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The electromyography(EMG) signal is the biocurrent associated with muscle contraction and can be 
used as the input signal to a myoelectric intelligent bionic hand to control different gestures of the hand. 
Increasing the number of myoelectric-signal channels can yield richer information of motion intention and 
improve the accuracy of gesture recognition. However, as the number of acquisition channels increases, 
its effect on the improvement of the accuracy of gesture recognition gradually diminishes, resulting in 
the improvement of the control effect reaching a plateau. To address these problems, this paper presents 
a proposed method to improve gesture recognition accuracy by virtually increasing the number of EMG 
signal channels. This method is able to improve the recognition accuracy of various gestures by virtually 
increasing the number of EMG signal channels and enriching the motion intention information extracted 
from data collected from a certain number of physical channels, ultimately providing a solution to the 
issue of the recognition accuracy plateau caused by saturation of information from physical recordings. 
Meanwhile, based on the idea of the filtered feature selection method, a quantitative measure of sample sets 
(separability of feature vectors [SFV]) derived from the divergence and correlation of the extracted features 
is introduced. The SFV value can predict the classification effect before performing the classification, and 
the effectiveness of the virtual-dimension increase strategy is verified from the perspective of feature set 
differentiability change. Compared to the statistical motion intention recognition success rate, SFV is a more 
representative and faster measure of classification effectiveness and is also suitable for small sample sets.

Introduction

The hand plays an irreplaceable role in executing routine tasks, 
such as writing, using cutlery, picking up items, and driving. 
However, due to car accidents, mining accidents, diseases, and 
so on, the number of amputees is rising year by year. The lack 
of a limb can have a important impact on an individual’s life, 
work, and psychological well-being. With the continuous devel-
opment of science and technology, wearing intelligent bionic 
prostheses has gradually become an important way to rebuild 
the function of limbs and improve the living standards of people 
who have undergone amputations.

Currently, the field of intelligent bionic prostheses is devel-
oping rapidly, and many research institutions, domestically and 
abroad, have developed many relevant products, such as the 
Hannes Bionic Hand that was introduced by the Italian Institute 
of Technology and the Italian INAIL Prosthetic Center in 2020 
[1]. The Hannes Bionic Hand is very similar to a human hand and 
can help amputees regain most hand function; it has a differential 
underactuated mechanism and weighs only approximately 480 g. 
Gu et al. [2] designed a pneumatic prosthetic hand in 2021, which 
has 6 active degrees of freedom and can provide haptic feedback 
through electrical stimulation; its flexibility is better than that of 
conventional prosthetic hands. The mainstream intelligent bionic 

prostheses on the market have their own advantages, and most 
of them have multiple degrees of freedom and are highly bionic, 
allowing them to imitate most of the gestures used in daily life 
and making them convenient for amputees.

Human surface electromyography(EMG) signals are widely 
used for motion control of intelligent bionic prostheses due to 
their easy acquisition and rich information content [3]. Usually, 
the accuracy of motion control is positively correlated with the 
amount of useful information that can be collected. Given this 
principle, researchers often increase the amount of valid infor-
mation obtained by adding acquisition electrodes or sensors. 
Jiang et al. [4] incorporated an inertial measurement unit into 
the signal acquisition system to enable the development of a 
wristband with good real-time gesture recognition. Thalmic Labs 
in Canada introduced the MYO arm ring, which has 8 acquisi-
tion channels and Bluetooth transmission, but the device does 
not allow for flexible adjustment of the signal acquisition posi-
tion because its 8 acquisition electrodes are connected [5]. In the 
United States, Delsys introduced a portable high-density EMG 
signal acquisition device called Trigno, which can use up to 128 
acquisition channels for EMG signal acquisition [6]. In Italy, OT 
Bioelettronica developed the Quattrocento, a desktop acquisition 
device that can acquire signals from up to 384 acquisition chan-
nels simultaneously [7]. In the Netherlands, TMSi developed the 
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SAGA system, which has a resolution of 24 bits and can acquire 
information from 64 acquisition channels simultaneously [8]. 
By increasing the number of acquisition channels, richer infor-
mation about the motion intent can be extracted. However, 
increasing the numbers of channels also increases the complex-
ity, weight, and cost of EMG signal acquisition devices. Further-
more, the large number of acquisition channels makes it 
difficult to achieve daily portability, limiting the transition of 
these methods from the laboratory to practical applications.

