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Abstract

An important mechanism for cancer progression is degradation of the extracellular matrix (ECM) 

which is accompanied by the emergence and proliferation of an activated fibroblast, termed 

the cancer associated fibroblast (CAF). More specifically, an enzyme pathway identified to be 

amplified with local cancer progression and proliferation of the CAF, is fibroblast activation 

protein (FAP). The development and progression of heart failure (HF) irrespective of the etiology 

is associated with left ventricular (LV) remodeling and changes in ECM structure and function. 

As with cancer, HF progression is associated with a change in LV myocardial fibroblast growth 

and function, and expresses a protein signature not dissimilar to the CAF. The overall goal of this 

review is to put forward the postulate that scientific discoveries regarding FAP in cancer as well 

as the development of specific chemotherapeutics could be pivoted to target the emergence of FAP 

in the activated fibroblast subtype and thus hold translationally relevant diagnostic and therapeutic 

targets in HF.
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1. Introduction

The clinical manifestations of heart failure (HF), which include dyspnea, pulmonary and 

peripheral edema, and exercise intolerance, carries a significant morbidity, mortality, and 

socioeconomic cost [1–8]. For example, the survival of HF patients requiring frequent 

hospitalizations due to worsening symptoms carries a 5 year mortality rate that is 

comparable to aggressive, malignant forms of cancer. [9,10]. However, unlike cancer, the 

phenotyping and staging of HF in terms of underlying structural and molecular changes 
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has been a relatively new concept. [11–16] As such, an improved understanding of the 

specific molecular pathways involved in HF may provide for improved specificity and 

effectiveness of therapeutic strategies. While a fairly broad categorization, there is now a 

general consensus that HF can be classified into two major phenotypes: HF with a reduced 

ejection fraction (HFrEF) and HF with a preserved ejection fraction (HFpEF), and the 

prevalence of these forms of HF appear to be equivalent. [1–4,17] Underlying both of 

these HF phenotypes are specific changes in left ventricular (LV) myocardial structure and 

function collectively termed as myocardial remodeling. [18–23].

The LV myocardial remodeling process in these HF phenotypes are distinctly different. 

While an oversimplification, HFrEF most commonly arises from an ischemic etiology 

whereby HFpEF often arises from a prolonged LV pressure overload. In HFrEF, a loss 

of contractile units and degradation of the normal extracellular matrix (ECM) structure and 

composition occurs. [15,18,21] With respect to HFpEF, the underlying pathophysiology is 

distinctly different whereby LV ejection performance remains within normal limits, but LV 

filling is impaired (i.e. diastolic failure), which is due at least in part to a loss of normal LV 

myocardial compliance and abnormal ECM accumulation (generically termed “fibrosis”). 

[16,22,24,25] Thus, while the etiology and remodeling process in these HF phenotypes are 

different, both are accompanied by structural changes within the ECM and the emergence 

of an abnormal fibroblast population. [26–34] An important process in the localized spread 

of a primary tumor is through metastasis, whereby degradation of the normal ECM is 

accompanied by the emergence and proliferation of an activated fibroblast, termed the 

cancer associated fibroblast (CAF). [35–45] Indeed targeting specific biological pathways 

relevant to the CAFconstitute a chemotherapeutic target. [38,43–45] More specifically, an 

enzyme pathway identified to be amplified with local cancer progression and proliferation 

of the CAF, is fibroblast activation protein (FAP). [46–53] Accordingly, the purpose of 

this review are 2-fold. First, was to examine the myocardial fibroblast in normal and HF 

states and compare and contrast phenotype similarities to the CAF. Second, to focus upon 

FAP as a specific chemotherapeutic target first in the context of cancer, which would hold 

relevance to HF. The overall goal was to put forward the postulate that scientific discoveries 

of ECM remodeling in cancer as well as specific chemotherapeutics could be pivoted to 

target the emergence of the activated fibroblast subtype and thus hold translationally relevant 

diagnostic and therapeutic targets in HFrEF and HFpEF.

2. The emergence of an activated myocardial fibroblast in HF

The fibroblast is primarily of mesenchymal origin and the biological function of this cell 

type is context dependent. While the origins, nomenclature, and precise identification of 

myocardial fibroblasts remains an area of active research and a subject of debate, there is no 

question that a proliferation of fibroblasts, which differ from normal myocardial fibroblasts 

occurs with LV remodeling and HF.[26–34] The focus of this review will not be to attempt 

a consensus view on fibroblast nomenclature, but rather to examine the relevance of changes 

in fibroblast form and function as it relates to both HFrEF and HFpEF and the potential 

interrelationship with the CAF.
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In general terms, the fibroblast is one of the most numerous cell types within the 

myocardium and maintains ECM homeostasis through the production of collagens, 

glycoproteins, proteoglycans, as well as a portfolio of degradative enzymes, which on 

balance, maintain normal LV architecture and geometry. [26,34,54–57] Indeed, inhibition 

of myocardial fibroblast maturation during cardiac development has been shown to cause 

a dysmorphic myocardial structure. [54] In addition to a central role in the maintenance 

of LV myocardial structure, myocardial fibroblasts may also regulate the transmission of 

mechanical and electrical signaling. [58–60]. In normal steady-state conditions, myocardial 

fibroblasts are relatively quiescent in terms of ECM synthesis and turnover. However, 

following exposure to pathophysiological stimuli, such as ischemia, inflammation, or 

increased mechanical load, activation of fibroblasts occurs. While an imprecise term, 

myocardial fibroblast activation can be defined as shifts in proliferation, resistance to 

apoptosis, and most importantly, alterations in form and function. [26–34,54–67] The 

emergence of these activated myocardial fibroblasts in terms of phenotype can occur 

as subpopulations, or niches, and are likely dependent upon the microenvironment and 

operative stimuli. As outlined in the next sections, there are distinct differences but also 

commonalities regarding the emergence of activated myocardial fibroblasts in HFrEF and 

HFpEF.

2.1. Myocardial fibroblasts in HFrEF

Ischemic injury to the myocardium, primarily due to either transient or permanent coronary 

artery obstruction, can result in cardiomyocyte death - i.e. myocardial infarction (MI). 

Interestingly, non-cardiomyocytes, in particular fibroblasts, are much more resistant to 

ischemic injury. [60,61] The myocardial injury such as that with MI induces a sequential 

series of events, which are not dissimilar to a canonical wound healing response: 

inflammatory, proliferative, and maturation. During each phase, the phenotype and function 

of the myocardial fibroblast appears to differ temporally and is dependent on both 

signaling and interactions with innate immune cells as well as microenvironment conditions. 

In the inflammatory phase, there is an emergence of a proinflammatory myocardial 

fibroblast phenotype, expressing various pro-inflammatory cytokines, chemokines, and 

ECM degrading matrix metalloproteinases (MMPs). [27,61–63] For example, reactive 

oxygen species and inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis 

factor (TNF)-α can lead to the activated myocardial fibroblast phenotype. [30,60–63] The 

proliferative phase is accompanied by a reduction in inflammation and the emergence of 

potent growth factors, such as transforming growth factor-beta (TGF). [27,64,65] These 

signals drive the emergence and expansion of a highly proliferative population of activated 

fibroblasts within the MI region, which produce abundant ECM proteins but also a large 

portfolio of MMPs. As such, a constant cycle of ECM synthesis and degradation within 

the MI region occurs due to the emergence of this activated fibroblast population. During 

the maturation phase, there is a reduction in the density of activated myocardial fibroblasts 

within the MI region, but subpopulations of activated myocardial fibroblasts persist which 

causes continuous ECM turnover and incomplete MI scar maturation.

