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Abstract

Personality and cognitive function are heritable mental traits whose genetic foundations may 

be distributed across interconnected brain functions. Previous studies have typically treated 

these complex mental traits as distinct constructs. We applied the “pleiotropy-informed” 

multivariate omnibus statistical test to genome-wide association studies (GWAS) of 35 measures 

of neuroticism and cognitive function from the UK Biobank (n=336,993). We identified 431 

significantly associated genetic loci with evidence of abundant shared genetic associations, 

or pleiotropy, across personality and cognitive function domains. Functional characterisation 

implicated genes with significant tissue-specific expression in all tested brain tissues and brain-

specific gene-sets. We conditioned independent GWASs of the Big 5 personality traits and 

cognitive function on our multivariate findings, boosting genetic discovery in other personality 

traits and improving polygenic prediction. These findings advance our understanding of the 

polygenic architecture of these complex mental traits, indicating a prominence of pleiotropic 

genetic effects across higher-order domains of mental function such as personality and cognitive 

function.
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Introduction

The brain is responsible for a diverse set of interconnected and overlapping functions. 

Among these, personality and cognitive functions both represent heritable, higher-order 

domains of mental functioning that (i) remain relatively stable between late adolescence and 

older age1–3, (ii) form central components of an individual’s identity, and (iii) are related to 
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multiple physical and mental health outcomes4,5. They are also interrelated, with evidence 

of complex patterns of association between personality structure, cognitive functioning6 and 

academic performance7. A comprehensive investigation of their genetic foundations can 

provide insights into the neurobiological mechanisms influencing these fundamental human 

traits8.

Accelerated by the population-based cohort the UK Biobank (UKB; n=~500,000), 

genome-wide association studies (GWAS) have revealed evidence of genetic overlap 

between personality and cognitive traits. Multiple overlapping genetic loci have been 

discovered across large-scale GWAS of neuroticism9,10, one of the “Big 5” personality 

traits defined broadly as the propensity to experience negative emotions11, and 

general cognitive function12–15, representing the shared variance across diverse cognitive 

functions. Neuroticism and general intelligence also exhibit weak but significant negative 

genetic correlation9 and higher polygenic scores (PGS) for neuroticism predict lower 

intelligence15,16, reflecting weak negative phenotypic correlations between neuroticism 

scores and IQ17,18.

However, previous genetic studies have typically treated personality traits and cognitive 

ability as discrete constructs, reducing each complex mental trait into a single measure9,12. 

The limitations of this approach are underscored by a study which constructed a bifactor 

model of the neuroticism scale, showing that whilst a general factor of neuroticism 

showed a negative genetic correlation with cognitive function, two additional factors 

termed, anxiety/tension and worry/vulnerability, showed positive genetic correlations with 

the same cognitive function variable16. In addition, an item level analysis showed divergent 

patterns of genetic correlation between one of the neuroticism items and cognitive function 

and educational attainment and another with bipolar disorder19. In contrast, multivariate 

approaches simultaneously model the matrix of correlations between phenotypes, thus more 

accurately representing the interconnected nature of the brain and its functions.

Multivariate analysis can also increase statistical power in mental traits19. For example, 

multivariate analytical frameworks such as multi-trait analysis of GWAS (MTAG) and 

genomic structural equation modelling (GenomicSEM) have been applied to cognitive 

traits15,20–22 and for the neuroticism sum-score in combination with other traits, such 

as depressive symptoms and subjective well-being23 to improve genetic discovery. A 

multivariate approach to investigate pleiotropy across the two domains of cognitive 

function and neuroticism has not yet been conducted. Nevertheless, due to computational 

limitations it would be infeasible to apply MTAG to large numbers of phenotypes such as 

personality questionnaire item- and cognitive task-level data. Furthermore, neither MTAG 

nor GenomicSEM capture mixed effect directions, i.e. the presence of shared genetic 

variants with a mixture of concordant and discordant effects on two phenotypes resulting 

in minimal genetic correlation despite extensive overlapping genetic effects24. In contrast, a 

boost in genetic discovery has been demonstrated by the “pleiotropy-informed” multivariate 

omnibus statistical test (MOSTest), which is ambivalent to effect direction. Applying 

MOSTest to brain imaging phenotypes has shown that alterations in brain morphology 

and functional connectivity are associated with hundreds of genetic loci with “pleiotropic” 

genetic effects across the brain, even despite weak genetic correlation25–28. We hypothesised 
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that the genetic architecture of interconnected higher-order mental traits, such as cognitive 

function and personality traits are driven by similar pleiotropic effects.

Additionally, our understanding of the genetics of personality traits beyond neuroticism is 

limited29–31, in part because UKB did not collect data on the four remaining personality 

traits within the “Big 5” taxonomy. As such, only eight loci have been reported across all 

five measures in the largest GWAS to date (n=76,600–122,886)32. However, it is possible 

to boost statistical power for genetic discovery, identify shared genetic loci, and improve 

prediction in underpowered GWAS by leveraging genetic overlap with a second, more 

powerful GWAS using the conditional false discovery rate framework (cFDR)33–35. This 

approach has recently been applied to MOSTest analyses of brain structural36 and functional 

measures28 to improve discovery and prediction of mental disorders.

Given evidence of genetic overlap between neuroticism and cognitive function, we sought 

to boost the statistical power for genetic discovery by exploiting pleiotropic genetic effects 

across questionnaire item and cognitive task-level measures of neuroticism and cognition. 

By applying “pleiotropy-informed” MOSTest, which incorporates scenarios of mixed effect 

directions, we found a substantial boost in discovery driven by shared genetic effects across 

domains. The widespread effects were supported by functional analysis, which identified 

underlying neurobiological processes distributed across brain regions. We additionally 

leveraged our multivariate analysis to boost genetic discovery across the remaining Big 

Five personality traits and improve polygenic prediction. A conceptual illustration of the 

study is provided in Figure 1.

Results

Sample description

The UKB is a population-based cohort comprising over 500,000 participants between the 

ages of 39–7237. At enrolment, all participants were invited to complete a touchscreen 

questionnaire, including 12 dichotomous items derived from the neuroticism subscale of 

the Eysenck Personality Questionnaire-Revised Short Form38. They additionally completed 

25 diverse cognitive tasks, including 13 components of a measure of “fluid intelligence”, 

either at enrolment or during follow-up visits. These included measures of fluid intelligence, 

reaction time, executive function, and memory39,40 (table 1, supplementary table 1). After 

also calculating sum-scores for neuroticism and fluid intelligence, we included all 39 

measures to maximise statistical power for genetic discovery. After removing participants of 

non-White British ancestry and related individuals, the mean sample size across all measures 

was 201,820, ranging from 3,627 to 336,993 (table 1, supplementary figure 1). Sample sizes 

were more variable among cognitive tasks than neuroticism items. Mean age was 56.9 years 

(s.d.=8.0) at enrolment and 53.7% of included participants were female.