The method of improving the accuracy of gesture recogni-
tion by increasing the number of signal acquisition channels 
will not only lead to a decrease in the portability of the dummy 
hand and more interference factors in the acquisition process, 
but also with the increase in the number of acquisition chan-
nels, its effect on the improvement of the success rate of gesture 
recognition gradually diminishes, resulting in the improvement 
of the control effect reaching a plateau. To improve control with 
fewer acquisition channels, He et al. [9] demonstrated that 
through spatial filtering and electrode position optimization, 
the myoelectric control performance with only 2 surface elec-
tromyography electrodes was similar to that with 4 electrodes. 
Krasoulis et al. [10] significantly improved classification per-
formance by combining surface electromyography with inertial 
measurement. Naik et al. [11] proposed an electromyographic 
control technique based on independent component analysis 
and Icasso clustering, which utilizes a combination of source 
separation and Icasso clustering to improve the classification 
performance of independent finger movements for transradial 
amputee subjects and ultimately achieves higher classifica-
tion accuracy. However, the human hand needs the synergistic 
movement of several muscle groups to complete any action, 
and the method of acquiring signals from randomized indi-
vidual muscle groups through only physical electrodes ignores 
the synergistic nature of arm muscle contractions when the 
hand performs an action, so existing methods are not possible 
to conduct targeted signal collection and information fusion 
between channels based on the participation of various muscles 
in the movement. This results in the inability to fully utilize the 
differences between key muscles in the gesture recognition 
process to improve recognition performance.

Meanwhile, the gesture recognition success rate is com-
monly used by researchers to measure the classification effect 
[12,13]. However, the results of this method need to be reflected 
after the features are classified and recognized, and it does not 
reflect the intrinsic divisibility of the feature set. To address this 
problem, He et al. [14] used 3 indices based on the Mahalanobis 

distance in their experiment to quantify the differences between 
different algorithms in the feature space with and without elec-
trode movement, thus providing a more intuitive representa-
tion of the changes in the feature set. Based on the Euclidean 
distance between points and points in space, the separability 
of feature vectors (SFV) metric is introduced in this paper. It 
can effectively predict the classification effect by calculating the 
ratio of intraclass dispersion to interclass dispersion of the fea-
ture set and at the same time can quantify the divisibility of the 
feature set.

Materials and Methods

Intelligent bionic prosthetic-hand design
The human hand is an extremely complex motor system that 
allows humans to manipulate tools flexibly and perform numer-
ous actions [15,16]. The skeletal structure of the human hand 
is shown in the Fig 1A. Design of prosthetic-hand structures 
based on the bone structure of healthy adults can optimize the 
patient’s experience of using the prosthesis.

The structure and shape of the myoelectric prosthetic hand 
designed in this paper is very similar to that of a human hand, 
with 5 fingers that are connected to the palm portion of the 
hand, and each finger has 2 degrees of freedom and is driven 
by a separate motor. The design dimensions of each finger and 
the rotation angle of each joint are shown in Table 1. The motor 
and the control circuit are placed in the palm to enhance the 
integration and dexterity of the prosthetic hand, as shown in 
Fig 1B. The 4 fingers of the prosthetic hand, namely, the index, 
middle, ring, and little fingers, are similar in structure. The 
exploded structure diagram of the index finger are shown in 
Fig 1C. The thumb of the prosthetic hand has 2 knuckles and 
can perform inward and outward movements. Its exploded view 
are shown in Fig. 1D.

Gesture intention recognition strategy based on 
virtual-dimension increase
Virtual-dimension increase
The pattern recognition method based on the time and fre-
quency domain feature extraction of the EMG signal for con-
trolling a prosthetic hand has a high recognition accuracy for 
different gestures with a large number of data collection elec-
trodes, which can basically meet the requirements for daily use. 
The most direct and effective method of improving the accuracy 
of gesture recognition is to increase the number of electrodes 

Fig. 1. Structure of the human hand and the prosthetic hand. (A) Diagram of bone structure of the human hand. (B) Overall structure of prosthetic hand. (C) Structure of the 
index finger and its exploded view. (D) Thumb structure and its exploded view.
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that extract the electromyographic signal features of each mus-
cle group of the arm when the hand is moving to provide more 
gesture information for gesture recognition. However, while 
this approach increases the accuracy of gesture recognition, it 
also increases the complexity of hardware devices and built-in 
algorithms and the dependence of gesture recognition on acqui-
sition channels. If the user does not have enough muscle groups 
to support signal acquisition (e.g., incomplete limbs) or enough 
valid signals cannot be acquired, the recognition success rate 
will be significantly reduced. At the same time, hand move-
ments are accomplished by multiple muscle groups acting in 
concert, so it is possible to obtain the implicit information car-
ried across different channels without adding additional elec-
trodes by analyzing the differences between different muscle 
groups in the arm during movement.

In multichannel EMG signals, the EMG data acquired from 
different channels can be processed and fused. There are 3 main 
levels of fusion, namely, data-level fusion, feature-level fusion, 
and decision-level fusion. Data-level fusion is performed after 
the acquisition of the raw data, which are analyzed and pro-
cessed, and the fused data are used for the subsequent steps. 
Feature-level fusion entails analyzing the original signal to 
obtain the required feature information and to provide a reli-
able source of information for subsequent decision-making. 
Fusion at the decision level first requires basic processing such 
as feature extraction, then preliminary analysis of the target, 
and finally fusion. In this paper, the data-level fusion is chosen 
for processing EMG signals from different channels, with the 
aim of obtaining additional information that exists between 
EMG signals from different muscle groups. In this section, the 
addition of virtual dimensions to existing EMG signals is pro-
posed. The term “virtual” refers to the use of data fusion to add 
new information without using additional physical channels. 
Each physical channel acquires the electrical signal reflecting 
the activity of one muscle, representing one dimension of data 
information. The term “dimensioning” refers to the processing 
of data across 2 or more different channels. This information 
can be merged with that of the original EMG signal as a new 
channel dimension and can be used to improve the accuracy 
of gesture intention recognition.