While the post-MI remodeling process has been placed in the context of a canonical wound 

healing response, there is not a period of quiescence within the MI region, unlike the scar 
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formation of other tissue types. Specifically, the continuous turnover of the ECM within the 

MI region due to the expansion and persistence of activated fibroblasts results in an unstable 

ECM. In turn, this leads to an MI region that is subjected to deformation due to local LV 

stress–strain patterns leading to a milestone event in HFrEF progression - MI expansion 

and LV dilation. [19–22,28–30,60–63] Thus, the emergence, proliferation, and persistence 

of a fibroblast phenotype that expresses not only ECM proteins but a large portfolio of 

degradative enzymes that can contribute to the development and progression of HFrEF.

2.2. Myocardial fibroblasts in HFpEF

The HFpEF phenotype is characterized by LV myocardial hypertrophy - that is, growth 

of both the cardiomyocyte and expansion of the ECM. The canonical stimulus for HFpEF 

is that of prolonged pressure overload due to hypertension, arterial/aortic stiffening as a 

function of age, aortic stenosis, or a combination of these factors. The pathophysiology 

of HFpEF is that of impaired LV filling during diastole, hence often termed diastolic 

dysfunction. The diastolic dysfunction with HFpEF is due to defects in both active 

relaxation processes and passive relaxation. [11,50,66,67,76] This impairment in LV passive 

relaxation is due to increased LV myocardial stiffness secondary to increased ECM content 

with HFpEF. [24–26,64,66–69] This ECM accumulation, generically termed “fibrosis,” is 

the result of an expansion of a proliferative fibroblast phenotype, which supplants the normal 

quiescent fibroblast alteration of the myocardial ECM to maintain myocardial homeostasis 

[31–34]. Specifically, the activated myocardial fibroblast that arises from a prolonged LV 

pressure overload expresses proteases, which degrade the normal ECM and in turn are 

replaced with a dense, thickened ECM. Ultimately, these alterations to the myocardial ECM 

composition and structure cause increased LV myocardial stiffness and impaired LV filling – 

the physiological underpinning of HFpEF.

3. Fibroblast activation protein

While the emergence and expansion of an activated fibroblast population has been a 

relatively recent finding with respect to HF, an activated fibroblast population has been 

well documented previously in both cancer as well as fibroproliferative diseases such as 

scleroderma. [35–53,70,71] In cancer, these activated fibroblasts have been identified as 

highly proliferative, apoptosis-resistant and express proteolytic enzymes within the tumor 

microenvironment, which in turn enhance tumor invasion, metastasis, and angiogenesis. 

In particular, these activated fibroblasts express a unique protease not found in quiescent 

fibroblasts - fibroblast activation protein (FAP). [46–53] In early studies by Rettig et al., 

characterization of FAP as a serine protease and relation to growth factor processing was 

identified and that FAP emerged in transformed cell lines. [72,73] The substrates for FAP are 

diverse, clearly play a role in fibroblast activation and ECM remodeling, [47–50,74–80] and 

as such likely contribute to both cancer and HF progression. Thus, FAP will be the focus of 

the subsequent sections of this review.

3.1. FAP and the cancer associated fibroblast

Although expressed at nominal levels in quiescent, normal fibroblasts, increased FAP 

mRNA levels as well as protein levels have been detected in CAFs in the tumor stroma 
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of over 90 % of epithelial cancers, such as gastrointestinal, breast, ovarian, and lung cancers 

(Table 1). Moreover, as shown in Table 1, there is an association between FAP levels 

and clinical outcomes. The mechanisms by which FAP increases tumor aggressiveness and 

poor prognosis in the context of cancer are multifactorial and include ECM degradation 

and remodeling, promoting angiogenesis, increasing cancer cell invasion and migration, 

enhancing lymph node metastasis, stimulating cell cycle activation, and promoting growth of 

CAFs. The ECM proteolysis by FAP, directly and indirectly, promotes the invasion of tumor 

cells, and the persistent expression of FAP within the tumor stroma, primarily localized 

at the invasive front, suggests this protease plays an important role in tumor metastasis. 

[53,82,88,89,102] A meta-analysis across immunohistochemistry based studies in multiple 

tumor types reported consistent results of increased FAP protein levels correlating with 

increased lymph node metastasis and decreased overall survival.[51] Furthermore, FAP 

positive primary tumors resulted in significantly increased lymph node metastasis compared 

to primary tumors that do not express FAP.[90] In gastric carcinoma, for example, increased 

FAP levels in CAFs is correlated to higher tumor grade, lymph node and peritoneal invasion, 

and decreased overall survival. [60] Another study reported an association between the 

level of FAP in CAFswith the degree of differentiation, depth of tumor invasion, and 

staging of gastric carcinoma. [52,99,100] Furthermore, invasion and migration abilities 

of gastric carcinoma cell lines were significantly increased when co-cultured with FAP 

positive CAFs.[53] Conversely, invasion and migration were significantly decreased when 

gastric carcinoma cell lines were co-cultured with RNA silencing mediated knockdown 

of FAP in CAFs. [53] The ECM degrading capacity of FAP through direct proteolysis 

or through activation of MMPs, allows for invasion and metastatic cancer progression. 

[46,48,50,75,78,91,95,97,98] What appears to be a uniform finding is that the magnitude of 

FAP expression, particularly in the activated fibroblast population, contributes to cancer 

progression. Thus, targeting FAP, particularly with respect to the CAFs, serves as a 

promising chemotherapeutic target, which is discussed in a subsequent section.

3.1.1. FAP and Non-Cardiac ECM remodeling—While FAP has been a central focus 

in cancer, and as described in a subsequent section, changes in ECM structure in HF, FAP 

has also been examined in the context of non-cardiac fibrosis. For example, Levy et al 

identified that FAP expression was increased within regions of active fibrosis in hepatic 

cirrhosis.[103] With cirrhosis, FAP levels have been associated with the severity of the 

disease,[104] and appears to activate a subset of fibroblasts and macrophages within the 

liver and thereby promote fibrotic progression.[105,106] In patients and animals with renal 

fibrosis, increased FAP radiotracer uptake has been identified in patients with renal fibrosis.

[107,108] Increased FAP activity has been implicated in the progression of osteoarthritis 

through direct and indirect collagen proteolysis.[109,110] Increased FAP radiotracer uptake 

and activity has also been identified with the inflammatory cascade in rheumatoid arthritis.

[111,112].

3.2. FAP structure

FAP (also referred to as Seprase) is classified as a serine protease of the type II 

transmembrane glycoprotein. FAP belongs to the post-proline dipeptidyl aminopeptidase 

family, sharing similarities in amino acid sequence with dipeptidyl-peptidase IV(DPP4) 
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(Fig. 1). [46,48,50,78,93] FAP is 760 amino acids in total, starting with a 6 amino acid 

cytoplasmic domain. The FAP transmembrane domain spans amino acids 7–26, with the 

remaining 735 of its 760 amino acids in the extracellular domain. The FAP extracellular 

domain contains an 8-bladed β-propeller section (400 amino acids) below an αβ-hydrolase 

domain (262 amino acids). [90,103–106] The β-propeller domain provides a gating function 

by preventing the cleavage of large cytoplasmic proteins and selectively allowing substrate 

access to the FAP active site. The catalytic pocket is buried between these two domains 

and contains the catalytic triad of Ser624, Asp702, and His734. [92,113] A 3-dimensional 

rendering of the propeller and catalytic domains,[92] are shown in Fig. 1.Dimerization is 

required for FAP enzymatic activity, and FAP exists either as homodimer or heterodimer 

with DPP4 [80,97] The function of the FAP intracellular domain remains unclear but may 

play a regulatory role. FAP exists in a membrane-bound form as well as a soluble (i.e. 

shed) form, the latter lacking the transmembrane and cytoplasmic domain. The shedding of 

the extracellular FAP domain may hold diagnostic relevance as discussed in a subsequent 

section.