Item-level heritability and genetic correlations

To provide an overview of the heritability of questionnaire item- and cognitive task-

level measures, we first calculated linkage-disequilibrium score regression (LDSR) SNP-

heritabilities (h2
SNP) for all included measures. Since the inclusion of non-heritable 
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phenotypes may reduce statistical power25, four measures were removed from the analysis, 

leaving 35 measures (supplementary figure 1, supplementary table 2). We next computed 

pair-wise LDSR genetic correlations followed by hierarchical clustering to explore 

directional genetic relationships (figure 2, supplementary results)41. Neuroticism and 

cognitive measures shared weak negative correlations (mean rg=−0.15, s.d.=0.12) compared 

to moderate to strong positive correlations within each domain (neuroticism mean rg=0.64, 

s.d.=0.14; cognitive mean rg=0.56, s.d.=0.23). Consequently, neuroticism and cognitive 

measures clustered separately. Neuroticism items further clustered into two sub-clusters: 

anxiety features (“worry”) and depressive features (“depressed affect”), reproducing 

previous findings19. Cognitive measures were more heterogenous, with “reaction time” 

distinct from two clusters relating to fluid intelligence, prospective memory, and numeric 

memory (“fluid intelligence/memory”), and executive function and visuospatial memory 

(“executive function”). A similar pattern was observed for phenotypic correlations (figure 2, 

supplementary results).

Multivariate GWAS identifies 431 genetic loci with pleiotropic genetic effects

On application of MOSTest to discover pleiotropic genetic effects, we identified 431 

independent genetic loci significantly associated with the multivariate distribution of 

the 35 measures of neuroticism and cognition. This represented a 3.8x boost in locus 

discovery compared to mass univariate GWAS with correction for multiple testing (“min-

P”), which identified 113 loci (figure 3a, supplementary figure 2, supplementary tables 

3–4). Since MOSTest specifically leverages pleiotropy, this boost in discovery supports 

the hypothesis of pleiotropic genetic effects across mental traits. We also performed 

MOSTest analyses on neuroticism and cognitive measures separately to test the extent to 

which the boost in locus discovery was driven by cross-domain pleiotropy. Cognitive and 

neuroticism measures were associated with 221 and 199 loci, respectively. However, 153 

loci discovered by the combined MOSTest analysis were not identified by either of the 

separate analyses, indicating that 35% of the discovered loci were driven by cross-domain 

pleiotropy. To test the effect of a) including participants with medical conditions which 

may affect cognition and b) the choice of covariates, we ran two sensitivity analyses of 

our MOSTest findings (supplementary results, supplementary figures 3–4). This showed a 

modest reduction in locus discovery, but evidence of substantial cross-domain pleiotropy 

remained. See supplementary results and supplementary figures 3–4 for further details. 

Given the importance of controlling for population stratification, we also performed an 

extended sensitivity analysis investigating the effect of including additional covariates 

on all analyses up and down-stream of our MOSTest analysis (supplementary results, 

supplementary figures 5–12, supplementary tables 5–6). This showed that our findings were 

robust to the inclusion of additional covariates.

To illustrate the distribution of genetic effects, we tested for cross-cluster genetic overlap 

among the 431 lead variants using univariate GWAS p-values (figure 3b, supplementary 

table 7). This showed an increase in the number of shared variants at decreasing significance 

thresholds (p<5×10−8, p<1×10−6, p<1×10−5), indicating that the pleiotropic genetic variants 

captured by MOSTest had predominantly sub-threshold associations. Comparing across 

clusters, the two neuroticism clusters “depressed affect” and “worry” shared the largest 
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number of lead variants at all thresholds (n=22–68). Nonetheless, there was a comparable 

number of shared variants between cognitive and neuroticism clusters (n=0–29) and within 

cognitive clusters (n=1–24). Although these findings are partly affected by differences in 

sample size, this provides further evidence of pleiotropic genetic effects across mental traits. 

We also describe the pattern of effect directions across shared variants and evidence of 

cross-cluster gene-level overlap in supplementary results and supplementary figure 13.

To further investigate the pattern of effect directions across mental traits, we performed 

hierarchical clustering of univariate z-scores from all 431 lead variants (supplementary 

figures 14–15). This revealed that most lead variants had discordant effect directions 

between neuroticism and cognitive measures (n=360), reflecting the weak negative 

phenotypic association17,18. However, a minority of variants had either concordant effects 

across all measures (n=23), or had mixed effects within cognitive and neuroticism clusters 

(n=48). This indicates the presence of mixed genetic effect directions but a predominance of 

discordant effects across domains.

We plotted univariate GWAS p-values from all 35 measures for the top 40 lead variants 

to illustrate item and task-level patterns of genetic association (supplementary figure 16). 

Plots for five of these variants are presented in figure 4, each exemplifying a distinct pattern 

of association. Whereas some variants were genome-wide significant in only neuroticism 

clusters (n=76) (figure 4c) or only cognitive clusters (n=85) (figure 4d–e), 10 variants 

were genome-wide significant in measures across both neuroticism and cognitive clusters 

(figure 4a). Nonetheless, most variants had sub-threshold effects (n=260), demonstrating the 

boost in power generated by multivariate analysis (figure 4b). We also present the effect 

directions at the individual variant level, showing that 4 of the 5 lead variants exhibit a 

discordant relationship between neuroticism and cognition, consistent with negative genetic 

correlations. Nonetheless, figure 4b exemplified mixed effect directions, with weak positive 

effects on both “depressed affect” items and cognitive clusters but negative effects on 

“worry”. We also present the distribution of z-scores across the five exemplar lead variants 

to further emphasise the pattern of effect directions in supplementary figure 17.

We provided further evidence of substantial genetic overlap with mixed effect directions 

using the bivariate causal mixture model (MiXeR) (supplementary methods). MiXeR 

estimates the total number of shared genetic variants between two phenotypes irrespective 

of effect directions. Applied to the most heritable phenotype within each phenotypic cluster 

(figure 2), there was extensive genetic overlap irrespective of the genetic correlation between 

each pair of traits (supplementary figure 18). This pattern is indicative of widespread shared 

genetic variants with mixed effect directions.

Replication in independent samples

In line with previous GWAS studies42–44, we tested for nominal significance, Bonferroni-

corrected significance, and consistency of effect direction for MOSTest-discovered lead 

variants in independent samples, including 23andMe neuroticism GWAS (n=59,225)32 and 

CHARGE “general cognitive function” GWAS (n=113,981)14 (supplementary table 8). 

Out of 140 lead variants which were present in all three samples and 286 LD-proxies 

(r2>0.6) which had non-ambiguous alleles and were approximately independent from each 
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other (r2<0.1), 65 were nominally significant in the 23andMe, Inc. neuroticism GWAS, 

130 in the CHARGE general cognitive function GWAS, and 26 in both datasets. Using 

the exact binomial test to test the hypothesis that the number of variants were greater 

than that expected by chance, all three were highly significant (1.98E-15, p=5.80E-64, 

and 2.23E-27, respectively). After Bonferroni correction (p<0.05/426), 16 variants were 

significant in the CHARGE general cognitive function GWAS and 4 in the 23andMe 

neuroticism sample, none of which were significant in both. The exact binomial test showed 

this remained significant for cognition (p=5.24E-35) and neuroticism (p=2.39E-07) but not 

both phenotypes (p=1). We also tested for consistent genetic effects of lead variants across 

UKB and replication datasets44,45. Since they were the most comparable phenotypes within 

our analyses, we compared univariate GWAS effect directions for the neuroticism and 

fluid intelligence sum-scores with 23andMe neuroticism and CHARGE general cognitive 

function summary statistics, respectively. 304 had concordant effects in neuroticism (exact 

binomial p=2.57E-19) and 344 had concordant effects in cognition (p=1.54E-39). 244 

variants were concordant in both neuroticism and cognition (p=2.22E-45), providing 

additional evidence of pleiotropic effects in independent samples.