It is first necessary to process the EMG data acquired from 
each channel, intercepting 200 ms of data for processing and 
analysis of the feature values that can represent the muscle 
intensity over that time period. Then, the eigenvalues calcu-
lated for each acquisition channel over a given time period 

are selected and processed arithmetically according to a par-
ticular model to be used as data for the new channel. This 
processing method uses as input the EMG activity recorded 
by 2, 3, or 4 channels each time the hand performs a move-
ment. The resulting sample of EMG data can be written as S. 
S is calculated as follows:

where n is the number of EMG signal acquisition channels and 
m is the length of the sample. The data acquired within a 200-ms 
period are selected as samples in this paper. With a sampling 
frequency of 1 kHz, each sample contains 200 data points. 
Therefore, m = 200. Each element in S represents one sample 
data point. The collected samples are expressed as S = [s1, s2…sn], 
where each column represents all the data points collected from 
each channel.

Magnitude is an important feature describing the intensity 
of the EMG signal, which reflects the intensity of the muscle 
activity. The squared value of the sample data is calculated to 
obtain the intensity of activity of the corresponding muscle 
group during a given action as follows:

To obtain information about the differences in muscle group 
activity across different hand gestures, the signal intensity dif-
ference between 2 muscles is selected as the added virtual 
channel in this paper. This information will be used to enrich 
the existing information about hand movements. The following 
processing steps are completed for the EMG samples acquired 
by each pair of channels.

For a given pair of columns of data in S, Si and Sj represent 
the column vectors obtained from the EMG samples acquired 
by channel i and channel j, respectively, after the above process-
ing; Sk is the absolute value of the variance between the two. 

(1)S =

⎡⎢⎢⎢⎢⎣

S11 S12 ⋯ S1n

S21 S22 ⋯ ⋮

⋮ ⋮ ⋯ ⋮

Sm1 Sm2 ⋯ Smn

⎤⎥⎥⎥⎥⎦
,

(2)S2 =

⎡⎢⎢⎢⎢⎣

S2
11

S2
12

⋯ S2
1n

S2
21

S2
22

⋯ ⋮

⋮ ⋮ ⋯ ⋮

S2m1
S2m2

⋯ S2mn

⎤⎥⎥⎥⎥⎦
.

Table 1. Design dimensions of each finger and rotation angle of each joint

Fingers
Proximal phalanx 

length/mm
Middle phalange 

length/mm
Distal phalangeal 

length (mm)

Maximum angle 
of proximal finger 

joint (°)

Maximum angle 
of middle/distal 

phalanx (°)

Thumb 30 20 38 90 90

Index finger 35 20 27 70 115

Middle finger 35 23 33 70 115

Ring finger 35 20 27 70 115

Little finger 32 15 19 70 115
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Since the magnitude of S2 can represent the intensity of muscle 
activity, the absolute value of the difference is used to represent 
the difference in the intensity of movement of 2 different mus-
cles. Sk is computed as follows:

For all Sk, Sk and S are merged into the same sample, denoted 
as Snew:

At this point, the number of columns of the signal of the 
sample is increased. The amount of EMG signal data is increased 
virtually without increasing the number of physical acquisition 
electrodes, providing more valid information for subsequent 
feature extraction and gesture classification. Each physical chan-
nel collects data that contains only information about a certain 
muscle group before processing. When the number of acquisi-
tion electrodes is high, more muscle movement information is 
provided for subsequent gesture recognition, therefore main-
taining a high gesture recognition accuracy; however, when the 
number of acquisition channels is low, the amount of informa-
tion provided by the acquisition electrodes is less, which leads 
to poor recognition. In contrast, after the EMG signal is pro-
cessed to increase the number of dimensions virtually, the 
newly added information derived by fusing the information 
acquired by 2 channels uses the difference in the gesture inten-
sity of different muscle groups to reflect the synergy and differ-
ences between different muscle groups during a certain gesture. 
The method of increasing the success rate of gesture recognition 
by simply adding more EMG acquisition electrodes tends to 
be ineffective after a certain number of acquisition electrodes 
are reached, and the above method provides a new solution to 
this problem.

EMG signal feature extraction and classification
Feature extraction from EMG signals is very important in the 
process of gesture recognition and analysis. Extracting the fea-
tures of myoelectric signals can effectively improve the efficiency 
of data analysis. Feature vectors have the ability to represent data 
characteristics, so they can be used for the classification of dif-
ferent gestures. Based on previous research results, 3 features 
are selected: absolute standard deviation and root mean square 
of the time domain, and mean power frequency of the frequency 
domain.