3.3. FAP enzymatic activity and substrates

FAP is the only member of the prolyl oligopeptidase family with both dipeptidyl-

peptidase and endopeptidase activities, the latter having more efficient enzymatic function. 

[50,92,113,114] The dipeptidyl-peptidase activity of FAP removes proline dipeptides from 

N-terminal sequences Lys-Pro, Tyr-Pro, Arg-Pro, and Ser-Pro dipeptides. Because the 

dipeptidyl-peptidase activity is a commonality among the prolyl oligopeptidase family, 

several FAP substrates can cross over to the structurally similar, but different enzyme, DPP4. 

FAP endopeptidase targets substrates with a Gly-Pro, Ala-Pro, Lys-Pro, and Ser-Pro motifs, 

and putative substrates are presented in Table 2. It also must be recognized that some of 

these FAP substrates have been predicted from in to vitro studies and may not be operative 

in-vivo. Furthermore, it appears that the soluble form of FAP retains enzymatic activity 

against certain substrates, such as alpha-anti-plasmin. [4–6,15,94] Nevertheless, for the 

purposes of this review, FAP substrates will be categorized into substrates involving ECM 

remodeling, inflammatory/wound healing pathways, and bioactive signaling molecules.

3.3.1. ECM substrates—Structural proteins and enzymes contained within the ECM 

are important substrates for FAP. FAP interactions with fibrillar collagens have been the 

subject of most research, and FAP appears to be critical in the metabolism of collagen 

during matrix turnover and homeostasis. [75,95,98,115,122] FAP proteolysis of collagen can 

occur after degradation of collagen fibers by other proteases, such as MMP-1, which cleaves 

collagen into ¾ and ¼ intermediate-length fragments. FAP appears to act in a synergistic 

and/or additive fashion with other ECM proteases, such as MMP-2 and MMP-9, which 

also require processing of collagen into intermediate fragments.[128] However, the terminal 

cleavage pattern of partially digested collagen I by FAP is unique from that of MMP-2 

and MMP-9.[129] Degradation of these intermediate-length fragments has been shown to 

facilitate phagocytosis and internalization by macrophages and fibroblasts.[130].

In tumorigenesis, FAP processing of collagen allows for CAFs to invade the tumor stroma 

and subsequently cause ECM remodeling which favors tumor expansion. For example, FAP 
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induction caused a more parallel collagen fiber orientation which enhanced directionality 

and velocity of pancreatic cancer cells in-vitro, which was abrogated by FAP inhibition.

[131] In mouse primary lung fibroblasts, FAP positive fibroblasts internalized type I 

collagen more efficiently than FAP null-fibroblasts.[75] In FAP null mice, it was observed 

that these intermediate-length collagen fragments may persist longer in the ECM due to 

impaired collagen processing and turnover, demonstrating the biological relevance of FAP 

collagen metabolism in vivo.[75] In addition, FAP degradation of the fibrillar collagen 

may facilitate cell adhesion. [122] Another putative FAP substrate with relevance to ECM 

remodeling is Lysyl oxidase homolog-2. Lysyl oxidase homolog-2 is an enzyme which 

belongs to the lysyl oxidase family and functions to promote crosslinking of collagen and 

elastin. [76] Lysyl oxidase homolog-2 has been implicated in processes related to cancer 

progression and interstitial fibrosis. [133,134].

The glycoproteins fibrillin-2 and extracellular matrix protein-1 (ECM-1) have also been 

identified as FAP substrates.[50,76] Fibrillin-2 is an extracellular glycoprotein which 

provides a scaffold for the deposition of elastin precursors as well as storage and regulation 

of growth factors, such as transforming growth factor -β (TGF).[135–137] Initially, it was 

believed that expression of fibrillin-2 was restricted to developing fetal tissues but has now 

been recognized in wound healing processes and cancer progression. In wound healing 

fibrillin-2 overexpression is observed in fibroblasts and is accompanied by higher expression 

of latent TGF complexes. [138] In many cancers, fibrillin-2 expression is decreased and in 

turn it has been postulated to lead to reduced sequestration of latent TGF, enhanced TGF 

processing and signaling.[136,137] ECM-1 is a multifunctional glycoprotein that interacts 

with other structural proteins and growth factors of the ECM, and has been implicated 

to contribute to cancer progression.[139] Interestingly, increased expression of ECM-1 has 

been identified within the LV myocardium as a function of age and within the MI region.

[140].

3.3.2. Inflammatory substrates—A subset of FAP substrates associated with 

inflammation and wound healing pathways, include interleukin-6 (IL-6), CXC-motif 

chemokine-5 (CXCL5), and substance P. (Table 2).

IL-6 is a pro-inflammatory, pleiotropic cytokine expressed by several cell types, including 

immune cells and fibroblasts, and plays a central role in the regulation of inflammation and 

immune response. [141] CAFsproduce significant amounts of IL-6 and further stimulated 

IL-6 production. [26690480] Furthermore, IL-6 enhances production of VEGF by CAFs 

contributing to the induction of angiogenesis.[142] It remains unclear how FAP mediated 

cleavage of IL-6 would ultimately alter the IL-6 signaling cascade, but one possible outcome 

is that FAP may interfere with a negative feedback loop between IL and 6 and the IL-6 

receptor, which in turn would lead to enhanced IL-6 production [143].

CXC-motif chemokine-5 (CXCL-5) stimulates angiogenesis, immune cell recruitment, and 

potentially tumor growth [136]. In the tumor microenvironment, CXCL-5 is secreted by 

CAFs and promotes programmed cell death protein 1 (PD-L1) expression in tumor cells, 

which forms an immunosuppressive microenvironment promoting survival and proliferation 

in cancer [145]. In vivo studies demonstrate post-proline N-terminal cleavage of CXCL-5 
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enhances potency and chemokine activity up to 3-fold [146]. While remaining speculative, 

and perhaps counterintuitive, CXCL-5 may undergo FAP-mediated post-translational 

modification yielding a truncated CXCL5 isoform with enhanced activity that further 

cultivates a favorable tumor microenvironment.[147].

Substance P is mainly secreted by neurons and is involved in nociception and inflammation 

[148,149]. Though substance P is not considered a canonical inflammatory mediator, it 

is associated with inflammation and is thus included here as an inflammatory substrate 

of FAP. Substance P acts as a modulator of immune cell proliferation rates and cytokine 

production [150]. Substance P has been implicated to influence cardiovascular structure and 

function, and in turn cardiovascular disease.[151] However, a recent pharmacotherapy for 

HF using a dual neprilysin/angiotensin receptor inhibitor, which may potentiate substance 

P, may provide beneficial effects.[150] Thus, in the context of cardiovascular disease, 

substance P may exert multiple effects.[151] Substance P can exert a negative feedback 

through activation of inhibitory NK-1 autoreceptors [153]. While remaining speculative, the 

proteolytic processing of substance P by FAP,[74] may interfere with this negative feedback 

loop and actually potentiate substance P production.

