comparable to IHC
analysis in our previous study,14 we then classified each
spot by their ESR1/PGR/MKI67 gene expression patterns
(Figure 2C). Again, in both GS3 and SC31, the proportions
of PGR+ spots, such as ESR1+PGR+MKI67− (PPN; each
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F IGURE 2 Spatial transcriptomics on two ER+ breast cancer PDX models. (A) Cell cycle analysis on the ST datasets from GS3 and SC31
with and without E2 treatment. The colour of each spot represents the cell cycle phase. (B) Expression of ESR1, PGR, AREG andMKI67 genes
in the ST datasets. The spatial plot on the left shows the location and level of the expression on each tissue. The violin plot on the right
summarises the gene expressions in each section. *, p < .05; ns, not significant. (C) EPK classification on the ST datasets.
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letter representing the positive or negative expression of
each gene) spots, were increased by E2 treatment. Strik-
ingly, only the changes in the proportion of PNP spots (i.e.,
a decrease in GS3 and an increase in SC31) were corre-
lated with the suppression of GS3 and promotion of SC31
byE2 treatment, respectively.Overall, these results demon-
strated that the well-established markers (i.e., ESR1, PGR,
andMKI67) showed distinct spatial distributions and that
the cells included in PNP spots (i.e., ESR1+ and/orMKI67+
cells) were potentially associated with oestrogen-mediated
tumour growth.

3.4 ST identified functional
heterogeneity in ER+ breast cancers

To further explore the intratumour heterogeneity in
ER+ breast cancers and to reveal cell population(s) that
drive oestrogen-mediated growth, we performed unsu-
pervised clustering on the integrated dataset from the
four ST samples. We identified nine clusters (ST_0−8)
with diverse gene expression profiles (Figures 3A and
S11A). Among the identified nine clusters, ST_3, ST_6,
and ST_8 showed lower QC metric values (Figure S11B)
and were mainly located in the necrotic and/or scar-like
tissue areas (Figures 3A and S12). Thus, they were not
interrogated in further analyses. The other clusters (ST_0,
ST_1, ST_2, ST_4, ST_5 and ST_7) were localised in the
tumour areas, indicating that these clusters represented
the heterogeneous populations of human breast cancer
cells (Figures 3A and S12). Each cluster was identified
across the four samples and tended to accumulate in a
different compartment on the tumour sections (e.g., ST_0
spots on GS3-Placebo at the left area, whereas ST_2 at the
right area). In addition, ST_5 seemed to be adjacent to the
necrotic areas across the four samples. Importantly, our
results showed intratumour heterogeneity of breast cancer
cells which was shared irrespective of the different growth
responses and presence of E2 treatment.
To characterise the populations identified in our

integrated dataset, we investigated the DEGs and gene
signatures in each ST cluster (Figures 3B and C). ST_0
showed higher expressions of known oestrogen-regulated
genes such as SERPINA3, SGK3 and RERG.38–40 Intrigu-
ingly, TXNIP and RERG have also been reported to be
linked to breast cancer suppression associated with better
prognosis.40–43 Among the sixmain clusters, ST_0 also pre-
sented higher scores for the oestrogen-response gene sets
(ESTROGEN_RESPONSE_EARLY/LATE), suggesting
that ST_0 is the oestrogen-responsive population (Figure
S13). The DEGs of ST_2 included many proliferation-
related genes (e.g., TOP2A, HMGB2 and CDK1). ST_2
had the highest scores in the gene signatures related to

cell cycle progression (DNA_REPAIR, E2F_TARGET,
G2M_CHECKPOINT and MITOTIC_SPINDLE) as
well as the highest percentage of the proliferating
spots in the cell cycle analysis (Figure S14). They also
showed the highest scores in MYC target signatures
(MYC_TARGETS_V1/V2), which are known to be
involved in breast cancer proliferation.44 Additionally,
ST_2 showed higher scores for oestrogen-response gene
sets among the six clusters, implying that they were
important in oestrogen-dependent tumour proliferation.
ST_5 was characterised by higher expression of

genes related to hypoxia and the resulting anaero-
bic cell metabolism or angiogenesis (e.g., NDRG1,
LDHA and VEGFA), as well as their associated
gene signatures (ANGIOGENESIS, EPITHE-
LIAL_MESENCHYMAL_TRANSITION, GLYCOLYSIS
and HYPOXIA). In previous studies, these features were
reported to be related to breast cancer metastasis.45,46
Considering the localisation of this cluster along with
the necrotic/scar-like areas, ST_5 would represent the
subset of cancer cells exposed to hypoxic microenvi-
ronments and thereby obtaining metastatic features.
ST_7 showed higher gene expression of interferon
(IFN)-inducible genes such as ISG15, IFIT1 and IFI6,
which were recently demonstrated to be associated with
ER+ breast cancer therapy resistance.47–49 The ST_7
cluster also showed the highest scores in the signa-
tures related to inflammation (e.g., COMPLEMENT,
IL6_JAK_STAT3_SIGNALING, INFLAMMA-
TORY_RESPONSE and INTERFERON_ALPHA and
GAMMA_RESPONSE). Although ST_1 showed higher
expression of some oestrogen-inducible genes (e.g., TFF1)
and the oestrogen-response gene signatures, their overall
gene signature scores were lower than other clusters. The
relatively lower scores were also observed in ST_4, imply-
ing that ST_1 and ST_4 would be functionally less distinct
compared with the others. Collectively, the ST analyses
revealed the four major spatially resolved ‘functional
compartments’ with important gene signatures identified
in all four tumour sections.