Functional characterisation

Using FUMA (fuma.ctglab.nl)46, we performed functional annotation to provide biological 

insights into the genetic associations captured by MOSTest. We first used multi-marker 

analysis of genomic annotation (MAGMA) which tests for the association between 

phenotypic variation and aggregated GWAS p-values for 18,952 human protein-coding 

genes irrespective of effect direction47. MAGMA identified 1062 multiple comparison-

corrected significant genes associated with the 35 measures of neuroticism and cognition 

(supplementary table 9). Next, MAGMA-based tissue specific expression analysis 

demonstrated highly specific enrichment of mapped genes in brain tissues. At the general 

tissue level (n=30), the brain, pituitary, ovary and testis were significantly enriched 

(supplementary figure 19). At the detail tissue level (n=53), all of the 14 included brain 

tissues were significantly enriched, as well as testicular tissue (figure 4, supplementary 

figure 20). This was a modest increase compared to univariate measures alone, which 

identified the brain and pituitary at the general level and 13 brain tissues at the detail 

tissue level. However, none of the univariate analyses were associated with either ovary 

or testis at the general tissue level, nor the spinal cord and testis at the detailed tissue 

level (supplementary table 10). When applied to Gene Ontology and canonical pathways 

there was a clear predominance of brain-related gene-sets. Twenty-nine out of 43 gene-sets 

were directly implicated in the structure or function of the central nervous system, and 

eight out of the top 10 significantly enriched gene-sets were related to synaptic structure or 

function (figure 5). Outside of the top 10, other notable gene-sets included “observational 

learning”, “behavior” and “cognition”, in addition to several neurodevelopmental gene-sets 

and “gamma aminobutyric acid signalling pathway” (supplementary table 11). This also 

represented a significant boost in gene-set discovery compared to univariate analysis, 

which identified a total of 4 gene-sets across all 35 GWAS (supplementary table 11). 

We additionally explored the enrichment of different functional categories according 

to their pattern of association with the 35 included measures (supplementary material, 

supplementary figure 21).
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Boosting discovery of genetic loci associated with Big 5 personality traits and cognitive 
function

We used the cFDR approach34 to leverage the additional power generated by our 

multivariate analysis to boost discovery of novel genetic loci associated with the remaining 

big 5 personality traits: agreeableness, conscientiousness, extraversion and openness in 

an independent sample (n=59,225)32. cFDR applies a Bayesian model-free statistical 

framework to re-rank SNP associations with a primary trait given their strength of 

association with a conditional trait.

We identified novel loci associated agreeableness (n=11), conscientiousness (n=36), 

extraversion (n=89), and openness (n=24) (figure 6a, supplementary tables 12–15). The 

conditional analysis ensures that the boost in power from the MOSTest method is 

driven by overlapping genetic variants, and not non-specific effects. Functional annotation 

of cFDR results identified 47 positionally-mapped genes for agreeableness, 157 for 

conscientiousness, 531 for extraversion, and 114 for openness (supplementary tables 16–19). 

MAGMA cannot be applied to cFDR statistics because cFDR test statistics are not normally 

distributed under the null hypothesis and so violate the assumptions of the model. We 

therefore applied hypergeometric test-based gene-set and tissue enrichment analyses using 

positionally mapped genes to replicate the approach taken by MAGMA46. There were no 

gene-sets or tissues significantly enriched with mapped genes from any of the 4 traits.

To test for pleiotropic effects in the remaining personality traits, we also performed 

conjunctional FDR (conjFDR), an extension of cFDR which identifies shared loci between 

two phenotypes. This revealed that 46–74% of loci associated with the Big 5 personality 

traits were also associated with our multivariate analysis of mental traits, indicating 

extensive pleiotropic effects beyond just neuroticism (supplementary tables 20–23).

We performed cFDR using independent neuroticism and general cognitive function GWAS, 

and compared these findings to the larger UKB-based GWAS to test the validity of cFDR 

in this context (supplementary tables 24–25). Of those present in both datasets, 50 out of 

72 (69.4%) neuroticism and 92 out of 131 (70.2%) general cognitive function lead variants 

were nominally significant in the larger GWAS of neuroticism9 and general intelligence12, 

respectively.

Improving polygenic prediction of personality and cognitive function

We compared PGSs calculated based on the top 10–100,000 LD-independent SNPs using 

three setups: (i) original GWAS p-value ranking and original GWAS effect sizes (standard 

PGS), (ii) cFDR-based ranking and original GWAS effect sizes (pleioPGS)35, and (iii) 

MTAG-based p-value ranking and corresponding MTAG-adjusted effect sizes (MTAG)22. 

In the pleioPGS approach we used SNP ranking based on cFDR analysis conditioning 

GWAS of the trait of interest (23andMe Big 5 personality traits and CHARGE cognitive 

function) on our multivariate GWAS of cognitive function and neuroticism. In the MTAG 

approach, our UKB-based GWAS of neuroticism summary score (N=274,056) was used 

to adjust p-values and effect sizes in 23andMe GWASs of five personality traits, and our 

UKB-based GWAS of fluid intelligence summary score (N=163,375) was used to adjust the 
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CHARGE cognitive function summary statistics. We also applied the PRS-CS method (iv), 

an approach which has been shown to outperform standard PGS models, which uses all 

SNPs in the model after adjusting effect sizes according to LD structure45. In all four setups 

the phenotypic variance explained by the PRS (r2) was estimated using a linear regression 

model controlling for age, sex and first 20 genetic PCs. We hypothesised that the boost in 

power from our multivariate analysis leveraged by the pleioPGS approach will prioritize 

more informative variants than standard GWAS, MTAG or PRS-CS, resulting in improved 

PGS performance. When comparing the best performing model for pleioPGS and standard 

PGS, pleioPGS outperformed standard PGSs by 2.6 and 2.5 times for conscientiousness 

and cognitive function, respectively, as well as outperforming PRS-CS and MTAG-based 

rankings for conscientiousness (figure 6b). MTAG-based rankings outperformed pleioPGS 

for cognitive function, demonstrating that pleiotropy can be leveraged in other ways to boost 

polygenic prediction. None of the other PGS achieved statistically significant prediction 

compared to the null model after Bonferroni correction. This may indicate a lack of signal in 

the primary GWAS for successful prediction in the test sample.