3.3.3. Bioactive molecule substrates—Another subset of FAP substrates are 

bioactive molecules, including B-type natriuretic peptide (BNP), Fibroblast Growth 

Factor-21 (FGF-21), and TGF. TGF will be the focus of a subsequent section. BNP is 

produced and secreted mainly by LV myocytes [154,155]. BNP production is enhanced by 

LV wall stress and general mechanical strain in cardiomyocytes. BNP binds to guanylyl 

cyclase-coupled natriuretic peptide receptors expressed by a variety of tissues and activates 

guanylyl cyclase A leading to an increase in the intracellular concentration of cGMP 

[154,155]. In addition to this BNP signaling pathway leading to natriuresis, reduced vascular 

tone and anti-inflammatory effects, an anti-fibrotic effect may also be operative.[156] which 

in turn can have salutary effects with respect to volume regulation, vascular tone and 

anti-inflammatory effects. BNP may also have a direct inhibitory effect on cardiac fibroblast 

function through extracellular signal-related kinase activity and reduced expression of a 

number of “profibrotic” genes. [157] A past study identified that FAP inhibition enhanced 

the cardioprotective effects of BNP in the context of myocardial ischemia.[117] Moreover, 

BNP, and the pro-form of BNP, (NTpro-BNP) are well-recognized biomarker associated 

with both HFrEF and HFpEF. [158,159] Thus, the fact that BNP is a substrate for FAP 

would hold both biological and clinical significance in the context of HF. First, FAP 

mediated degradation of BNP would contribute to profibrotic and proinflammatory states. 

Second, accelerated BNP degradation by FAP would potentially confound diagnostic and 

therapeutic utility.

FGF21 transduces endocrine signaling through Klotho protein co-receptors and fibroblast 

growth factor receptors (FGFRs), a family of receptor tyrosine kinases involved in the 

regulation of cell proliferation, differentiation and survival [168]. In breast, lung, and 

gastric cancer FGFRs are upregulated and likely contribute to cancer progression. [168]. 

Interestingly, Dunshee et al identified that FGF-21 is a substrate for FAP, whereby FAP 

mediated proteolysis of FGF-21 will impair FGR signaling.[160] Whether and to what 
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degree FAP may influence FGF-21 signaling HF remains unclear, but it is notable that 

increased FGF-21 has been identified in HF. [161,162].

3.4. FAP and the influence of fibroblast proliferation and phenotype

FAP can modify the ECM through both proteolytic substrate processing as well as 

influencing fibroblast form and function. For example, and discussed further in the 

chemotherapeutic section, pharmacological inhibition of FAP decreased an index of CAF 

density within the tumor stroma.[163] It has been demonstrated that in fibroblast cultures 

from human uterine fibroids, an RNA interference strategy which partially silenced FAP 

expression concomitantly reduced ECM components such as collagen type 1, fibronectin 

and laminin measured by immunoblotting[164] In fibroblast cultures taken from colorectal 

carcinoma, directional shifts in secretome profiles occurred when a gain of function and 

loss of function strategies for FAP were employed.[50] Specifically, using a proteomics 

approach, a gain of FAP resulted in increased levels of TGF and ECM components such as 

collagen type I and lumican. Using a collagen gel contraction assay, this past study identified 

that collagen degradation rates directionally changed in proportion to FAP activity. Finally, it 

was demonstrated that a loss of FAP activity resulted in a shift in fibroblast phenotype 

defined as a reduced spindle-shaped morphology and smooth muscle-actin expression. 

Additional studies employing secretome profiling in CAFs, demonstrated that increased FAP 

levels were associated with increased MMP expression, specifically MMP-1 and MMP-9. 

[50,165] Taken together FAP can directly alter fibroblast phenotype as well as proteolytic 

profiles. The fact that FAP can cause MMP expression in CAFswould suggest a feed 

forward mechanism by which FAP could amplify local ECM proteolytic pathways.

3.5. FAP regulation

In this section we detail the transcriptional, post-transcriptional, and post-translational 

regulation of FAP. However, this section is not meant to be comprehensive as FAP regulation 

remains an area of active research.[166–168] In terms of endogenous inhibitors of FAP, 

Wei et al reported that osetolectin can inhibit FAP. [169] However, there appears to be 

no upregulation of endogenous inhibitors of FAP with increased FAP activity, and as such 

regulation of FAP at the transcriptional, post-transcriptional, and post-translational level 

constitute the critical checkpoints.

3.5.1. Transcriptional regulation—A number of bioactive signaling molecules have 

been identified to contribute to the expression of FAP. For example, in a study utilizing 

immunofluorescence analysis of a mouse embryonic fibroblast cell line demonstrated that 

TGF robustly increased FAP mRNA levels, and an additive effect was observed with 

coincubation with IL-1β. [170] Rettig et al identified that TGF increased FAP expression 

in stromal fibroblast cultures. [72] In human bone marrow mesenchymal stem cells, 

incubation with TGF or IL-1β increased FAP mRNA levels by approximately 2-fold. [170] 

FAP promoter analysis have identified downstream signaling of TGF through EGR-1[171] 

and SMAD3[172] binding sites. Notably, FAP expression is increased in adult human 

myocardial fibroblasts through the SMAD2/SMAD3 pathway [173].
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Less is known about the negative regulation of FAP. FAP expression has been observed 

to have minimal to undetectable expression in mouse fibroblasts cultured on 2D silicon 

surfaces.[175,176 However, when these fibroblast were cultured on 3D silicon nanowire 

arrays, FAP upregulation was observed within the fibroblast filopodia, and this expression 

was inversely proportional to the length of the nanowires, indicating biophysical stimuli can 

regulate FAP expression to some degree. [174] In a study utilizing breast cancer fibroblast 

constructs, it was observed that the tumor suppressor phosphatase and tensin homolog 

deleted from chromosome ten(PTEN), was a negative regulator of FAP. [176].

3.5.2. Post-transcriptional regulation—One probable mechanism for FAP post-

transcriptional control is through microRNAs (miRs). The miRs regulate mRNAs by 

degradation, translational inhibition, or translational activation. A summary of miRs which 

have been identified in the potential regulation of FAP is presented in Table 3. Post-

transcriptional regulation of FAP by miRs is likely an important checkpoint, whereas FAP 

mRNA levels do not result in proportional FAP protein levels.[222] As an example, using 

oral squamous cell carcinoma cell lines, it was determined that miR-30a-5p directly targeted 

FAP mRNA, which resulted in the suppression of cell proliferation, migration, and invasion. 

[223] It has been reported that miR-21 was a negative regulator of PTEN, and thus an 

FAP inducer. [224] Interestingly, miR-21 has been identified as a mediator of fibroblast 

activation in a multitude of pathological states including cancer and HF. [225–227] As 

shown in Table 3, we performed an in silico analysis using a sequence matching algorithm 

[220,221,223,224] and identified 24, 54, and 127 miRs with a 90 %,80 %,70 % miR target 

gene score respectively, which predicts miR interaction with FAP mRNA. Those with the 

highest stringency with respect to FAP gene scoring are shown provided in Table 3. In 

addition, we cross referenced these miRs in cancer and HF (Table 3).[228,229] This analysis 

revealed a number of miRs with high probability mapping to FAP were also altered in both 

cancer and HF. For example, a family of miRs, miR-30a-5p, miR30b-5p, and miR30e-5p 

mapped to FAP with high probability (>97 %) and have been identified to be altered in both 

cancer and myocardial remodeling/HF. For example, miR-30a-5p has been reported to hold 

prognostic value in terms of cancer and HF progression.[186,187] What is unclear is how a 

specific miR, whether it be increased or decreased, can specifically modulate FAP protein 

levels. Moreover, it is unlikely that a single miR is critical to FAP post-transcriptional 

regulation, rather a specific “cluster” of miRs may be pivotal in the regulation of FAP 

protein levels. One future research direction would be to examine the role of the cassette of 

miRs identified to map to FAP with high probability and have also been found to be altered 

in cancer or HF.