Data must be normalized before being classified. For the vari-
ous indicative gestures included here, a linear normalization 

method can be used due to the small amount of data and small 
data differentiation. The linear normalization function is shown 
as Eq. 5:

then, the motion decision-making module uses previously trained 
classification algorithms to classify the virtual-dimensioned data 
from the myoelectric-signal acquisition channels into feature 
categories.

In terms of feature classification, the common methods for 
pattern classification are neural networks [17], support vector 
machines [18,19], Bayesian decision models [20,21], Markov 
models [22,23], and information fusion methods [24,25]. Among 
them, the back-propagation (BP) neural network classification 
method is widely used in many control fields involving nonlinear 
mapping because of its strong adaptive ability, generalization abil-
ity, and fault tolerance. Meanwhile, a large number of previous 
studies have shown that the BP neural network algorithm has 
good performance in motion intention recognition using human 
surface myoelectric-signal data [26–28]. Therefore, the proposed 
method uses the BP neural network algorithm to classify and 
identify the extracted features, and the model is designed based 
on the principle of the BP neural network algorithm. Finally, the 
control system of the prosthetic hand completes corresponding 
actions based on the classification results.

Gesture intent recognition strategy
The control system of the intelligent myoelectric bionic hand 
used in this paper is divided into 4 main components: signal 
source module, signal acquisition module, data processing and 
gesture decision module, and prosthetic-hand gesture control 
module. Its basic control flow is shown in Fig. 2.

Firstly, the signal acquisition equipment obtains the discrete 
EMG signals from the arm muscle groups after which the sig-
nals are filtered and amplified and input into the data process-
ing and gesture decision module, in which the multichannel 
signals are subjected to feature extraction and classification 
after increasing the virtual dimension. Finally, the classification 
result is input into the gesture control module of the prosthetic 
hand and controls the corresponding movements of the pros-
thetic hand by servo drive.

Quality verification of gesture classification
In previous studies, classification effect has often been measured 
by the success rate of gesture recognition, with higher success 
rates of gesture recognition reflecting better classification effect. 

(3)Sk = ∣ S2i − S2j ∣ .

(4)Snew =
[
S, Sk

]
=
[
S1, S2 … Sn, Sk

]
.

(5)y =

(
x − xmin

)
(
xmax − xmin

) ,

Fig. 2. Control-flow diagram of prosthetic hands.

https://doi.org/10.34133/cbsystems.0066


Wang et al. 2024 | https://doi.org/10.34133/cbsystems.0066 5

This validation approach is intuitive, but it does not reflect the 
inherent separability of the feature set, and the experimental 
results are susceptible to interference when the test sample is 
small, thus resulting in poor validation. To address this problem, 
this section will further process the feature vector data used for 
classification, reflect classification quality by evaluating classi-
fication performance, and quantify the separability of the feature 
set. We calculate the ratio of the interclass dispersion to intra-
class dispersion of the feature data, which can more intuitively 
compare the advantages and disadvantages of different data 
processing and feature extraction methods and make prelimi-
nary predictions on the success rate of gesture recognition.

For the feature values extracted from discrete surface EMG 
signals, the average feature values for each acquisition channel 
can be expressed in the form of the following matrix:

among them:

The standard deviation of the eigenvalues of each channel 
can be defined in the form of the following matrix:

among them:

x represents the eigenvalues normalized to the interval [0, 1], 
i represents the dimensionality of the feature vector extraction, 
j is the number of samples per action, and k is the action num-
ber. The statistical measure SFV can be expressed as:

among them:

where p and q represent action labels (1 = thumbs up, 2 = “V” 
gesture, 3 = “OK” gesture, 4 = clenched fist, 5 = open hand), and 
i represents the number of extracted eigenvalues. D is the distance 
between the coordinates of action p and action q clusters in the 
n-dimensional Euclidean space; larger values indicate more dis-
tinct differences between the eigenvalues of different actions, 
which in turn indicates that it is easier to distinguish them.

c is the dispersion of the clusters of feature values of each action, 
and the smaller its value, the better the concentration of the 
feature values of the action and the easier it is to distinguish it 
from the feature values of other gestures.

From the above formula, SFV represents the ratio of inter-
class dispersion to intraclass dispersion of the feature dataset. 
Larger SFV values represent less differentiation of similar ges-
ture features within the feature set and greater differentiation 
of different gestures, better differentiability of the feature set, 
and a higher success rate of its action intention recognition 
under the same conditions.

The validation of the classification quality by the SFV and the 
validation of the success rate of gesture recognition are performed 
at different stages in the control process of the prosthetic hands, 
as shown in Fig. 3, which shows the data processing and gesture 
decision module of the prosthetic-hands control strategy. The 
statistical recognition success rate is obtained after the feature set 
is classified. In contrast to the statistical action intention recogni-
tion success rate, the SFV saves the time required to verify the 
classification effect and is less affected by sample size, thus provid-
ing a new discriminatory basis for reflecting the classification 
quality of gesture intention recognition strategies.