Discussion

In this multivariate genome-wide association analysis of 35 heritable questionnaire items, 

cognitive tasks, and summary scores, we provide evidence of abundant pleiotropic genetic 

associations across personality and cognitive traits. Despite weak genetic and phenotypic 

correlations between neuroticism and cognitive domains, we discovered 431 genetic loci 

associated with the multivariate distribution of included traits, with evidence of pleiotropic 

associations across domains. Furthermore, we identified distinct patterns of relationships 

with evidence of cross-domain genetic association and mixed effect directions. This was 

confirmed by MiXeR analysis showing extensive genome-wide genetic overlap across 

all phenotypic clusters even in the presence of minimal genetic correlation. Nonetheless, 

most lead SNPs were not genome-wide significant in univariate GWAS, demonstrating 

the boost in power provided by our multivariate approach. Functional characterisation 

revealed that the genetic signal captured by MOSTest was associated with increased gene 

expression across all brain tissues, the testis and ovary, and implicated synaptic structure 

and neurodevelopmental processes. Moreover, we show that our multivariate analysis 

improves discovery of implicated gene-sets and tissues compared to univariate GWAS. 

We leveraged the extra power generated by our multivariate approach to boost discovery 

of genetic loci associated with the remaining Big 5 personality traits, identifying 160 

loci for agreeableness (n=11), conscientiousness (n=36), extraversion (n=89), and openness 

(n=24). We further showed how the genetic loci shared across cognition and multiple 

personality traits improved polygenic prediction of conscientiousness and cognitive function 

in an independent sample. These findings have implications for how we conceptualise the 

neurobiology of personality and cognition, indicating that their genetic foundations are 

tightly interrelated. Dimensional, multivariate approaches which account for the complex set 

of interactions across domains are therefore better suited to fully elucidate the molecular 

mechanisms contributing to these fundamental human traits.

Firstly, the boost in power generated by our combined analysis of neuroticism and cognitive 

measures, alongside our findings of shared genetic associations across domains, is consistent 
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with the hypothesis that these two mental constructs are influenced by pleiotropic genetic 

variants. This builds on recent evidence that differences in brain structure and function are 

associated with a similar pattern of pleiotropic genetic effects25,26,28. As larger numbers 

of genetic loci associated with complex mental traits are discovered48, it is becoming 

increasingly apparent that individual genetic variants impact multiple, diverse traits, with 

few phenotype-specific variants24,49. This represents a key conceptual advance which has 

several implications. Firstly, while large univariate GWAS have provided insights into the 

neurobiology of specific traits9,12, future studies need to be aware of the lack of specificity 

of most variants associated with complex mental phenotypes. To fully characterise a given 

genetic variant, its effect should be evaluated beyond the specific phenotype of interest as 

it is likely to have pleiotropic effects across diverse domains25,50. Secondly, as statistical 

power increases, the relative effect size of a variant will likely be more informative with 

regards to specificity and relevance for a given phenotype than the presence or absence of 

a statistical association. In this respect, conventional GWAS may become less a tool for 

discovery and more focused on the precision of effect size estimates. Thirdly, as we have 

shown here, pleiotropic genetic effects can be leveraged to help boost the power for genetic 

discovery and polygenic prediction in related traits15.

When comparing489,1225,50 effect sizes of MOSTest discovered lead variants across included 

measures, there was also evidence of mixed effect directions between neuroticism and 

cognitive domains. This is consistent with the finding of minimal genetic correlation 

yet pleiotropic effects between these two domains. Genetic correlation is a genome-wide 

summary measure of the correlation of effect sizes between two phenotypes41. It is therefore 

possible for two phenotypes to share large numbers of genetic variants but possess minimal 

correlation if there is a balance of shared variants with the same and opposite effect 

directions on the two phenotypes51–53. Shared genetic variants with mixed effects reflect 

phenotypic findings that neuroticism does not significantly predict high school educational 

performance7 or cognitive function in older adults6. Nonetheless, “executive function” and 

“reaction time” clusters shared variants with the “worry” cluster, and “fluid intelligence/

memory” shared variants with the “depressed affect” cluster which were strongly discordant, 

despite weak negative genetic correlations. This suggests that MOSTest may prioritise 

variants which have more strongly aligned effect alleles in relation to the genome-wide 

average. Further, the recent findings of pleiotropic genetic effects on brain structure and 

function26–28, as well as patterns of widespread gene expression across different brain 

regions54 underscore the highly inter-related functions of brain regions and structures. Taken 

with our findings, this indicates that a complex interplay between heritable brain functions 

result in patterns of heritable, inter-related, higher-order mental traits which contribute to the 

core characteristics of an individual.

We used MAGMA to provide biological insights into the statistical associations captured by 

MOSTest. Firstly, tissue enrichment analysis showed significant enrichment in all included 

brain tissues55, underscoring the distributed nature of the genetic variants discovered. 

There were also several relevant gene-sets identified, including “observational learning”, 

“behavior” and “cognition”, alongside several gene-sets related to synaptic structure and 

function. Since MAGMA tests for enrichment of positionally mapped genes and so is not 

biased by the selection of tissue-specific eQTL databases, this indicates that MOSTest is 
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capturing biologically plausible genes and is not driven by non-specific genetic overlap, 

helping to validate our findings. Furthermore, the diverse set of brain tissues identified, 

including cortical structures, sub-cortical structures, the midbrain and the hindbrain, 

supports the broader concept of pleiotropic effects across the brain both on a structural 

and functional level26,28,56. It is also interesting to note that both the testis and ovary were 

significantly enriched, although to a lesser degree than brain tissues. Sex hormones can 

act in the brain to regulate gene transcription and interact directly with neurotransmitter 

systems57. They are also known to impact cognition, particularly verbal and visuospatial 

abilities58, and emotional regulation59, a core feature of neuroticism11. Despite this, gonadal 

tissue was not significantly enriched in either the aforementioned general intelligence12 

or neuroticism GWAS9. This may be the result of the additional power achieved using 

MOSTest.

Finally, we leveraged the boost in power from our multivariate analysis to improve discovery 

of genetic loci associated with agreeableness, conscientiousness, extraversion, and openness. 

This included, to the best of our knowledge, the first genetic loci reported for agreeableness. 

Nonetheless, these discoveries require replication in an independent sample to ensure 

their validity given they were discovered using cFDR and were not significant in the 

primary GWAS. Genetic overlap between schizophrenia and neuroticism and openness 

has previously been reported using cFDR60. Interestingly, five of the six loci shared 

between schizophrenia and openness were also identified in our openness cFDR analysis. 

Nonetheless, larger samples are required to validate these findings. By re-ranking genetic 

variants according to the MOSTest-informed cFDR values, we also improved polygenic 

prediction of conscientiousness and cognitive function. As has previously been shown 

for schizophrenia and bipolar disorder36, the PGSs outperformed standard GWAS-based 

ranking despite using the same weightings, as well as PRS-CS, suggesting that this method 

prioritises more predictive variants. This approach is similar to other recent examples 

using multivariate GWAS to enhance discovery28 and prediction61,62. Nonetheless, PGSs 

for agreeableness, extraversion, neuroticism, and openness failed to achieve statistically 

significant prediction in our independent test sample. This may have been due to a lack of 

statistical power, the use of different personality scales for the training63 and test samples64, 

or cultural differences between the American 23andMe sample32 and the Norwegian, 

research-focussed TOP sample65.