3.5.3. Post-translational regulation—An important post-translational interaction has 

been shown to exist between FAP and the TGF signaling pathway. [50,102,126,170,230] 

Specifically, TGF remains sequestered within the ECM through interactions with a latency 

activation protein (LAP) and a latency binding protein (LTBP).[231,232] The proteolytic 

degradation of LAP/LTBP is a key checkpoint, in which sequestered TGF is liberated from 

the latent complex, and allows for receptor binding. Using computational degradomics, this 

latency complex, notably LTBP was a high probability substrate for FAP. [76] In an in vitro 
study, when recombinant murine FAP was incubated with recombinant human LAP, LAP 
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underwent proteolytic degradation which could be attenuated with an FAP inhibitor. [75] 

In another study, using fluorescent proteolytic substrates, FAP has been shown to cleave a 

critical sequence of LTBP, and thus disrupt this TGF latency complex. [233] Since TGF 

can stimulate FAP expression, there exists a potential for a TGF/FAP amplification loop 

whereby FAP induces release of TGF, which then binds to TGF receptor complexes, and 

thereby increases FAP transcription (Fig. 2). While this remains speculative, this interaction 

between FAP and TGF is likely to hold implications for ECM remodeling in both HFrEF 

and HFpEF as discussed in a subsequent section.

As with other serine proteases, the binding/activation of FAP can result in shedding of the 

extracellular domain. In different tumor types, it has been observed that levels of circulating 

FAP were inversely proportional to levels of tumor-associated expression of FAP protein. 

[234,235] The exact mechanism(s) and mediators of this shedding or retention process 

remain unclear, but it is possible that FAP is a target of protease-mediated ectodomain 

shedding, which is common to other transmembrane proteins. [236] Another possible level 

of post-translational regulation of FAP is dimerization and glycosylation. As stated before, 

FAP must dimerize in order to have normal catalytic function. A conserved region within the 

transmembrane domain has been identified as crucial for FAP dimerization but also proper 

membrane trafficking, for a mutation of this region leads to intracellular accumulation of 

FAP.[237] It has been demonstrated that unglycosylated FAP does not retain its enzymatic 

function, suggesting glycosylation is required for proper folding or membrane trafficking. 

[113].

4. FAP in HF

4.1. FAP in HFrEF

While FAP expression is extremely low in normal myocardium, induction of FAP occurs 

in one of the more common causes of HFrEF- MI. [55,117,173,238,239] In patients with 

acute coronary syndrome, serial blood collection has identified increased soluble FAP 

levels, likely due to increased FAP expression and activation. [55,117] The increased 

plasma FAP levels were reported in the early post-MI period and were associated with 

adverse LV remodeling.[55] Using myocardial biopsies, increased FAP within myocardial 

fibroblasts in patients post-MI.[117] Postmortem studies of explanted hearts secondary to 

ischemic cardiomyopathy, elevated FAP protein expression by immunohistochemistry has 

been reported [239]. Interestingly, this study reported increased FAP throughout the LV 

including the MI, border and remote regions. In animal models of MI, FAP gene and protein 

expression is upregulated in a localized, time-dependent manner.[173,238,239] For example, 

FAP mRNA as well as protein levels were observed within the MI and borderzone in 

rats post-MI.[173] Specifically, increased FAP expression peaked at 7 days post-MI within 

the borderzone and slowly declined through 28 days post-MI, whereas FAP expression 

peaked 7 days post-MI and persisted through 28 days post MI. In a pig model of MI, 

FAP expression detected in the MI as well as the border and remote regions, such as the 

non-infarcted interventricular septum. [239] In an initial report,[238] genetic deletion of FAP 

in mice reduced LV remodeling in the early post-MI period. Overall, these initial clinical 

and animal studies identified a robust increase in FAP levels in the early post-MI period 
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and the emergence of a fibroblast phenotype similar to the cancer-associated fibroblast, [31–

35,46–54] These studies also identified a relation to the degree of post-MI LV dilation- the 

harbinger for the development of HFrEF. As a result, these observations likely propelled the 

development of FAP imaging approaches for HFrEF as discussed in a subsequent section.

4.2. FAP in HFpEF

Unlike HFrEF, studies of FAP in the HFpEF phenotype are limited. In a rat obesity model 

which recapitulated some of the features of HFpEF, increased levels of FAP were identified 

and correlated with the degree of myocardial fibrosis.[240] However, FAP induction in 

obesity mouse models with features of HFpEF, has not been a uniform finding.[26] Thus, 

identifying the potential role of FAP in the development of HFpEF remains to be full 

established and research in this area has been hindered by several factors. First, in clinical 

studies, presentation of HFpEF is commonly at the time of symptom presentation and thus 

the natural history of this process and the potential early role of FAP has not been studied. 

A second consideration is that animal models which recapitulate the HFpEF phenotype 

are not as well established. One unifying observation in animal models however, is that 

enhanced TGF signaling is a cornerstone for the development of LV hypertrophy and ECM 

accumulation, critical features of HFpEF.[22–29] As discussed in a previous section, there 

are several intersection points for FAP activity and TGF signaling. Thus, whether and to 

what degree FAP expression contributes to early shifts in fibroblast function and ECM 

structure with the development of HFpEF is an important future research direction. Indeed, 

using radionuclide imaging methods, increased fibroblast activation and FAP induction has 

been recently reported in patients with HFpEF.[240] Since HFpEF continues to become a 

major contributor to the overall HF burden,[1–3,7,13,66] identifying proteolytic pathways 

which contribute to this process, such as FAP induction would be warranted.

5. Chemotherapeutic targeting FAP

As would be expected, chemotherapeutics have been developed which target FAP. These 

approaches fall into the small molecule inhibitor domain, immunotherapies, and more global 

DPP4 inhibitors.

Talabostat (Val-boro-pro, PT-100) is a small molecule amino boronic dipeptide that 

competitively inhibits dipeptidyl peptidases, including FAP and DPP4 [241–243]. Amino 

boronic dipeptides have a high affinity for the catalytic site of FAP due to the formation 

of a complex between Ser624 of FAP and boron of talabostat [241]. In addition to 

inhibiting dipeptidyl peptidases, animal models demonstrated various immune effects 

through increased cytokine and chemokine production in lymphoid organs and tumor 

mass that enhanced tumor-specific T-cell immunity and T-cell independent stimulation 

of antitumor activity of neutrophils, macrophages, and natural killer cells through high 

affinity interactions involving FAP [242,243]. Pre-clinical studies of talabostat indicate 

inhibition of FAP proteolytic activity with a high affinity and clinically applicable 

pharmacokinetics.[244,245] Representative clinical studies of talabostat are summarized in 

Table 4. Overall, these studies were performed in patients with advanced stage cancer and 

often in combination with other chemotherapeutics, with equivocal or negative outcomes. 
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One important outcome from these studies was the identification that talabostat had effects 

on immune pathways, such as cytokines and chemokines.[241,242,248] As indicated in a 

previous section, likely substrates for FAP include specific cytokines and chemokines and 

thus FAP inhibition by talabostat likely potentiated these inflammatory pathways as well as 

the innate immune response such as the inflammasome.[242,256] Thus, systemic delivery of 

talabostat likely produced multiple downstream effects due to FAP inhibition which could 

result in problematic issues with respect to clinical efficacy and outcomes. For example, 

talabostat treatment in combination with other chemotherapeutics in patients with metastatic 

melanoma was associated with peripheral edema in approximately 10 % of patients. [251] 

Another small molecule with much higher specificity for FAP is the radiopharmaceutical 

identified as UAMC-1110.[257,258] This FAP inhibitor is computed to have a nearly 1000 

fold higher specificity for FAP compared to other DPP4 proteases,[258] and has shown 

antitumor activity in mouse models of pancreatic cancer.[258] As FAP is involved in tumor 

invasion, metastasis, and angiogenesis, further research of early FAP inhibition prior to 

metastatic spread of cancer and newer generation small molecule inhibitors may yield more 

significant anti-tumor effects.