3.5 Impact of oestrogen on the
individual functional compartments

Our ST analyses identified the heterogeneous populations
in either breast cancer models, regardless of oestrogen
treatment. To assess the impact of E2 treatment on the
individual populations, we compared the proportion of
the four compartments (ST_0, ST_2, ST_5 and ST_7)
between placebo- and E2-treated samples in GS3 and SC31
(Figure 3D). ST_2 differed in accordance with the growth
of the PDXmodels (i.e., decreased in GS3 and increased in
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F IGURE 3 Identification of functional compartments in the ST dataset and the effect of E2 treatment. (A) Distribution of the ST clusters
on tumour sections. Each spot is coloured according to the cluster (ST_0−8) identified by the unbiased clustering. (B) Heatmap of the top 10
genes for the ST clusters. Column represents the spots and row represents the genes. The gene expression levels were scaled by the
SCTransform function. (C) Heatmap of the hallmark gene signature scores for the ST clusters. Column represents the ST clusters and row
represents the gene sets. (D) Proportion of the four major ST clusters in each sample. The percentage of the ST cluster was calculated by (the
number of spots in a ST cluster in a sample)/(the total number of spots in a sample). (E) Gene signature changes by E2 treatment. Size and
colour of the dot represent p value and log2 fold change value between E2 and placebo groups in each ST cluster, respectively.
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SC31). In contrast, the proportions of ST_0, which was the
compartment with the high oestrogen-response signature,
was increased by E2 treatment in bothmodels.Meanwhile,
the abundance of ST_5 and ST_7 spots showed less changes
by E2.
We then evaluated the effect of oestrogen on gene

expression profiles within each of the four major
ST compartments by comparing the gene signature
scores between the placebo- and E2-treated samples
(Figure 3E). In ST_2, the levels of gene expression asso-
ciated with E2F_TARGETS and G2M_CHECKPOINT
decreased in GS3 and increased in SC31 following
E2 treatment. The levels of genes associated with
ESTROGEN_RESPONSE_EARLY/LATE increased by
E2 in both tumours. MYC_TARGETS_V1/V2 scores
were highly increased in SC31 compared with that in
GS3, suggesting the importance of these responses for
inducing oestrogen-dependent tumour proliferation.
In ST_0, the levels of genes associated with ESTRO-
GEN_RESPONSE_EARLY/LATE were increased by E2
in both models, while the proliferative features were not
changed, suggesting that the cells in ST_0 would not be
linked to E2-dependent tumour growth. The levels of
genes associated with HYPOXIA and GLYCOLYSIS in
ST_5 of both tumours were not prominently affected by
E2, but ESTROGEN_RESPONSE_EARLY/LATE scores
increased. While the major gene signatures in ST_7 were
INTERFERON_ALPHA and GAMMA_RESPONSE, E2
treatment decreased these signatures in the two models,
especially in SC31. In summary, the scores of the oestrogen
response signatures increased across the ST clusters
with E2, indicating that E2 treatment induced the typical
oestrogen-regulated gene expressions inmost tumour cells
in ER+ breast cancers, where both ESR1+ and ESR1− cells
would be affected as reported in our previous literature.14
However, only the cells in ST_2 were associated with
tumour growth.

3.6 Single-cell RNA sequencing defined
the heterogeneous breast cancer
population at a higher resolution

Upon the identification of the heterogeneous popula-
tions in our ST dataset, we examined the scRNA-seq
datasets from the same experimental settings14 to deter-
mine whether each ST cluster can be recognised as an
individual single-cell population or as a mixture of several
populations. After the integration of the four datasets, 14
single-cell clusters (SC_0-13) were identified (Figures 4A
and S15A). Despite the regression for stress response-
related ‘immediate-early gene (IEG)’ expressions (Table
S4 and Supplementary Methods), a small cluster with