Experiments and Results

Experimental platform
The data acquisition platform used in this experiment is 
OpenSignals revolution, which can visualize and record data 
in real time and perform preliminary signal processing. The 

(6)X
k
=

⎡⎢⎢⎢⎢⎣

xk
1

xk
2

⋮

xki

⎤⎥⎥⎥⎥⎦
,

(7)xki =
1

J

J∑
j=1

xki,j.

(8)Sk =

⎡⎢⎢⎢⎢⎣

sk
1

sk
2

⋮

ski

⎤⎥⎥⎥⎥⎦
,

(9)
ski =

�����
∑J

j=1

�
xk
i,j
−xk

i

�2

J
,

(10)SFV =
D

c
,

(11)

c =
1

IK

I∑
i=1

K∑
k=1

ski , (12)

Fig. 3. Quality verification process of the intention recognition strategy.
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physical equipment associated with the platform is shown in 
Fig. 4A. The intelligent bionic hand used in this experiment is 
the bionic hand described in Materials and Methods. The pros-
thetic hand can perform the 5 indicative gestures classified in 
this paper, and the 5 gestures made by the prosthetic hand are 
shown in Fig. 4B.

Distribution of EMG electrodes
The hand is able to perform different gestures under the control 
of different muscles or muscle groups in the arm. By analyzing 
the statistics of common gestures and the role of each muscle 
group in the arm, it is concluded that the motor information 
supporting hand movements is concentrated in the muscle 
groups in the arm. The thumb extensors are mainly used for 
extension of the thumb, and the state of the thumb extensors will 
change during “thumbs up”, “fist”, and “open hand” movements. 
The superficial thumb flexors and extensor carpi ulnaris are 
responsible for the flexion and extension of the other 4 fingers 
and their state will change during all movements except for the 
“thumbs up” movement; the extension of the little finger are 
mainly controlled by the extensor digiti minimi, which will 
change state during “OK”, “fist”, and “open hand” movements. 
At the same time, the strength of the muscle determines the 
strength of the EMG signal; the stronger the muscle is, the more 
accurate and rich the grip information from the corresponding 
EMG signal can be. After analyzing of function of the arm mus-
cles and analysis of their contraction capacity was performed, 
for the 5 gestures identified in this paper, the following 4 muscle 
groups were ranked according to their number of participating 
movements and muscle strength: extensor carpi ulnaris, extensor 
pollicis longus, flexor digitorum superficialis, and extensor digiti 
minimi. EMG signals reflecting the activity of the 4 muscle 
groups were acquired, and the 4 groups of electrodes on the arm 
were arranged as shown in Fig. 5A. To facilitate the verification 
of the effect of virtual-dimension-increase-based gesture motion 
intention recognition and exclude the experimental errors 
caused by the atrophy or absence of muscle groups, subjects with 

healthy limbs were selected as the experimental subjects in this 
paper, and the data acquisition process is shown in Fig. 5B.

Basic information for subjects
The soundness of the muscle groups that subjects need to use 
in this experiment, the state of the skin, and the adequacy of 
the surface EMG signal strength should be fully considered in 
the experimental process to ensure the validity of the experi-
ment for the validation of the method proposed in this paper. 
Combining the above factors, and for the convenience of com-
paring the recognition effect of gestural motor intention and 
excluding the effect of muscle state on the virtual-dimension 
increase effect, we selected healthy young and middle-aged 
subjects as the experimental subjects. The 10 subjects in the 
experiments of this chapter were able-bodied and did not have 
any muscle-related diseases, and the specific information of the 
experimental subjects is shown in Table 2. Due to individual 
differences, the position of the electrodes applied to each sub-
ject is slightly different and needs to be adjusted according to 
the actual situation.

Experiment and analysis
Each subject was asked to repeat the 5 target actions: the 
thumbs-up gesture, the “V” gesture, the “OK” gesture, the fist 
and the open-hand gesture. A total of 150 samples were collected 
for each action. According to the research results of Khezri and 
Jahed [29], a length of 200 ms was considered appropriate for 
each sample. Here, the sampling frequency was set to 1,000 Hz; 
consequently, each sample contained 200 sampling points. For 
each action, there were 150 samples for each subject and 10 
subjects in total, yielding 750 samples for each subject, and the 
ratio of the training set and the test set was set to 2:1. The train-
ing set was selected from the sample set of each subject, and the 
remaining samples formed the test set.

EMG signal virtual-dimension increase
To verify the improvement in the accuracy of gesture intention 
recognition due to the addition of virtual dimensions, the 

Fig. 4. Experimental platform. (A) OpenSignals revolution acquisition platform. (B) Prosthetic hand imitating 5 gestures.
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accuracy of gesture intention recognition was compared before 
and after the addition of virtual dimensions, and the results are 
reported in this section. The EMG signals were acquired, and 
gesture intention recognition was performed basing 2, 3, or 4 
acquisition channels according to the method described in 
Materials and Methods. The preprocessed EMG signals were 
further processed to virtually increase their dimensionality, and 
the accuracy of recognition of 5 gestures before and after the 
virtual-dimension increase was recorded.