A variety of monoclonal antibodies (mAbs) have been developed and tested in clinical trials 

for FAP inhibition.[259] These mAb constructs such as the mouse mAb F19 can identify 

and bind to cells that express FAP and have undergone initial clinical trials.[260,261] For 

example, Phase I clinical trials have tested whether mAb F19 (mouse and humanized) can 

accurately target cells with FAP and appeared to be well tolerated [262]. Another approach 

has been to combine chemotherapeutics with recombinant anti-FAP strategies [264–266]. 

As an example, the recombinant fusion anti-FAP protein, RO6874281 has been utilized in 

preclinical models with programmed cell death protein-1 (PD1) checkpoint inhibition.[253] 

Another preclinical study tested whether the antibody-drug conjugate OMTX705 was able 

to successfully identify and suppress FAP-positive CAF [263]. In this report, cell viability 

assays containing primary cancer-associated fibroblasts identified OMTX705 to provide 

FAP-specific cytotoxic effects. Immunotoxins is another approach under investigation as 

these hold potential for selectively targeting certain cell types.[265] Since FAP contains a 

cell surface extracellular domain, then immunotoxins for FAP may be feasible [267,268]. 

One such immunotoxin, αFAP-PE38 has been reported to successfully inhibit tumor growth 

in a mouse breast cancer model [266]. Using a protoxin approach, liposomes containing 

promelittin and FAP linked substrate yielded growth inhibition in mouse model xenografts 

of breast and prostate cancer.[266] The developed protoxin was also much less toxic to 

FAP-negative cells than unmodified melittin.[269] Another immune related approach is 

through the use of redirected T cells with FAP-cell lysing capacity, also known as adoptively 

transferred FAP-specific re-directed T cells. For this approach, extracted cells undergo viral 

transduction producing a chimeric antigen receptor that recognizes FAP.[270–273] This has 

been utilized in animal models of pleural mesothelioma and has undergone initial clinical 

evaluation for this disease. [273,274]. In another study, chimeric antigen receptor T-cells 

can be directed to selectively kill FAP-expressing cells and showed effects in a number of 

murine mouse tumor models.[262] However, all of these immune based approaches hold a 

number of challenges in terms of therapeutic dosing and systemic toxicity. The development 

of higher affinity FAP ligands with tumor targeting specificity have been recently described, 
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which may overcome some of these obstacles.[275] Thus, these immune based approaches 

provide a proof of concept that targeting the FAP expressing fibroblast holds therapeutic 

potential with more selective and localized targeting approaches.

There are multiple dipeptidase IV (DDPIV) inhibitors that have been successfully advanced 

to clinical utility, primarily for diabetes. [276–283] Organoboronic based molecules, which 

includes talabostat have received attention for FAP inhibition, such as that designated as 

PT630.[162,164,280,281] PT630 injections in mice tumor model reduced tumor growth 

and was associated with reduced FAP activity. [162]. However, PT630 failed to decrease 

tumor growth in an immunodeficient mouse model with implanted breast cancer cells 

and cyclizes at physiological pH, thus reducing FAP inhibition potency. [283]. Linagliptin 

(trade name Tradjenta), effectively inhibits DPP4, and a much lower potency for FAP, 

has been investigated in patients with cardiovascular disease.[281,282] Specifically, the 

CARMELINA trial enrolled over 6,000 patients with type II diabetes and at increased risk 

for cardiovascular events.[282] This study identified that this DPP4 inhibitor did not affect 

the risk for the development or progression of HF, which hold promise for the potential 

safety for more selective FAP inhibitors. However, it remains unclear whether DPP4 at 

doses used in these past clinical trials significantly affects FAP levels and/or activity, or the 

potential cardiovascular benefit are due to secondary effects on metabolism/inflammation. 

[284,285] As discussed in the next section, newer modalities of measuring FAP activation 

may provide insight into this issue.

6. Future directions

This review attempted to provide an overview of FAP in terms of fibroblast activation, ECM 

remodeling and how it may play a contributory role for the development of HF. The next 

steps in FAP research could be considered in 3 domains; investigations into the biology of 

FAP and profiling, FAP imaging and finally FAP therapeutics.

6.1. FAP biology and profiling

Since FAP is expressed at relatively low levels in the LV myocardium, it remains unclear 

what role FAP may play in maintaining normal ECM structure and signaling pathways. 

While FAP induction has been identified in both HFrEF and HFpEF, the temporal pattern of 

FAP expression and the specific substrates/pathways may be distinctly different and warrant 

future study. For example, in HFrEF which can develop from a MI, ECM degradation 

and instability occurs within the MI region whereby FAP may degrade ECM components 

directly or indirectly by MMP activation. In HFpEF, FAP expression in myocardial 

fibroblasts can induce TGF activation and contribute to myocardial fibrosis- a key structural 

event with HFpEF In terms of FAP regulation, identification of whether an endogenous 

inhibitor of FAP occurs in HF would likely yield important insight into FAP regulation. 

As stated previously, a specific set of miRs map to FAP and how shifts in these miRs 

would affect FAP expression and thus LV remodeling in both HFrEF and HFpEF remain 

to be examined. The portfolio of FAP known and potential substrates was put forward in 

this review, but is unlikely complete. Moreover, the increased expression of FAP may alter 

existing biomarkers used for HF diagnosis and prognosis, such as NTpro-BNP and what 
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confounding effects this may have warrant study. Finally, this review has identified many 

common characteristics between the CAF and the fibroblast population which emerges with 

HFrEF and HFpEF. What remains unclear is whether this fibroblast phenotype emerges 

from existing LV myocardial fibroblasts or from a circulating cell type which undergoes 

expansion within the myocardium, or a combination of these sources.

Since the extracellular domain of FAP is “shed” during activation and interaction with 

proteolytic substrates, then presumably this would be a potential biomarker for FAP 

activation which can be detected from peripheral blood sampling. Indeed, as detailed 

previously, proof of concept clinical studies have reported that soluble FAP can be detected 

using immunoassay approaches.[55,117] This approach would allow for a non-invasive 

method to serially measure FAP over time and thus allow serial measurements during the 

development and progression of HFrEF or HFpEF. However, as with any blood based 

biomarker, how labile soluble FAP may be in the systemic circulation and the source of 

the soluble FAP can be confounding factors. Uitte et al identified that plasma FAP levels 

using both an activity assay and an immunoassay were elevated in patients with hepatic 

dysfunction and fell following liver transplantation.[104] Moreover, this past study identified 

the impact of different blood sampling conditions in terms of quantifying soluble FAP levels.