Among multivariate approaches, MOSTest was particularly well suited for the analysis 

of multiple personality and cognitive traits25. MOSTest is more flexible than canonical 

correlation analysis or MTAG since it can handle differences in sample size across included 

phenotypes and is more computationally efficient for high dimensional data25. By using 

permuted individual-level genotypes, MOSTest also robustly controls for type 1 error. It is 

also important to note that MOSTest differs fundamentally from genomicSEM66, another 

widely used multivariate GWAS method. While genomicSEM is a statistical framework for 

applying the principles of structural equation modelling to GWAS summary statistics based 

on the flexible modelling of genetic covariance matrixes, MOSTest empirically models the 

multivariate distribution of included variables while being agnostic to effect direction. This 

means MOSTest can identify variants which are shared across phenotypes even if they have 

Hindley et al. Page 11

Nat Hum Behav. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mixed effect directions on each trait, which has been shown for many brain-related mental 

traits52,67,68.

There were limitations to this study. Firstly, this analysis only included white European-

ancestry participants due to differences in linkage disequilibrium between ancestral groups 

and a lack of large, deeply phenotyped non-white European samples. Whereas mixed 

models are increasingly used to account for ancestral diversity, they are currently not 

compatible with MOSTest due to MOSTest’s use of randomly permutated genotypes. 

Larger samples and the application of novel permutation algorithms that respect ancestry 

and family structure will enable the inclusion of ancestrally diverse samples as well as 

related individuals in future work. Secondly, there were differences in sample size between 

measures. This means that the genetic associations captured by MOSTest are likely driven to 

a greater extent by measures with larger sample sizes and that z-score estimates for measures 

with smaller sample sizes may be less precise. Despite this, we showed statistically 

significant associations with measures from both domains, supporting our main finding 

of pleiotropic effects. There were also differences in the cognitive tasks and personality 

trait measures used in the UKB, CHARGE, 23andMe and TOP samples. This may have 

reduced the power in our replication and PGS analysis due to increased noise introduced by 

different measures. Thirdly, we combined cognitive measures taken at different timepoints 

during the study. While systematic differences in cognitive performance may subtly alter the 

results, it is unlikely to change the main findings of the study. Fourthly, MOSTest requires 

the use of individual level data. This limited our ability to include other personality traits 

in the main analysis which were not included in UKB. We mitigated this by using our 

multivariate analysis to boost discovery for the remaining four personality traits. Fifthly, we 

used MAGMA for gene-mapping, tissue enrichment and gene-set analyses, which does not 

incorporate eQTL or chromatin interaction gene-mapping. This increased the specificity of 

the gene-mapping approach and meant that the gene-set and tissue enrichment analyses were 

not biased by the selection of eQTL or chromatin interaction databases. However, this also 

reduced the sensitivity of our gene-mapping procedure. We considered this approach to be 

the most appropriate since discovery of individual causal genes is difficult due to a lack 

of experimental gene-mapping evidence. We demonstrate the value of the boosted power 

for locus discovery using MOSTest through gene-set and tissue enrichment analyses and 

improved PGS performance. Finally, we did not exclude individuals with acquired disorders 

which could affect cognitive functioning in the analysis and we only included 10 principal 

components as covariates in the initial GWAS step of the MOSTest analysis, which may not 

capture all the population stratification present in the UK Biobank sample. Nevertheless, our 

sensitivity analyses indicated that this was unlikely to affect our main finding of substantial 

pleiotropy across neuroticism and cognition.

In conclusion, by combining 35 item and task-level measures of mental functioning in 

a multivariate framework, we demonstrate that distinct cognitive and personality traits 

are influenced by hundreds of genetic variants with pleiotropic effects and mixed effect 

directions, despite minimal genetic and phenotypic correlations. This contributes to a 

growing body of evidence indicating that common genetic variants underlying complex 

mental traits are closely interrelated, suggesting that “the whole is more than the sum of its 

parts” for brain-related phenotypes.
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Methods

Ethical considerations

All participants provided informed consent. UKB participants who withdrew consent were 

excluded from the study. UK Biobank data was accessed under accession number 27412. 

The 23andMe sample participated under a protocol approved by the external AAHRPP-

accredited IRB, Ethical & Independent Review Services (E&I Review). Participants were 

included in the analysis on the basis of consent status as checked at the time data analyses 

were initiated. The use of summary statistics for cFDR analysis was evaluated by The 

Norwegian Institutional Review Board: Regional Committees for Medical and Health 

Research Ethics (REC) South-East Norway and found that no additional ethical approval 

was required because no individual data were used. TOP received ethical approval from 

Norwegian REC (ref. 2009/2485), Data Inspectorate (ref. 03/02051), and The Norwegian 

Directorate of Health (ref. 05/5821).

Samples and phenotyping

UK Biobank—Genotypes, demographic, and clinical data were obtained from the 

UK Biobank. We selected unrelated (included in UKB genetic principal components 

calculation), white British individuals (as derived from both self-declared ethnicity and 

principal component analysis) with no sex chromosome aneuploidies37 and genotyping 

call rate greater than 0.9. Participants who had withdrawn their consent were removed. 

This resulted in 337,145 individuals with mean age of 56.9 (standard deviation = 8.0 

years). 53.7% were female. For the association analysis we retained only variants on 

autosomes with minor allele frequency above 0.001 imputation info score > 0.8 and with 

Hardy-Weinberg Equilibrium p-value > 1E-10, leaving 12.9 million variants.

Table 1 and supplementary table 1 summarise the phenotypes included in our multivariate 

analysis. The UKB neuroticism items were derived from the Eysenck Personality 

Questionnaire-Revised Short Form38. The scale was completed by all participants during 

enrolment at the assessment centre as part of the touchscreen assessment. All items 

comprised binary yes/no response options. Cognitive measures were collected at three 

different timepoints – either as part of the touchscreen cognitive assessment at enrolment 

(2006–2010), online cognitive follow-up (2014–2015) or during a follow-up imaging visit 

(2016). Some items from the touchscreen assessment were repeated during the cognitive 

follow-up and so were merged to maximise sample size. Included measures spanned a 

variety of cognitive domains, including verbal/numeric reasoning, prospective memory, 

working memory, non-verbal reasoning, visual declarative memory, processing speed and 

executive function40. All cognitive measures were coded so that larger values indicated 

better performance (i.e. shorter reaction time, less matching errors, faster task completion 

etc.).

23andMe and CHARGE

For our replication and cFDR analyses, summary statistics for 23andMe Big 5 personality 

traits32 and CHARGE general cognitive function14 were accessed through collaborations. 

Sample make-up, genotyping procedures and phenotyping have been described in detail in 
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the original publications14,32. Briefly, the 23andMe samples comprised 59,225 individuals 

of European ancestry. Sum-scores for agreeableness, conscientiousness, extraversion, 

neuroticism, and openness were derived from the Big Five Inventory – 44-item edition63. 