the high expression of IEGs (SC_8) persisted, and there-
fore, we did not interrogate this cluster to avoid potential
artifacts in further downstream analyses (Figure S15B).
Remarkably, the results of DEG analyses indicated that
several SC clusters had comparable gene expression pat-
terns with the ST clusters (Figures S15B and C); the top
DEGs in ST_2 (HMGB2), ST_5 (NDRG1) and ST_7 (ISG15)
were also highly expressed in SC_1/3/9, SC_10 and SC_13,
respectively (Figure S15C). On the UMAP plot, there were
three well-separated clusters, SC_1, SC_3 and SC_9, which
showed highly proliferative signatures (Figures 4A and B
and S15B). Corresponding to the difference of their pro-
liferative signature patterns (e.g., high DNA_REPAIR in
SC_1 and high G2M_CHECKPOINT in SC_9, respec-
tively), these clusters were further distinguished by their
cell cycle phases: SC_1 in S phase, while SC_3 and SC_9 in
G2M phase (Figures 4B and C). As reported in a previous
study,50 the levels of MKI67 expression tended to increase
along with the cell cycle progression and were the high-
est in G2M phase cells (i.e., SC_9; Figure S16). SC_1 had
the highest levels of oestrogen response signatures among
the three clusters, implying that each cluster had different
contributions toward oestrogen-dependent growth.
To compare the clusters identified in the ST and

scRNA-seq datasets, we analysed the correlation of the
gene signature scores between the ST and SC clusters
(Figure 4D). Corresponding to the similarity of the DEG
and gene signature results, strong to very strong posi-
tive correlations were observed between ST_0 and SC_2
(oestrogen-responsive), ST_2 and SC_1/9 (proliferative),
ST_5 and SC_10 (hypoxia-induced), as well as ST_7 and
SC_13 (inflammation-related). These correlations high-
lighted the most dominant single-cell populations within
the ST compartments. In addition, the ST clusters corre-
lated with more than one SC cluster, indicating that the
SC clusters defined cells included in each ST spot clusters
at a higher resolution. ST_2 had very strong correlations
with both SC_1 and SC_9 as well as a moderate correla-
tion with SC_3, all of which depicted highly proliferative
features. To confirm this observation, we performed the
mapping of the SC clusters on the spatial datasets following
the approach by Wu et al.21 In general, the areas showing
the enrichment of SC_1/3/9 corresponded to the localisa-
tion of ST_2 spots, withminor variability (Figure 4E). Also,
the predicted abundance represented by the AUCell scores
of SC_1/3/9 signatures were significantly higher in ST_2
cluster (Figure S17). These results suggested that the ST_2
compartment would consist of three different proliferative
cell subtypes. Altogether, we defined transcriptionally dif-
ferent compartments of breast cancer cells from the ST
analysis and validated the concept that ST populations can
be identified as distinct groups of cells, or their mixtures,
using scRNA-seq datasets at a higher resolution.
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F IGURE 4 Single-cell analysis defined cell subsets responsible for oestrogen-dependent tumour growth at a higher resolution. (A)
UMAP plot of the integrated scRNA-seq dataset coloured according to the clusters identified by the unbiased clustering. (B) Heatmap of the
hallmark gene signature scores for the SC clusters. Column represents the SC clusters and row represents the gene sets. (C) Cell cycle analysis
on the integrated scRNA-seq dataset. (D) Correlation analysis of the gene signature scores between the clusters in the ST and scRNA-seq
datasets. The value and colour of each box indicates Pearson’s correlation coefficient. (E) Spatial mapping of the proliferative SC clusters on
the ST sections. The spatial plot on the top represents the localisation of ST_2 spots in each tissue. (F) EPK classification on the scRNA-seq
dataset. (G) Proportion of the cells with EPK classification in each scRNA-seq sample. The percentage of cells was calculated by (the number
of cells in an EPK classification in a sample)/(the total number of cells in a sample).
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3.7 Further definition of cell subsets
responsible for oestrogen-dependent
tumour growth with ESR1/PGR/MKI67
expressions

As observed in the ST dataset (Figure 2B), the global
expression pattern of these three genes in each dataset
correlated with our previous IHC observation (Figure
S18).14 Therefore, to link the expression pattern of the
canonical luminal breast cancermarkerswith the ‘prolifer-
ative’ ST_2-associated SC clusters, we further investigated
our scRNA-seq datasets using the classification based on
ESR1/PGR/MKI67 expressions (Figure 4F). In the evalu-
ation of the proportion of each classification in the SC
clusters, theMKI67+ cells (PNP, PPP, NPP and NNP) were
specifically distributed among the proliferative SC clus-
ters (SC_1, SC_3 and SC_9). The results indicated that
theMKI67+ cells represented the proliferative populations
contributing to the oestrogen-dependent tumour growth.
In addition, SC_1 and SC_9 had more ESR1+/MKI67+
cells (PNP and PPP), while SC_3 tended to have fewer
of those cells, highlighting their differences in the oestro-
gen responsive signatures. Meanwhile, PGR+ andMKI67−
cells, including PPN and NPN, were present in all clus-
ters except SC_1, SC_3 and SC_9, implying thatmost PGR+
cells were not associated with proliferation.
To evaluate the effect of E2 on each group of EPK-

classified cells, we analysed the changes in their pro-
portions by E2 treatment in our scRNA-seq dataset
(Figure 4G). PPN cells were only identified in E2-treated
samples, ensuring that PGR expression was solely depen-
dent on the presence of oestrogen.Meanwhile, the changes
in PNP cells correlated with the response of GS3 and SC31
to E2 treatment. Although PPP/NPP cells were observed
in both models with E2 treatment, the increase was much
more prominent in SC31 than that in GS3, also suggest-
ing their roles in the proliferative response to oestrogen.
Accordingly, our results implicated that PNP, as well as
PPP/NPP cells, are subsets of MKI67+ proliferative cells
crucial for oestrogen-dependent breast cancer growth,
which correlated with the results from our ST analyses.