First, dual acquisition electrodes were used for signal acquisi-
tion. Notably, the extensor carpi ulnaris and flexor digitorum 
superficialis were involved in more movements than the other 
muscle groups when the hand made the 5 movements required 
for the experiment. Also, the additional information that could be 
provided when performing interchannel information fusion was 
limited and had a small effect on the recognition rate. Therefore, 
the 2 selected acquisition channels correspond to the thumb exten-
sors and extensor digiti minimi, respectively. The gesture recogni-
tion accuracy before and after the virtual-dimension increase is 

shown in Table 3, and the bar graph of the comparison is shown 
in Fig. 6.

After that, 3 acquisition electrodes were used for signal 
acquisition. Because the extensor carpi ulnaris is stronger and 
affects more of the 5 movements included in the experiment 
than the flexor digitorum superficialis, the additional informa-
tion it can provide is limited, and it has a lower effect on the 
recognition rate. Therefore, the 3 acquisition channels cor-
respond to the muscle groups of the extensor pollicis longus, 
flexor digitorum superficialis, and extensor digiti minimi. The 
gesture recognition accuracy rates before and after the virtual-
dimension increase are shown in Table 4, and the bar graphs 
of the comparison are shown in Fig. 7.

Finally, all 4 acquisition electrodes were used for signal acqui-
sition, and the channels corresponded to the extensor pollicis 
longus, flexor digitorum superficialis, extensor digiti minimi, 
and extensor carpi ulnaris. The gesture recognition accuracy 
before and after the virtual-dimension increase is shown in 
Table 5, and the bar graph of the comparison is shown in Fig. 8.

Line graphs of the average accuracy of classification before 
and after signal processing for each number of electrodes are 
shown in Fig. 9. The gesture recognition accuracy is higher after 
the virtual-dimension increase processing of the EMG signal 
than when using the unprocessed EMG signal. Also, the higher 
the number of EMG signal acquisition channels and the richer 
the EMG signal obtained, the higher the success rate of gesture 
recognition.

Separability verification
To verify the effectiveness of SFV indicators in measuring 
gesture distinguishability and classification quality, this exper-
iment calculates and compares the SFV values before and after 
the virtual-dimension increase of the feature set described in 
the previous experiments. These analyses reflect the connec-
tion between SFV values and the success rate of gesture inten-
tion recognition. First, the feature values extracted from the 
data from subjects are plotted in a parallel coordinate system, 
which allows for visualization of the changes in the differen-
tiability of the 3 feature vector categories before and after the 
virtual-dimension increase for the 2 experiments, as shown 
in Fig. 10.

Fig. 5. Electrode distribution and acquisition process. (A) Locations of the acquisition electrodes. (B) EMG signal acquisition.

Table 2. Basic information of subjects

Number Sex Age
Arm for col-
lecting signals

Muscle condi-
tion

1 Male 28 Right arm Normal

2 Female 26 Left arm Normal

3 Male 22 Right arm Normal

4 Male 23 Right arm Normal

5 Male 38 Left arm Normal

6 Female 54 Right arm Normal

7 Female 32 Right arm Normal

8 Male 56 Left arm Normal

9 Male 40 Left arm Normal

10 Male 27 Left arm Normal
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Table 3. Accuracy of gesture recognition of 2-acquisition-channel signals before and after dimension increase.

Number 1 2 3 4 5

Recognition accuracy 
before dimension increase

74.4% 65.6% 73.2% 65.2% 70.8%

Recognition accuracy after 
dimension increase

76.8% 74% 74.4% 66.4% 73.2%

Number 6 7 8 9 10

Recognition accuracy 
before dimension increase

51.2% 67.2% 80% 52% 61.6%

Recognition accuracy after 
dimension increase

62% 68% 82% 52.4% 62%

Fig. 6. Accuracy of gesture recognition of 2-acquisition-channel signals before and after dimension increase.

Table 4. Accuracy of gesture recognition of 3-acquisition-channel signals before and after dimension increase

Number 1 2 3 4 5

Recognition accuracy before dimension increase 85.2% 79.2% 83.6% 86.8% 83.6%

Recognition accuracy after dimension increase 88.4% 84.8% 84.4% 87.2% 86.8%

Number 6 7 8 9 10

Recognition accuracy before dimension increase 80% 80.4% 82.8% 79.6% 90.4%

Recognition accuracy after dimension increase 82% 80.8% 83.6% 83.6% 91.2%
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The horizontal coordinates in the figure represent the num-
ber of channels. Each channel has 3 eigenvalues, the vertical 
coordinates are the normalized eigenvalues, and the different 
colored line segments represent different gestures. In Figs. 10 
and 11, the comparisons of the feature set of 5 gestures obtained 
before and after dimension increase of 2 to 4 channel signals 
are shown. Taking 4 channels as an example (Fig. 11A), the 
different color ranges representing the 5 gestures have high 
differentiation, indicating that the signals of different channels 

without virtual-dimension increase have obvious differentiabil-
ity, reflecting the effectiveness of the acquisition location and 
the acquisition method. At the same time, Fig. 11B shows that 
the new signal with the virtual-dimension increase still has 
obvious distinguishability and can be complemented with the 
original signal channel information, which means that the new 
channel with the virtual-dimension increase reflects part of the 
implicit information of the original channel, and the virtual-
dimension increase of the EMG signal can be used for the 

Fig. 7. Accuracy of gesture recognition of 3-acquisition-channel signals before and after dimension increase.