23andMe customers completed the questionnaire online. The CHARGE general cognitive 

function sample comprised a meta-analysis of 113,981 participants of European ancestry 

from 51 cohorts after excluding UK Biobank participants to eliminate overlap with the 

discovery sample as well as individuals enrolled in five additional cohorts that contributed 

data in the original publication (Age, Gene/Environment Susceptibility-Reykjavik Study 

(AGES-Reykjavik), Atherosclerosis Risk in Communities (ARIC) Study, Cardiovascular 

Health Study (CHS), Framingham Heart Study (FHS), and Genetic Epidemiology Network 

of Arteriopathy (GENOA)). Cognitive function was assessed using a wide variety of 

different cognitive tests for fluid cognitive function. Each cohort included a minimum of 

three different cognitive tasks that tested different cognitive domains, For each cohort, 

principal component analysis was applied to the cognitive test scores. The score derived 

for the first unrotated principal component was used as a measure of represent the “general 

cognitive function” phenotype.

TOP Sample

The TOP sample comprised participants recruited as healthy controls for an observational 

study of severe mental illness. Participants were identified at random from the national 

population register.

Inclusion criteria included the absence of current or previous psychiatric disorder as 

identified by the Primary Care Evaluation of Mental Disorders (Prime-MD) delivered by 

a trained research assistant69. Exclusion criteria were substance use disorder, physical 

health condition, previous traumatic brain injury, neurological disorders, autism spectrum 

disorder, personal or family (1st degree relative) history of severe psychiatric disorder, and 

age outside of the range 13–72. Big 5 personality traits were assessed using the revised 

Neuroticism-Extraversion-Openness Five Factor Inventory (NEO-FFI)70, Norwegian edition, 

a 60-item questionnaire comprising 5-point Likert scale responses. Cognitive function was 

measured using the Wechsler Abbreviated Scale of Intelligence second addition (WASI-

II)71. Incomplete responses were dropped, leaving sample sizes of 587 for agreeableness, 

600 for conscientiousness, 581 for extraversion, 598 for neuroticism, 578 for openness and 

1066 for cognitive function.

Data analysis

Pre-processing of UKB variables—Prior to the association testing each item was 

manually pre-processed. Missing values were dropped from the analysis. Several continuous 

items with skewed and highly sparse distribution of answers were binarized. All continuous 

items were transformed using rank-based inverse normal transformation. Further details are 

provided in supplementary table 1.

LD score regression heritability, genetic correlation, phenotypic correlation 
and hierarchical clustering—Univariate h2

SNP and pairwise genetic correlations (rg) 

were estimated using LDSR41,72. Briefly, LDSR estimates univariate h2
SNP from GWAS 
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summary statistics by modelling the relationship between variant-level effect size and extent 

of LD, building on the observation that the larger the region of LD the larger the effect 

size estimate. Genetic correlation is then computed as the co-variance of SNP effect size 

between two traits after controlling for LD. We performed hierarchical clustering on pair-

wise genetic correlations using Agglomerative Clustering algorithm with distance function 

1-|rg|, as implemented in sklearn Python package73. Phenotypic correlations were computed 

using Spearman rank correlation as implemented in the Python package SciPy74.

MOSTest and min-P—Plink275 (v2.00a3LM AVX2 Intel (3 Jan 2021)) was applied 

to perform item-level genotype-phenotype association testing using linear regression for 

continuous items and logistic regression for binary items with sex, age, and first 10 genetic 

principal components as covariates. In total we performed GWAS of 13 neuroticism and 

26 cognition measures. Corresponding summary statistics were processed with LD score 

regression72 to estimate SNP-heritabilities (supplementary table 2, supplementary figure 1) 

and genetic correlations between items (figure 1). Since including non-heritable traits into 

MOSTest analysis may reduce statistical power25, only items with h2 p-value < 3.167E-5 

were used for subsequent MOSTest and min-P analyses. This threshold is recommended 

by the developers of LDSR-based SNP-heritability72 and has previously been used for 

large-scale heritability analyses of UKB genetic data76. In total 35 measures (13 neuroticism 

and 22 cognition cognitive) passed this h2
SNP filter.

MOSTest analysis was performed using the following steps, as outlined in previous 

publications25,26: i) univariate GWAS was run for each individual phenotype using randomly 

permuted genotypes (in addition to univariate GWAS using original genotypes already 

performed); ii) covariance matrix of z scores was estimated from permuted genotypes; 

iii) MOSTest test statistics were estimated for permuted and original genotypes as the 

Mahalanobis norm of permuted and original z scores, respectively, using the regularized 

covariance matrix obtained in (ii), where the regularization parameter (r=3) was selected 

to maximize the yield of genome-wide significant loci as described previously26; iv) the 

distribution of the MOSTest test statistics was approximated under the null hypothesis (no 

genotype-phenotype association) from the observed distribution of the test statistics for 

permuted genotypes obtained in (iii), using the empirical distribution in the 99.99 percentile 

and a Gamma distribution in the upper tail, selecting the shape and scale parameters of 

the Gamma distribution to maximize the likelihood of the observed data; v) the cumulative 

distribution function from (iv) was used to calculate MOSTest p-values using test statistics 

obtained using original genotypes.2626 We also performed MOSTest analyses for only 

neuroticism measures and only cognitive measures. Min-P was computed as the smallest 

p value for each variant across all univariate GWAS for each phenotype, followed by 

correction for the number of phenotypes tested, as described previously77.

Genetic overlap between MOSTest across univariate GWAS analyses was determined at 

the lead-variant level. We extracted p-values for all MOSTest lead variants from each 

individual univariate GWAS for included measures. Genetic overlap was deemed present if 

the lead variant was significant in each pair of univariate GWAS at the specified significance 

threshold (p<5×10−8, p<1×10−6, p<1×10−5). The same procedure was used to quantify 

overlap across the three multivariate analyses.
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We performed hierarchical clustering of univariate z-scores for each MOSTest-discovered 

lead variant. Hierarchical clustering was produced using AgglomerativeClustering algorithm 

with Euclidian distance, as implemented in sklearn Python package. Lead variants were split 

into 7 clusters. For each variable we then estimated the median z-score over all variants in 

the cluster.

Conditional/conjunctional false discovery rate—We applied cFDR to boost 

discovery of genetic variants associated with the Big 5 personality traits and general 

cognitive function. Firstly, conditional qq-plots were constructed by comparing enrichment 

of association in all variants in the primary trait (i.e Big 5 personality traits or general 

cognitive function) with 3 subsets of variants defined by their strength of association (p<0.1, 

p<0.01 and p<0.001) with the secondary trait (i.e. MOSTest summary statistics). Successive 

left-ward deflection, indicating greater enrichment of statistical associations, with increasing 

threshold of significance indicates cross-trait enrichment. Shift in enrichment conditional on 

the secondary trait can be directly interpreted according to the Bayesian definition of the 

true discovery rate (TDR = 1-FDR), whereby a larger shift is consistent with a smaller FDR. 

This means cFDR values can be computed for each variant by comparing enrichment of all 

variants with a subset of variants which are as strongly or more strongly associated with 

the secondary trait. The cFDR value can therefore be interpreted as the probability that a 

given SNP is not associated with the primary trait given that the SNP is more strongly or 

as strongly associated with both phenotypes than observed in the original GWAS. Look-up 

plots were constructed which provide cFDR values given the p-values in the primary and 

secondary traits. The conjunctional FDR statistic was computed by repeating the analysis 

having switched the primary and secondary trait. The maximum of the two cFDR statistics 

represents the probability that a given SNP is not associated with the primary or secondary 

trait given that the SNP is more strongly or as strongly associated with both phenotypes 

than observed in the original GWAS. We performed 100 iterations of each analysis after 

random pruning from independent LD blocks (r2>0.1). Genomic inflation was corrected for 

by a conservative genomic control procedure utilizing intergenic variants which lack true 

associations relative to other functional regions78. The MHC region was excluded from the 

model-fitting procedure to prevent inflation of test statistics due to complex LD.