6.2. FAP imaging

Since increased FAP expression and activation has been implicated in cancer and 

metastasis, then a logical direction would be the development of FAP imaging modalities. 

Indeed, a positron emission tomography (PET) approach has been advanced which 

utilizes 68Ga-labeled, 18F-labeled or 64Cu-labeled FAP inhibitors.[55,81,286–294] This 

class of FAP targeted radiolabeled PET imaging probes has been extensively evaluated in 

preclinical models, while several have advanced to human imaging demonstrating favorable 

pharmacokinetics, dosimetry, and imaging characteristics. There are also 99mTc-labeled 

FAPI derivatives (99mTc-FAPI-34) that could be used for SPECT imaging of FAP in the 

heart.[285].

In this review we will focus on the use of 68Ga-FAPI derivatives for PET imaging, since this 

class of PET imaging agents has the largest body of data related to cardiac imaging. In a 

rat MI model, 68Ga-FAPI PET imaging was performed and identified peak uptake at 6 days 

post-MI. [81] Using autoradiography and histological staining, the predominant 68Ga-FAPI 

binding was observed along the MI border zone. In an isoproterenol induced HF rat model, 
68Ga-FAPI uptake peaked at 7 days post isoproterenol injection and was associated with 

the development of myocardial fibrosis.[286] In LV pressure overload induced hypertrophy 

in rats, 68Ga-FAPI uptake was identified at 2, 4 and 8 weeks with a peak level identified 

at 4 weeks post pressure overload.[287] Moreover, the peak 68Ga-FAPI uptake at 4 weeks 

post LV pressure overload was associated with the onset of definable histological evidence 

of myocardial fibrosis. Taken together, these animal studies suggest that PET based 68Ga-

FAPI imaging holds potential to identify LV myocardial FAP induction in both HFrEF and 

HFpEF.

In clinical studies, PET based 68Ga-FAPI imaging has been predominantly focused upon 

cancer, but incidental findings of FAP activity within the LV myocardium was reported 

Gehris et al. Page 15

Biochem Pharmacol. Author manuscript; available in PMC 2024 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in patients with cardiovascular risk factors.[289,290] For example, in a cohort of 229 

patients with cancer metastasis, focal 68Ga-FAPI enhancement was observed in patients with 

established cardiovascular risk factors.[290] In an initial imaging study in patients following 

an MI (within 11 days), 68Ga-FAPI uptake was identified and extended beyond the perfusion 

defect, and the magnitude of the FAP radiotracer uptake was associated with subsequent 

adverse LV remodeling.[55] In a small cohort of MI patients with ST segment elevation, 
68Ga-FAPI uptake was identified to extend beyond the area of acute myocardial injury.[291] 

An example of PET/CT based 68Ga-FAPI imaging in a patient post-MI is presented in Fig. 

3.[55] There remains a number of outstanding issues with respect to FAP imaging in either 

HFrEF or HFpEF which include sensitivity of this approach in terms of the extent to which 

FAP localization and distribution can be identified beyond areas of acute myocardial injury. 

It is also not clear what may be the optimal FAP imaging agent, and newer and potentially 

more specific 68Ga-based FAP ligands have been proposed.[292]. There are other pitfalls 

to this approach which includes non-specific binding to scar/degenerative tissue which may 

or may not be due to FAP activation.[293,294] There are also technical issues related to 

the absolute quantification of myocardial uptake these PET radiotracers based on partial 

volume effects associated with wall thinning. This technical issue may be overcome by use 

of hybrid PET/MR or contrast CT imaging to define the endocardial and epicardial edges of 

the myocardium. The use of hybrid PET/MR would also allow for the evaluation of changes 

in regional mechanics associated with regional changes in fibroblast activation. This type of 

integrated analysis may improve our understanding of the physiological impact of fibroblast 

activation in a host of cardiac disease states.

6.3. FAP therapeutics

A schematic of FAP potential therapeutics for targeting the cardiac fibroblast is shown in 

Fig. 4. One of the critical issues regarding FAP inhibition using either small molecules 

or immunotherapy/immunotoxins in the context of developing HFrEF or HFpEF is timing. 

The standard approach in chemotherapy is for a focused, short term pulse delivery rather 

than a sustained, chronic treatment. Thus, an over-arching issue will be to identify the 

temporal window in which targeting the emerging and proliferating FAP positive fibroblast 

in both HFrEF and HFpEF will be essential. As presented in the previous section, plasma 

profiling of soluble FAP and/or FAP imaging will be important tools to address this issue. 

In addition, it is likely that targeting FAP in the myocardium will require FAP imaging 

as a means to assess the effects on FAP activation- i.e. a theragnostic approach. With 

respect to small molecule therapeutics, the greatest clinical exposure is with talabostat and 

while this FAP inhibitor appears to be well tolerated, the effects on tumor progression 

have been equivocal. Whether and to what degree talabostat may be effective in animal 

models of HFrEF or HFpEF is an area for future exploration. As briefly presented in a 

previous section, the development of chimeric/hybrid antibody approaches may also be an 

important direction for FAP inhibition/targeting. While these will likely be initially assessed 

in the context of cancer and chemotherapeutics, the potential utility of pivoting these FAP 

chemotherapeutics towards LV remodeling and the development of HFrEF or HFpEF may 

hold promise. Finally, the therapeutic target for both HFrEF and HFpEF is the FAP positive 

myocardial fibroblast population whereas systemic delivery of FAP therapeutics, particularly 

for a prolonged interval will likely encounter adverse systemic effects. Thus, developing 
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localized delivery strategies to the myocardium which will allow for more specificity in FAP 

targeting would be an important direction. [295,296].
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Abbreviations:

BNP B-type natriuretic peptide

CAF Cancer associated fibroblast

CXCL5 CXC-motif chemokine 5

DPP4 Dipeptidyl peptidase 4

ECM Extracellular matrix

FAP Fibroblast activation protein

FGFR Fibroblast growth factor receptor

FGF-21 Fibroblast growth factor-21

HF Heart failure

HFpEF Heart failure with preserved ejection fraction

HFrEF Heart failure with reduced ejection fraction

IL-1β Interleukin-1 beta

IL-6 Interleukin-6

LAP Latency activation protein

LTBP Latency binding protein

LV Left ventricle

mAbs Monoclonal antibodies

MI Myocardial Infarction

miR microRNA

MMP Matrix metalloproteinase

NTpro-BNP N-terminal pro-B-type natriuretic peptide

PD-1 Programmed cell death protein-1
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PTEN Phosphatase and tensin homolog deleted from chromosome 10

TGF Transforming growth factor

TNF Tumor necrosis factor

VEGF Vascular endothelial growth factor
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Fig. 1. 
(A) A stylized schematic of FAP based upon structure–function 

studies[46,48,50,80,92,96,113–205]. The extracellular domain containing the 8 bladed 

propeller imparts substrate specificity whereby the catalytic domain (C) is an amino-acid 

peptidase which cleaves after a proline residue and is also an endopeptidase which cleaves 

a glycine-proline sequence. Thus FAP can process ECM proteins directly and also indirectly 

through activation/deactivation of other proteases and signaling molecules. The function of 

the intracellular domain remains unclear but may be a target of phosphorylation and thus 

play a regulatory role. (B) Ribbon diagram for the extracellular domain of FAP which 

identifies the propeller domains (4 on each side) in grey shading and the catalytic domain 

in green shading. The arrows indicate the direction where the folded propellers will form 

a central pore for substrate docking. Reproduced from Aertgeerts, K., Levin, I., Shi, L., 