Fig. 8. Accuracy of gesture recognition of 4-acquisition-channel signals before and after dimension increase.
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subsequent decision classification. The virtual-dimension addi-
tion process provides richer information about the gesture 
intention for subsequent decision classification.

The SFV values of the feature set before and after the virtual-
dimension increase for subjects for different numbers of acqui-
sition channels are shown in Tables 6 to 8.

Tables 6 to 8 show that the SFV increases after the virtual-
dimension increase given the same number physical channels. 
According to the results of the theoretical analysis described in 
virtual-dimension increase, after virtual-dimension increase, 

additional information is reflected, which improves separability 
of feature sets and the recognition performance. This experi-
mental conclusion verifies from the point of view of the varia-
tion in the separability of the feature set the validity of the 
principle behind virtual-dimension increase described in virtual-
dimension increase. Furthermore, in comparing the trend of 
gesture intention recognition accuracy before and after virtual-
dimension increase with the SFV, the larger the SFV is, the 
higher the recognition accuracy is, yielding a consistent conclu-
sion with virtual-dimension increase experiment and reflecting 
the effectiveness of the SFV for measuring the differentiability 
of gestures and the gesture intention recognition effect.

Experiment 2: In the recognition of gestures based on EMG 
signal control, the recognition success rate is usually used to reflect 
the classification effect. However, when the number of samples is 
insufficient, the results may have large deviation and cannot effec-
tively reflect the classification effect it should have. Therefore, in 
this section, 60 to 150 samples are randomly selected from the 
sample set to form a subsample set, and the ratio of the number 
of samples in the training set and the test set in the subsample set 
is 2:1. The gesture recognition accuracy and SFV values under 2, 
3, and 4 acquisition channels are recorded, and the data results 
of some sample sets are listed in Tables 9 to 11.

Figure 12A shows the result records of the accuracy of action 
recognition with 2, 3, and 4 acquisition channels in the sub-
sample set. The recognition accuracy does not improve strictly 
with the increase in the number of channels, which indicates 
that the use of accuracy to reflect classification effects in the case 

Fig. 9. Change in gesture recognition accuracy before and after dimension increase 
with signals of different numbers of acquisition channels.

Fig. 10. Feature sets of 2-acquisition-channel signals and 3-acquisition-channel signals before and after virtual-dimension increase. (A) Feature set of 2-acquisition-channel 
signals before virtual-dimension increase. (B) Feature set of 2-acquisition-channel signals after virtual-dimension increase. (C) Feature set of 3-acquisition-channel signals 
before virtual-dimension increase. (D) Feature set of 3-acquisition-channel signals after virtual-dimension increase.
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of small samples is prone to bias, making the results neither uni-
versal nor representative. Figure 12B shows the results recorded 
for the SFV values of 2, 3, and 4 acquisition channels in the 
subsample set. The SFV values increase with the increase in the 
number of acquisition channels, which indicates that the SFV 
values can still reflect the separability of the sample set in the 
small sample case.

Discussion
In this paper, we propose a method for increasing the dimen-
sions of EMG signals virtually to obtain richer gesture movement 
intention information and improve the recognition accuracy of 
different hand movements without adding additional EMG sig-
nal acquisition electrodes. Compared with the traditional EMG 
signal processing method, this method can extract more effective 
movement intention information from the existing EMG signals 
through the correspondence between movements and muscle 
groups without adding any additional hardware. By comparing 
the action recognition accuracy of the EMG signals based on 2, 3, 
and 4 acquisition channels before and after the virtual-dimension 
increase, we verified that the gesture recognition accuracy 
improves after the virtual-dimension increase processing. The 
method provides a solution to the problem of EMG information 
saturating after a certain number of electrodes.

Meanwhile, for the gesture classification quality verification 
part, a classification quality verification method based on SFV 
is proposed in this paper. SFV represents the ratio of interclass 

Table 5. Accuracy of gesture recognition of 4-acquisition-channel signals before and after dimension increase

Number 1 2 3 4 5

Recognition accuracy before dimension increase 86.8% 89.2% 85.6% 90.4% 88%

Recognition accuracy after dimension increase 90.8% 90.4% 86.8% 91.2% 89.2%

Number 6 7 8 9 10

Recognition accuracy before dimension increase 80.4% 87.2% 86.4% 94% 96.8%

Recognition accuracy after dimension increase 82.4% 89.6% 87.2% 95.2% 97.2%

Fig. 11. Feature sets of 4-acquisition-channel signals before and after virtual-dimension 
increase. (A) Feature set of 4-acquisition-channel signals before virtual-dimension 
increase. (B) Feature set of 4-acquisition-channel signals after virtual-dimension increase.