3.8 Validation of the results from SC31
and GS3 through single-cell analysis on
another PDX (GS1) and publicly available
human breast cancer datasets

To validate what we have learned from the analyses on
GS3 and SC31 PDXs, we performed scRNA-seq analysis
on another PDX model named GS1. This ‘ER-low’ (5%
ER) model was defined as a luminal B cancer in our

previous literature13 and its growth was partly facili-
tated by E2 (but not requiring E2), defining GS1 as an
oestrogen-accelerating luminal breast cancermodel (Table
S1 and Figure S3). In the scRNA-seq dataset from GS1,
the MKI67+ cells accumulated in the two clusters with S
and/or G2M phase cells (clusters 2 and 4) (Figures 5A–C),
similar to those of SC_1, SC_3 and SC_9 (in the GS3 and
SC31 dataset) (Figures 4C and S16). There were a limited
number of cells expressing either ESR1 or PGR in GS1.
When comparing the EPK classification of this dataset
(Figure 5D), NNP cells were more dominant than PNP
cells in the proliferative clusters and the number of NNP
cells increased after E2 treatment (Figure 5E), indicating
that tumour growth in GS1 would be driven mainly in an
ER-independent manner, but accelerated in the presence
of E2. Importantly, we identified the clusters with gene
signatures related to hypoxia (cluster 5) and inflammatory
responses (cluster 1), confirming the ST_5 and ST_7-like
cells in this breast cancer (Figure 5F).
To support the availability of a function-specific ‘pro-

liferative’ cell population for the oestrogen-dependent
growth, we investigated an additional scRNA-seq dataset
from nine ER+ breast cancer patient samples.21 Among
clusters identified in this dataset, cluster 9 showed pro-
liferative characteristics (Figure 5G), although oestrogen
response information was not available for these samples,
and functional features of the other clusters were unclear
due to varying sample quality and abundance of cancer
cells (Figures S19A–C). EPK classification showed that the
MKI67+ cells specifically accumulated in the proliferative
cluster 9 (Figure 5H), which supported the results from our
own datasets (Figure 4F). Importantly, PGR+ (e.g., PPN)
cells were identified across all clusters regardless of dif-
ferent proliferative features, ensuring that PGR expression
was not an indicator of proliferative capacity of the cells.

3.9 Analysis of ER, PR and Ki67
expression in SC31 through dual IHC
following E2 and/or palbociclib treatment

While three United States Food and Drug Administration-
approved CDK4/6 inhibitors are mainly used for ER+
breast cancer in combination with endocrine therapy, a
recent study has demonstrated single-agent activity of a
newer CDK4/6 inhibitor, abemaciclib, in the treatment of
ER+ metastatic breast cancer.51 In a previous publication
on ER+ cell lines,52 we have found that cell cycle-driven
ER is required for CDK4/6 inhibitor-mediated suppression
of cell proliferation, and changes in G2M-phase molecules
are associated with the treatment of CDK4/6 inhibitors.
Ki67 is known to have the highest expression in cells in the



YOSHITAKE et al. 13 of 22

F IGURE 5 Validation of the results from SC31 and GS3 through single-cell analysis on two additional datasets. (A) UMAP plot of the
GS1 dataset coloured according to the clusters identified by the unbiased clustering and (B) the cell cycle phases. (C) Expression of ESR1, PGR
andMKI67 expression in each cluster identified in the GS1 dataset. (D) EPK classification on the GS1 dataset. (E) Proportion of cells with EPK
classification in each sample. The percentage of cells was calculated by (the number of the cells in an EPK classification in a sample)/(the
total number of the cells in a sample). (F) Heatmap of the hallmark gene signature scores for the clusters in GS1. Column represents the
clusters and row represents the gene sets. (G) UMAP plot of human ER+ breast cancer dataset coloured according to the clusters identified by
the unbiased clustering and the cell cycle phases. (H) EPK classification on the human ER+ breast cancer dataset.
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F IGURE 6 Dual IHC analysis on SC31 following E2 and/or palbociclib treatment. (A) Representative images of the dual IHC of Ki67
(blue) and PR (yellow) in SC31 treated with E2 or E2 + palbociclib (Palbo). The Ki67+PR+ cells were stained in green. Scale bar = 100 μm. (B)
Quantification of the total and Ki67+PR−, Ki67−PR+ and Ki67+PR+ cells per field. Data are shown as mean ± SEM [n = 5 (E2) and 4 (E2 +
Palbo)]. *, p < .05; **, p < .01; ns, not significant.