Snell, G. P., Jennings, A., Prasad, G. S., Zhang, Y., Kraus, M. L., Salakian, S., Sridhar, 

V., Wijnands, R., & Tennant, M. G. (2005). Structural and kinetic analysis of the substrate 

specificity of human fibroblast activation protein alpha. The Journal of biological chemistry, 

280(20), 19441–19444.
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Fig. 2. 
Simplified schematic for a potential FAP/TGF amplification loop. TGF is prevented from 

binding to TGF receptor complexes (denoted as TGF receptor) through sequestration of the 

latency activation protein (LAP) and latency binding proteins (designated at LTBP). In silico 

mapping and initial in-vitro studies,[75,76] have identified that FAP can proteolytically 

disrupt the LAP/LTBP complex which would result in enhanced liberation of TGF. As a 

consequence, TGF will bind to the TGF-receptor complex and intracellular transduction 

such as activation of SMADs, such as canonical SMAD3, which has been shown to 

cause increased FAP transcription.[172] While this is a simplified postulate of a complex 

proteolytic/signaling interaction, this does put forward an important post-translational event 

in terms of FAP/TGF and fibroblast activation and ECM remodeling.
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Fig. 3. 
Myocardial perfusion images using 99mTc-tetrofosmin at rest, fibroblast activation by 68Ga-

FAPI PET, scar defined by late gadolinium enhancement (LGE) from cardiac magnetic 

resonance (CMR), and schematic drawings of LV. Area of fibroblast activation (red) as 

indicated by 68Ga-FAPI-46 PET signal exceeds infarct area (yellow) and distribution of LGE 

signal within the ante-roseptal wall. HLA = horizontal long axis; SA = short axis; VLA = 

vertical long axis. This research was originally published in Journal of Nuclear Medicine. 

Reproduced with permission from Reference [55].
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Fig. 4. 
Schematic of cardiac fibroblasts proliferating and expressing FAP. These cardiac fibroblasts 

which emerge with LV remodeling are similar in phenotype to CAFs. Thus, potential 

therapeutic strategies developed for CAFs could be considered for these cardiac fibroblasts. 

There are 3 fundamental domains of therapeutics being developed and explored: small 

molecules such as Talabostat and DPP4 Inhibitors, Antibody conjugate strategies such 

as immunotoxins, and immunotherapy by which adoptively transferred FAP-specific re-

directed T cells are utilized.
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Table 1

Representative studies of FAP and clinical outcomes in cancer

Cancer Type Clinical Associations Refs.

Gastric Carcinoma Decreased overall survival [51–53,76,99,100]

Increased tumor grade and metastasis

Increased cancer cell invasion and migration

Colorectal Carcinoma Decreased overall survival [51,82,83]

Increased tumor growth, grade, and metastasis

Ovarian Carcinoma Decreased overall survival [51,101]

Increased tumor grade, metastasis, and probability of recurrence

Pancreatic Adenocarcinoma Decreased overall survival [84,85,86]

Increased tumor growth, grade, and metastasis

Increased cell cycle activation and tumor angiogenesis

Lung Adenocarcinoma Oral Carcinoma Decreased overall survival [87]

Decreased overall survival [51,88]

Increased tumor grade and metastasis
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Table 3

In silico analysis of microRNA (miR) targeting FAP mRNA Transcript and Associations with Cancer and HF

miR miTG score Cancer Associated miR HF Associated miR

hsa-miR-3116 0.9972 [177] –

hsa-miR-30e-5p 0.9933 [178,179] [180]

hsa-miR-30b-5p 0.9790 [181] [182]

hsa-miR-1254 0.9786 [183] [184,185]

hsa-miR-30a-5p 0.9753 [186] [187]

hsa-miR-30d-5p 0.9732 [188,189] [190]

hsa-miR-6828–3p 0.9695 [191] –

hsa-miR-6748–5p 0.9658 [191] –

hsa-miR-7159–3p 0.9632 – –

hsa-miR-30c-5p 0.9582 [192,193] [194]

hsa-miR-335–3p 0.9565 [195,196] [197,198]

hsa-miR-452–3p 0.9542 [199] –

hsa-miR-3915 0.9526 [200] [201]

hsa-miR-4689 0.9520 [202] –

hsa-miR-4775 0.9450 [203,204] –

hsa-miR-4526 0.9416 – –

hsa-miR-676–5p 0.9385 – –

hsa-miR-6745 0.9348 [205] –

hsa-miR-141–3p 0.9319 [206,207] [208]

hsa-miR-200a-3p 0.9254 [209,210] [211–213]

hsa-miR-5194 0.9184 [214] –

hsa-miR-6719–3p 0.9150 – –

hsa-miR-330–3p 0.9131 [215,216] [217,218]

hsa-miR-661 0.9077 [219] –

miTG Score,miRNA target gene score; –, denotes no evidence found In-silico mapping performed using miR target prediction algorithm [223,224]
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Table 4

Representative Clinical Studies and Trials for the FAP inhibitor Talabostat

Clinical Trial Outcomes Refs.

Pharmacodynamic up-titration of talabostat in pediatric patients Well tolerated and computed dosing regimen developed [246]

Phase I trial of single-dose talabostat in healthy male volunteers Well tolerated, dose-related inhibition of plasma DPP-IV activity 
(as surrogate for FAP), increased plasma IL-6 levels

[247]

Phase I trial of multiple-dose talabostat in healthy male 
volunteers

Well tolerated, enhanced inhibition of plasma DPP-IV (as surrogate 
for FAP), increased plasma IL-6 and G-CSF

[243]

Phase I trial of talabostat and myelosuppressive chemotherapy 
in patients with solid tumor malignancy

Reduced chemotherapy related side effects, enhanced neutrophil 
recovery, enhanced cytokine regulation (IL-6, G-CSF, and IL-8)

[248]

Phase I trial of talabostat/rituximab for treatment of non-
Hodgkin’s lymphoma

Well tolerated as combination therapy (talabostat/rituximab); 3 
partial responses (n = 20)

[243]

Phase II trial of talabostat for treatment of metastatic colorectal 
cancer

Evidence of FAP inhibition, minimal anti-tumor activity in 
metastatic colorectal cancer

[249]

Phase II trial of talabostat for treatment of stage IV melanoma Evidence of some antitumor activity; 2 partial responses, 1 
complete response (n = 31)

[250]

Phase II trial of talabostat/cisplatin for treatment of stage IV 
melanoma

Unable to show enhanced clinical activity of cisplatin; 6 partial 
responses (n = 43)

[251]

Phase II trial of talabostat/docetaxel for treatment of stage 
IIIB/IV NSCLC

Unable to show enhanced clinical activity of docetaxel; 2 partial 
responses, 1 complete response (n = 42)

[252]

Phase III trial of talabostat/docetaxel for treatment of advanced 
NSCLC

Terminated - increased mortality in intention to treat group [253]

Phase II trial of talabostat/pembrolizumab for treatment of 
advanced solid cancers

Active, not recruitiing - evaluate effects of talabostat on various 
immunological effector cells, notably cancer associated fibroblasts

[254]

Phase 0 trial of talabostat and gemcitabine in patients with 
advanced pancreatic cancer

Assess initial safety and 6 month outcomes. Study terminated. [255]
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