Table 6. Comparison of SFV values of 2-acquisition-channel signals before and after virtual-dimension increase

Number 1 2 3 4 5

SFV (before dimen-
sion increase)

0.6102 0.6210 0.6464 0.8759 0.9531

SFV (after dimension 
increase)

0.8353 0.8810 0.8394 1.1034 1.1580

Number 6 7 8 9 10

SFV (before dimen-
sion increase)

0.8317 1.1525 0.6648 0.7227 0.8506

SFV (after dimension 
increase)

1.0625 1.4419 0.7847 0.8666 1.1510
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dispersion to intraclass dispersion in the feature dataset. The 
larger SFV values indicate smaller differences among similar 
gestures and the greater differences between different gestures 
in the feature set. By comparing the SFV values of EMG signals 
obtained by 2, 3, and 4 acquisition channels before and after 
the increase of virtual dimension in the experiment, we showed 
that after virtual-dimension increase, additional information 
is added and the feature set separability is improved and the 
recognition performance is further improved. Meanwhile, by 
comparing the accuracy of gesture intention recognition before 
and after the increase of virtual dimension with the SFV value, 
we showed that the larger the SFV value is, the higher the 
recognition accuracy, which reflects the effectiveness of the 

Table 7. Comparison of SFV values of 3-acquisition-channel signals before and after virtual-dimension increase

Number 1 2 3 4 5

SFV (before dimen-
sion increase)

0.8045 0.8196 0.7327 1.0137 1.2654

SFV (after dimension 
increase)

0.9828 1.0487 0.8970 1.2162 1.4337

Number 6 7 8 9 10

SFV (before dimen-
sion increase)

1.1395 1.4230 0.8230 0.9017 1.3163

SFV (after dimension 
increase)

1.3401 1.6745 0.9260 1.0267 1.5710

Table 8. Comparison of SFV values of 4-acquisition-channel signals before and after virtual-dimension increase

Number 1 2 3 4 5

SFV (before dimen-
sion increase)

0.9524 1.0603 0.8951 1.1057 1.2799

SFV (after dimension 
increase)

1.1122 1.2291 1.0365 1.2794 1.4471

Number 6 7 8 9 10

SFV (before dimen-
sion increase)

1.3619 1.6265 0.9100 0.9824 1.5539

SFV (after dimension 
increase)

1.5368 1.8422 0.9972 1.0884 1.7745

Table 9. Comparison of recognition accuracy of 2-acquisition- 
channel signals and SFV values for small samples

Number of samples 60 90 120 150

Recognition 
accuracy

40% 63.3% 65% 70%

SFV 0.7674 0.8211 0.9808 0.8180

Table 10. Comparison of recognition accuracy of 3-acquisition- 
channel signals and SFV values for small samples

Number of samples 60 90 120 150

Recognition 
accuracy

90% 83.3% 87.5% 84%

SFV 0.9066 0.9397 1.2068 1.0932

Table 11. Comparison of recognition accuracy of 4-acquisition- 
channel signals and SFV values for small samples

Number of samples 60 90 120 150

Recognition accuracy 85% 86.7% 82.5% 88%

SFV 1.055 0.9947 1.2484 1.1393

https://doi.org/10.34133/cbsystems.0066


Wang et al. 2024 | https://doi.org/10.34133/cbsystems.0066 13

SFV index in measuring the differentiability of gestures and 
the gesture intention recognition effect.

Finally, a random small-sample experiment was conducted. 
The results showed that in the case of small samples, the recogni-
tion accuracy does not necessarily increase with the increase in 
the number of signal acquisition channels, while the SFV value 
becomes larger with the increase in the number of acquisition 
channels. It can be concluded that when using the accuracy rate 
to reflect classification effects, there is a risk of bias, making the 
results neither universal nor representative. However, the SFV 
value can still reflect the separability in the sample set. Thus, 
compared with the statistical action intention recognition success 
rate, the SFV value can effectively predict the classification effect 
and with less interference from the number of samples.

According to the above experiments, the virtual-dimension 
increase of EMG signal can obtain richer gesture motion 
intention information by virtually increasing the EMG signal 
channels, so as to improve the recognition accuracy of differ-
ent gestures without increasing the hardware equipment, and 
this method provides a solution to the problem of saturating 
the EMG information provided after increasing the number 
of electrodes. In the gesture classification quality verification 
session, compared with the classification effect measured by 
statistical motion intention recognition success rate, SFV is 
faster and the results are more representative, and the effec-
tiveness of the virtual-dimension increase strategy is verified 
from the perspective of feature set separability change through 
the experiment; in the case of small sample capacity, the clas-
sification effect is prone to bias by statistical recognition suc-
cess rate, while SFV can still reflect the separability of the 
sample set more accurately.
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