G2M-phase.50 CDK4/6 inhibition leads to G1-phase arrest,
reducing cells in the G2M phase, that is, Ki67+ cells.
Here, to validate the implication of ESR1/PGR/MKI67

expressions at the protein level and evaluate the impact
of targeted proliferative cell suppression, we performed
an in vivo experiment using SC31 treated with E2 and a
CDK4/6 inhibitor, palbociclib (Figures 6 and S20). The his-
tological evaluation showed that the palbociclib treatment
significantly reduced the total number of the cells per area
(Figure 6), indicating that palbociclib successfully reduced
tumour cell growth. In our dual IHC analysis, we could
confirm the identification of each EPK-classified cell type
in the ST and scRNA-seq datasets and to link their dis-
tribution to palbociclib treatment response (Figures 6 and
S20). With the palbociclib treatment, the dual ER/Ki67
IHC revealed that the number of both ER+Ki67+ and
ER−Ki67+ cells were significantly reduced (Figure S20A).
Furthermore, in Ki67/PR dual IHC, Ki67+PR- cells, which
would include both NNP and PNP cells, were remarkably
decreased (Figures 6B and S20B). Surprisingly, the number
of Ki67+PR+ cells, including both NPP and PPP cells, was
not significantly reduced by palbocilib, suggesting that pal-
bociclib may not suppress these two classifications of cells,

or that PR expression is linked to the non-proliferative fea-
tures. Overall, these observations provided protein-based
evidence for the ST/scRNA-seq results that the induction
of the population with typical oestrogen responses (e.g.,
Ki67−PR+ cells) was not directly linked to the oestrogen-
dependent growth and indicated that the therapeutic effect
of palbociclib could be exerted by suppressing PNP and
NNP cells.

3.10 Translational application of the
four major functional compartments in
ER+ breast cancers

To provide clinical implications of our findings on the
four ST clusters, we analysed a publicly available dataset,
METABRIC, using the gene signatures from ST_0, ST_2,
ST_5 and ST_7 compartments (Figure 7A). Among the
luminal breast cancer patients, the ST_0 signature scores
were higher in the luminal A patients, while the scores
of the other signatures (from ST_2, ST_5 and ST_7) were
significantly higher in the luminal B patients. The differ-
ence of the ST_2 signature scores was highly significant,
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F IGURE 7 Clinical data analysis on public cohorts with the ST signatures. Luminal subtype breast cancers in METABRIC cohort (A and
B; luminal A, n = 679; luminal B, n = 461) and stage IV ER+/HER2− breast cancers in GSE124647 cohort (B; n = 140) were analysed using A
ST_0, ST_2, ST_5 or ST_7 signatures and B the combination of ST_0 and ST_2 signatures. The gene signature scores were calculated in each
patient using the GSVA R package. Left panels on A show the scores in luminal A and B patients with p values on the top. Kaplan–Meier plots
show the overall survival of patients in each group with p values at the bottom left corner.

which agreed with the molecular definition of luminal
B subtype as a highly proliferative ER+ breast cancer.
Patients in the high score group of ST_2, ST_5 and ST_7
signatures had significantly shorter survival, suggesting
that these populations were potentially associated with

more aggressive features of ER+ breast cancers. On the
other hand, patients with the high ST_0 scores showed
better prognoses, confirming that ST_0 would not be
directly associated with oestrogen-dependent tumour
progression.
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TABLE 1 ST_0 and ST_2 combination groups and luminal subtypes in the public cohorts.

METABRIC TCGA
Luminal A Luminal B Luminal A Luminal B

ST_0 High—ST_2 High 27 (26%) 75 (74%) 23 (42%) 32 (58%)
ST_0 High—ST_2 Low 152 (97%) 4 (3%) 103 (99%) 1 (1%)
ST_0 Low—ST_2 High 22 (14%) 137 (86%) 21 (22%) 73 (78%)
ST_0 Low—ST_2 Low 96 (97%) 3 (3%) 64 (100%) 0 (0%)

Considering the importance of ST_0 and ST_2 signa-
tures (i.e., oestrogen response and proliferation) in luminal
cancers and their opposite association with patient sur-
vival, we carried out an analysis combining these two
gene signatures (Table 1 and Figure 7B). The tumours
with low ST_2 signature scores were primarily luminal
A subtype with better prognosis, while the ST_0 signa-
ture scores did not exhibit much impact. Furthermore,
the tumours with high ST_2 scores, especially ST_0 low-
ST_2 high tumours, were mainly luminal B subtype with
shorter survival times. We performed a similar compar-
ison using the TCGA data set (Table 1). The ST_2 low
tumourswere all luminal A subtype except for one tumour.
ST_0 scores barely affected the luminal subtype distri-
bution. We also examined a third dataset (GSE124647)
that included 140metastatic ER+/HER2− breast cancers.29
While this dataset did not have intrinsic subtype infor-
mation, high ST_0 and ST_2 scores were associated with
better and worse survival outcomes, respectively (Figure
S21), the same as those observed in theMETABRIC dataset
(Figure 7A). Similarly, ST_2 low tumours had a better out-
come and ST_0 low-ST_2 high tumours had the shortest
survival times (Figure 7B). The results from these analy-
ses suggest that the spatially distinct ST_2 group (including
MKI67+ cells) had more impact than ST_0 on luminal
cancer prognoses, and that luminal B tumours could be
associated with a higher abundance of cells belonging to
the ST_2 compartment. It was also clear that luminal A
tumours had low ST_2 scores.
Further investigation on the entire METABRIC cohort