Locus definition

Genetic loci were defined based on association summary statistics produced with MOSTest, 

min-P and cFDR following the protocol implemented in FUMA with default parameters46. 

The protocol is summarised as follows:

1. Independent significant genetic variants were identified as variants with p-

value<5E-8 or cFDR<0.05 and linkage disequilibrium (LD) r2<0.6 with each 

other.

2. A subset of these independent significant variants with LD r2<0.1 were selected 

as lead variants.

3. For each independent significant variant all candidate variants were identified as 

variants with LD r2≥0.6.
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4. For a given lead variant the borders of the genomic locus were defined as 

min/max positional coordinates over all corresponding candidate variants.

5. Loci were merged if they were separated by less than 250kb.

Replication in independent samples

As applied in several recent GWAS42–44, we tested for en masse sign concordance of genetic 

effects, nominal significance and Bonferroni corrected significance in MOSTest-discovered 

lead SNPs using UKB fluid intelligence sum-score and CHARGE general cognitive function 

summary statistics, and UKB neuroticism sum-score and 23andMe neuroticism summary 

statistics. We dropped all variants with ambivalent effect alleles and used LD proxies (r2 

> 0.6) if a lead SNP was not present in both replication cohorts. We first used an exact 

binomial test to test the null hypothesis that sign concordance, nominal significance, and 

Bonferroni corrected significance were randomly distributed (p=0.5, p=0.05, and p=0.05/n, 

respectively), given the total number of variants (n) and the number of variants with 

concordant effects in UKB and each independent dataset, and nominally significant and 

Bonferroni-corrected significant in the independent datasets, respectively (k). To test for 

evidence of pleiotropic effects, we used an exact binomial test to test the null hypothesis 

that sign concordance, nominal significance, and Bonferroni corrected significance in both 

neuroticism and cognitive function were randomly distributed (p=0.25, p=0.0025, and 

p=(0.0025/n2)), given the total number of variants (n) and the number of variants which were 

concordant, nominally significant, and Bonferroni-corrected significant in both phenotypes 

simultaneously.

Mapped genes, tissue specificity and gene-set analyses

Gene-mapping of MOSTest GWAS summary statistics was performed using MAGMA as 

implemented in FUMA. The MHC region was excluded and all other settings were default. 

Gene analyses of individual items (supplementary results) were performed with MAGMA 

(version 1.09b)47 applying a SNP-wide mean model to GWAS summary statistics excluding 

variants within MHC region (chr6:25000000–33000000) 1000 Genomes Phase 3 EUR were 

used as a reference panel and other settings being default. 18,952 genes were included in the 

analysis.

Tissue specificity and gene-set enrichment analysis of MOSTest summary statistics was 

performed using MAGMA as implemented in FUMA47. Tissue specificity was tested in 

GTEx version 7 eQTL database55 across 53 “detail tissues” and 30 “general tissues”. 

Gene-set enrichment was tested in Gene Ontology79 and curated gene-sets from MsigDB80 

(n=10,678). Bonferroni correction was applied to correct for multiple comparisons.

cFDR statistics are not applicable to MAGMA because the distribution of cFDR statistics 

under the null hypothesis does not fit the assumption that the association statistic is normally 

distributed. Genes were therefore mapped to candidate SNPs identified by cFDR using 

positional mapping, i.e. according to their physical proximity (<10kb) to each variant. We 

performed tissue specificity and gene-set analysis using the GENE2FUNC functionality in 

FUMA using default settings. Positionally mapped genes were used as input for all analyses. 

Over-representation of mapped genes within tissue-specific differentially expressed genes, 
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and Gene Ontology and curated gene-sets was tested using a hypergeometric test. Correction 

for multiple comparisons was performed using the Bonferroni method.

Polygenic score analysis

We calculated and compared PGS for the Big 5 personality traits and cognitive function 

in TOP sample using four different setups. The first three setups were based on the C+T 

(clumping + thresholding) approach81 using different strategies for ranking SNPs and 

adjusting their effect sizes: (i) original GWAS p-value-based ranking with original GWAS 

effect sizes (standard PGS); (ii) cFDR-based ranking with original GWAS effect sizes35, 

where cFDR analysis was performed conditioning GWAS of the trait of interest (23andMe 

Big 5 personality traits and CHARGE cognitive function) on our multivariate GWAS of 

cognitive function and neuroticism; (iii) multi-trait analysis of GWAS-based p-value ranking 

and corresponding adjusted effect sizes (MTAG)23. In the MTAG approach, our UKB-based 

GWAS of neuroticism summary score (N = 274,056) was used to adjust p-values and effect 

sizes in the 23andMe GWASs of Big 5 personality traits, and our UKB-based GWAS of 

fluid intelligence summary score (N = 163,375) was used to adjust summary statistics in the 

CHARGE GWAS of cognitive function. Default MTAG settings were applied as described 

in Turley et al.23, besides the application of the “--no_overlap” parameter given the absence 

of sample overlap across the UKB, 23andMe and no-UKB CHARGE datasets14,32. For these 

three setups PGS were calculated across five sets of LD-independent SNPs (N = 10, 100, 

10,00, 10,000, 100,000) using PRSice-2 (v2.3.3)81 with no additional clumping (--no-clump 

option). Sets of LD-independent SNPs were obtained using plink v1.90b6.17 based on the 

setup-defined SNP ranking with --clump-kb 250, --clump-r2 0.1 parameters and in-sample 

LD estimates. In the fourth setup (iv) PRS-CS method was deployed, which uses Bayesian 

regression and continuous shrinkage to adjust weights for all available SNPs accounting for 

LD structure82. PRS-CS was applied with default settings using the 1000 Genomes Project 

phase 3 European LD reference panel as described in Ge et al.82. In all four setups, the 

phenotypic variance explained by the PRS (r2) was estimated using linear regression model 

controlling for age, sex and first 20 genetic PCs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Conceptual overview of study design and main findings.
We performed a multivariate genome-wide association analysis of 35 measures of cognitive 

function and neuroticism in the UK Biobank. We show that discovered loci have distributed 

genetic effects across both neuroticism and cognitive domains, with differential expression 

of mapped genes across brain tissues. We replicate these findings in independent samples 

before leveraging the additional power generated by multivariate analysis to boost discovery 

of genetic loci associated with the remaining Big 5 personality traits and improve polygenic 

prediction of conscientiousness and cognitive function.
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Figure 2: Heatmap of genetic and phenotypic correlations across mental traits.
LDSR genetic correlations (rg, top right) and Spearman rank phenotypic correlations (rp, 

bottom left) reveal a pattern of moderate to strong positive genetic correlations within 

neuroticism and cognitive domains but weak negative genetic correlations across cognition 

and neuroticism measures. Phenotypically, there were also stronger positive correlations 

within domains but minimal correlation across domains. Measures were clustered on 

genetic correlation, revealing 2 neuroticism clusters reproducing previously reported clusters 