including other subtypes (i.e., basal-like, claudin-low and
HER2-enriched) showed that luminal A and B had higher
scores in ST_0 signature than the other subtypes, and
again, the clinical outcome of high score group was
better than the low group’s (Figure S22). For ST_2 sig-
nature, luminal A was the lowest, and luminal B had
relatively higher scores amongst the subtypes. Although
ST_2 was characterised as an oestrogen-responsive and
proliferative population, this signature was also high in
the basal-like subtype because the genes included in ST_2
signature consisted of many proliferation-related genes.
ST_5 score was significantly higher in the basal and
HER2 tumours, which depicted their more aggressive and
metastatic behaviours as well as oestrogen-independent

features. Also, higher ST_5 score indicated worse out-
comes, supporting the potential contribution of ST_5 to
cancer metastasis through oestrogen-independent mecha-
nisms. The differences of ST_7 signature scores among the
subtypes were also significant but less clear than the other
signatures. In addition, the levels of the ST_7 signature did
not show significant value on the survival of all breast can-
cer patients. It may indicate that the activation of their
inflammation-related features, especially IFN-responsive
characters, was only related to the aggressiveness of lumi-
nal breast cancers. In summary, our analysis on the
publicly available cohorts with bulk gene expression infor-
mation associated the functional ST compartments with
clinical outcomes, furthering the translational value of the
results from our ST analyses on the oestrogen-responsive
ER+ breast cancer PDXs.
Our analysis of ER+ PDXs, including ST and scRNA-seq

analyses, indicated that the MKI67+ ST_2 compartment
was the major driver for the proliferation of ER+ cancers.
We previously established a normal mammary epithelial
cell atlas and curated gene signatures representing dis-
tinct epithelial lineages.23 Our analyses have suggested
that luminal A cancers have their origins in the ‘mature’
L-Hor cell lineage, and luminal B type is more associated
with the progenitor state (LH-pro).23 Remarkably, in the
current study, the proliferative SC clusters (SC_1, SC_3 and
SC_9) had higher scores for themammary ‘Stem’ signature
developed from the epithelial atlas (Figure 8A), suggesting
similarities between these MKI67+ cells and the normal
mammary stem/progenitor-like cells. In the normal mam-
mary epithelial cell atlas, we also found that the Mki67+
cells were only observed in the progenitor populations
(Figure 8B). NNP cells were found in all three progeni-
tor populations, whereas PNP, NPP and PPP cells were
only found in the LA-pro and LH-pro populations. NPP
and PPP cells were more abundant in the LH-pro popula-
tion than in the LA-pro population, suggesting their more
differentiated features toward L-Hor lineage.

4 DISCUSSION

The importance of single-cell and ST research in clinical
and translational medicine has been clearly recognised.53
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F IGURE 8 Progenitor-like features of theMKI67+ proliferative cell subsets. (A) Mammary ‘Stem’ gene signature scoring on the
GS3/SC31 scRNA-seq dataset. The gene list for the mammary stem signature was derived from our previous literature23 and the score was
calculated using the VISION R package. Different letters on the box plots indicate significant difference between the groups (p < .05). (B) EPK
classification of normal mammary epithelium dataset. Each panel shows the results on each lineage of cells identified in our previous study.23

For the first time, we revealed the intratumour hetero-
geneity within ER+ breast cancer by the application of
ST and scRNA-seq analyses on three unique models,
including two ‘ER-high’ PDXs (GS3 and SC31) with
opposite responses to oestrogen, followed by validation
through an oestrogen-accelerating ‘ER-low’ PDX (GS1).

From ST analysis, we identified four spatially separated
compartments (i.e., oestrogen-responsive, proliferative,
hypoxia-induced, and inflammation-related), which
showed unique gene signatures as previously reported
mechanisms of cancer development and progression.44–49
Among our key findings, the responsiveness of a highly
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proliferative cell population with progenitor cell-like fea-
tures (i.e., ST_2) to oestrogen was shown to be crucial for
ER+ cancer growth, leading to the acquisition of luminal B
features. In contrast, oestrogen-responsive cells (in ST_0)
may be linked to mature hormone-sensing lineage. The
‘proliferative’ cell population was further validated using
an independent published single cell dataset.21 Through
the analysis of clinical databases, the four major compart-
ments were shown to be associated with breast cancer
patient outcomes in a distinct manner, suggesting the
translational implication of our findings from ST analysis.
The association between the oestrogen-regulated gene

expression (e.g.,PGR,AREG) and the oestrogen-dependent
growth has been extensively investigated.54–58 Previous
studies mainly used breast cancer cell lines, especially
MCF-7, which are known to show concomitant up-
regulation of oestrogen-responsive genes and cell prolifer-
ation genes within the same cell responding to oestrogen.
The results in the current study on the tumour mod-
els with the cells showing heterogenous gene expression
indicated that the expansion of cells expressing typical
oestrogen-regulated genes like PGR would not be directly
associated with oestrogen-mediated proliferation. Func-
tionally, the gene expression signatures of two major
oestrogen-regulated cell clusters (i.e., ST_0 and ST_2) were
linking to opposite survival outcome (Figure 7). Expres-
sion of oestrogen-regulated genes could indicate a better
response to the endocrine therapy, as we observed a bet-
ter clinical outcome associated with ST_0 gene signature
(Figure 7). Our findings support the observation in clin-
ical practice that luminal A (low ST_2 gene signature)
patients with higher oestrogen-regulated gene expres-
sions show better prognoses compared with luminal B
(high ST_2 gene signature) patients with low oestrogen
response and high proliferation.2,3,5 While Scabia et al.59
described the inter-patient tumour heterogeneity of the
hormone response, our ST and scRNA-seq data revealed
that the intratumour heterogeneity, with physically sep-
arated ‘oestrogen-responsive’ and ‘oestrogen-proliferative’
cell compartments, might explain the biological basis of
two types of luminal cancers. Although progesterone was
indicated to suppress the oestrogen-dependent prolifera-
tion of MCF-7 cells,60 a progesterone treatment did not
affect the proliferation nor the bulk gene expression pat-
tern of oestrogen-suppressed GS3 (Figures S23A and B).
Overall, our results highlight the power of ST technol-
ogy together with biologically defined PDXs for identifying
physically separated functional compartments in ER+
breast cancer.
The MKI67+ cells were exclusively included in the SC

clusters correlating with ST_2. Our results supported the
previous clinical study that only Ki67, but not ER/PR,
was the negative factor for patient prognosis in IHC3, an

IHC-based scoring method.61 Among the MKI67+ cells,
we identified two distinct classifications of the cells
correlated with oestrogen-dependent growth, that is, PNP
and PPP/NPP cells. PNP cells could be observed both with
and without E2 and were implied to be associated with
oestrogen-dependent tumour growth in luminal/ER+
breast cancers. Meanwhile, our results suggested that
PPP/NPP cells were solely oestrogen-dependent and
present in a less aggressive luminal A-like subtype.
Although our approach based on ESR1/PGR/MKI67
expressions may include false negative classifications
due to ‘drop-out’ during the ST/scRNA-seq experiments,
the following dual IHC analysis, as well as our previous
results, supported the identification of each class of cells
and their responses to the treatments. Intriguingly, palbo-
ciclib could suppress ER+Ki67+ (PNP), but not PR+Ki67+
(PPP/NPP) cells, providing the potential explanation of
why palbociclib has been only effective for advanced
breast cancers and highlighting the importance of its
combination with endocrine therapy to target both PNP
and PPP/NNP populations. The additional examination
on GS1 model indicated that NNP cells could be the dom-
inant cell type in driving cancer growth in ‘ER-low’ breast
cancers. It is noted that the NNP cell population in GS1
increased after oestrogen treatment as it implied potential
interactions between ESR1+ and ESR1− proliferative cells.
In the normal mammary epithelium dataset, NNP cells
were found in the mammary stem or basal progenitor
populations, implying that they are present not only in
luminal cancers but also in other subtypes such as basal-
like cancers. Collectively, our study would indicate the
complexity of cell distribution driving the tumour prolifer-
ation in ER+ breast cancers, that is, ER-positive (PNP and
PPP/NPP) and -negative (NNP) cells, and our findings sup-
port the importance of combination therapy to suppress
all proliferative populations within a single tumour.
Our ST analysis on our PDX models found a compart-

ment with higher hypoxia-induced signatures. Hypoxia is
one of the hallmarks of cancers and often occurs alongside
necrosis formed by insufficient oxygen and nutrition
supply. The hypoxia-induced phenotypical changes of
breast cancer cells have been thought to be important
especially for distal metastasis.45 Indeed, our hypoxia-
induced cluster concomitantly showed the enrichment of
gene signatures known to promote metastasis. Notably,
the hypoxia-related gene signature in ST_5 was not
affected much by oestrogen treatment in this study.
Also, the non-luminal breast cancers in the METABRIC
cohort showed higher expressions of the ST_5 gene sig-
nature, indicating the importance of hypoxic features as
oestrogen-independent mechanisms of tumour progres-
sion for all breast cancer subtypes. Our ST analysis has
revealed that glycolysis is linked to ST_5, while oxidative
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phosphorylation is associated with proliferative ST_2 that
requires efficient energy production (Figure 3C). These
results pose the opportunity for future combination treat-
ment of endocrine therapy with hypoxia-targeting agents
(e.g., anti-angiogenic therapy) to suppress metastasis.
Our ST analysis identified another compartment show-

ing the inflammation-related signatures, especially with
the up-regulation of IFN-responsive genes. IFNs have
been investigated as inflammatory mediators produced by
immune cells, facilitating anti-tumour immunity. How-
ever, emerging evidence suggests that the tumour cells
themselves can produce IFNs and thereby activate IFN
signalling autonomously.62 A recent study demonstrated
that the potential autonomous activation of IFN sig-
nalling in ER+ breast cancers led to the CDK4/6 inhibitor
resistance.48 Also, the long-term inhibition of oestrogen
signalling in breast cancer cells can induce IFN-responsive
gene expressions, leading to endocrine resistance.47,63
In our study, we observed the downregulation of IFN-
response signatures in ST_7 with E2 treatment. Con-
sidering that our SC31 model was partly suppressed by
endocrine therapy in our previous study,15 we speculate
that the IFN-responsive signalling would be usually sup-
pressed by oestrogen in ER+ breast cancers, but once
the oestrogen signalling was inhibited, the IFN-responsive
population would become dominant for the breast can-
cer’s progression. While further mechanistic studies are
needed, this study identifies additional therapeutic target
that could be used to improve clinical outcomes in ER+
breast cancers.
The design of our study requiredwell-defined oestrogen-

responsivemodels. Importantly, we have PDXmodels with
different responses to oestrogen treatment. A limitation of
this study is thatwemainly focused on twoER+ breast can-
cer PDXs, GS3 and SC31, with confirmative evidence from
another ‘ER-low’ PDX GS1. Yet, consistent intratumour
heterogeneity was clearly demonstrated in these struc-
turally and functionally distinct tumour models. While
the translational value of scRNA-seq analysis on clinical
specimens can be significantly compromised because of
their uncontrolled quality, the recent paper by Wu et al.21
performed large-scale scRNA-seq analyses on clinical sam-
ples and determined seven cell groups with distinct gene
signatures called ‘gene module (GM)’ across all breast
cancer subtypes. Importantly, their GMs corresponded
to our ST/SC signatures (e.g., the proliferation-related
gene signatures in GM3 or the IFN-responsive genes in
GM4). Our analysis on the nine ER+ specimens from
their dataset confirmed the presence of the prolifera-
tive cell population (i.e., cluster 9 in Figure 5G), well
separated from other cell populations which were compro-
mised by the heterogeneous number of cells from different
patients.

F IGURE 9 Graphical abstract. We identified four spatially
separated populations in ER+ breast cancers with distinct gene
signatures, leading to overall cancer progression in a
function-specific manner.

Our comprehensive ST analyses on ER+ PDXs with
defined oestrogen responses, for the first time, revealed
functionally and physically distinct compartments within
ER+ breast tumours and demonstrated the importance of
the ST_2 signature, including Ki67 expression, using the
METABRIC and two other cohorts. Again, the strength
of our study using PDXs is the ability to evaluate the
response to experimental intervention, that is, oestrogen
treatment. While the use of PDXs limits the investiga-
tion of impact of tumour microenvironment, the unique
approach on the two PDXs with opposite responses to
oestrogen allowed us to elucidate the essential cell pop-
ulation for oestrogen-dependent tumour growth. While
multiple important analyses on correlations between bulk
gene profiling and clinical outcome have been carried out
using primary tumour specimens, a limitation is the lack
of direct evidence for relationship between gene expres-
sion and tumour growth. Thus, our findings are crucial
not only for improving the understanding of ER+ breast
cancer biology, but also for providing insights to develop
more targeted therapeutic strategies toward better patient
prognoses.

5 CONCLUSIONS

Our space-gene-function study identified the four active
populations in ER+ breast cancers (i.e., oestrogen respon-
sive, proliferative, hypoxia-induced and inflammation-
related) (Figure 9). These spatially distinct functional
compartments were suggested to uniquely contribute to
breast cancer progression. We identified a cell cluster
linked to oestrogen-dependent tumour proliferation that
were different, spatially and functionally, from cells which
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express typical oestrogen-responsive genes. Moreover, the
proliferative cells were further distinguished into more
specific cell subsets, with different cell cycle phases, in
the scRNA-seq analysis, implicating their distinct con-
tribution toward tumour growth. Overall, our study on
oestrogen-responsive PDXs through ST and scRNA-seq
analyses provides a comprehensive view of intratumour
heterogeneity in ER+ breast cancers and reveals a prolifer-
ative compartment as the biological and mechanistic basis
of luminal B breast cancer.
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