“depressed affect” and “worry”19, and 3 cognition clusters, broadly mapping on to “reaction 

time”, “executive function” and “fluid intelligence/memory”.
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Figure 3: Boosting the signal of genetic association for 35 mental traits by leveraging pleiotropy.
A. Miami plot for MOSTest (orange) and min-P (blue), plotting each SNP’s −log10(p-

values) against chromosomal position. By applying a multivariate framework which 

leverages pleiotropic effects, there is a substantial boost in signal compared to a “mass 

univariate” approach such as min-P, evidenced by smaller p-values and a larger number 

of discovered loci (n=431 vs. 113). This indicates the presence of pleiotropic genetic 

effects across mental traits. B. Shared genetic associations of lead variants across 5 genetic 

correlation-based clusters (figure 1) at three significance thresholds. The number of lead 

variants within each cluster individually at each significance threshold is represented by the 

size of the coloured segments. The number of lead variants shared between each pair of 

clusters is represented by the width of the coloured ribbons. The proportion of variants with 

concordant effect directions on each cluster is represented by the colour of the ribbons from 

blue (0) to red (1).
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Figure 4. Patterns of pleiotropic genetic associations at the SNP-level.
P-values from univariate GWAS of 35 mental traits plotted for 5 lead variants, selected 

to illustrate five distinct patterns of association. The locus number, which corresponds to 

MOSTest significance rank, is provided in brackets. Univariate p-values are plotted on 

the logarithmic scale as the distance from the centre of each circular plot. Genome-wide 

significance (p<5×10−8) is represented by the dashed line. Positive effect direction is 

illustrated by a filled circle and negative effect direction by a clear circle. Phenotype 

clusters are derived from genetic correlation-based hierarchical clustering (figure 2) A: SNP 

which is genome-wide significant across neuroticism measures (with apparent specificity 

for the “depressed affect” cluster) and cognitive measures (both in “executive function” 

and fluid intelligence/memory” clusters), with predominantly positive effects on cognitive 

tasks and negative effects in neuroticism items. B: SNP which is non-significant across all 

measures, with indication of weak association with “depressed affect” cluster, “executive 

function” and “fluid intelligence/memory” clusters, and predominantly concordant effects 

in “cognitive tasks and depressed affect” items. C: SNP with genome-wide significance 

across neuroticism measures but minimal association with cognitive measures, and negative 

effects on neuroticism items and predominantly positive effects on “executive function”. 

D: SNP with genome-wide significance with “fluid intelligence/memory”, sub-threshold 

association with “executive function” and minimal association with neuroticism measures, 

and predominantly negative effects on cognitive tasks and positive effects on neuroticism 

items. E: SNP with genome-wide significance with “reaction time” and “executive function” 

but minimal association with “fluid intelligence/memory” and neuroticism measures, and 

negative effects in “fluid intelligence/memory” but weak, mixed effects in all other 

measures.

Hindley et al. Page 26

Nat Hum Behav. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. MAGMA tissue specific gene expression and gene-set enrichments.
A. MAGMA-based tissue specificity analysis of multivariate GWAS of 35 mental traits 

shows highly specific enrichment across all brain tissues and the testis. All tissues with 

corrected p<0.1 are presented. All tissues tested are shown in supplementary figures 

11–12. Please note that the ovary was significant when tested at the “general tissues” 

level (supplementary figure 11). B. Top 20 gene-sets significantly enriched for gene-level 

associations with multivariate GWAS of 35 mental traits. All significant gene sets are 

presented in supplementary table 8. All p-values are corrected for multiple comparisons 

using Bonferroni correction.
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Figure 6: Leveraging multivariate analysis to boost discovery and polygenic prediction of 
personality and cognitive function.
A. The number of loci associated with agreeableness (AGREE), conscientiousness 

(CONSC), extraversion (EXTRA), and openness (OPEN) in the primary GWAS (pale 

orange) compared to the conditional false discovery rate conditioning on the multivariate 

analysis of 35 mental measures (cFDR, dark orange). We also provide the number of 

shared genetic loci between personality and the multivariate analysis of 35 mental measures 

(conjFDR, orange). The number of loci discovered increased substantially, including the first 

loci reported for AGREE. B. Explained variance of Big 5 personality and cognitive function 

polygenic scores (PGS) (r2, y-axis) for top 10, 100, 1000, 10,000 and 100,000 independent 

variants using primary GWAS p-value based ranking (light orange), multi-trait analysis 

of GWAS (MTAG, light blue) adjusted on UKB neuroticism (for personality traits) and 

fluid intelligence (for cognitive function), and pleiotropy informed (pleioPGS) ranking (dark 

orange), alongside PRS-CS using all SNPs (blue) from 23andMe and CHARGE GWAS 

summary statistics respectively. * Indicates statistical significance at p<0.05 after Bonferroni 

correction compared to a null model. PGSs were tested in healthy participants from the 

Thematically Organised Psychosis study.
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Table 1:
Overview of neuroticism and cognitive measures from UK Biobank.

Clusters are derived from genetic correlation-based hierarchical clustering (figure 1). Further details are 

provided in supplementary table 1.

Cluster Measure Abbreviation Sample size

Neuroticism

Depressed affect

Neuroticism sum-score NEUR sum-score 274,056

Are you an irritable person? Irritable 322,599

Do you often feel lonely? Lonely 332,193

Do you often feel fed-up? Fed-up 330,478

Do you ever feel just miserable for no reason? Miserable 331,782

Does your mood often go up and down? Mood swings 329,358

Worry

Do you suffer from nerves? Nerves 325,181

Are you often troubled by feelings of guilt? Guilt 328,700

Would you call yourself tense or highly strung? Tense 327,162

Are your feelings easily hurt? Feelings hurt 327,762

Would you call yourself a nervous person? Nervous 328,653

Do you worry too long after an embarrassing experience? Embarrass 323,698

Are you a worrier? Worrier 328,647

Cognition

Fluid intelligence/memory

Fluid intelligence sum-score: FI sum-score 163,375

 Word interpolation Word interp. 162,937

 Positional arithmetic Pos. math 161,768

 Family relationship calculation Fam. rel. calc. 158,977

 Conditional arithmetic Cond. Math 144,648

 Synonym Synonym 120,891

 Chained arithmetic Chained math 109,731

 Concept interpolation Concept interp. 50,331

 Arithmetic sequence recognition Seq. recog. 2 34,286

 Square sequence recognition Seq. recog. 1 11,679

Numeric memory Num. memory 104,319

Prospective memory Prosp. memory 111,079

Matrix pattern completion. Matrix pattern 22,335

Executive function

Pair matching:

 Full game. Pair match. 1 336,993

 Time of full game. Pair match. 2 330,143

 Basic game. Pair match. 3 336,993

 Time of basic game. Pair match. 4 330,777

Symbol digit substitution Symb. dig. Subs. 94,153

Tower rearranging Tower rearrang. 22,159

Trail making:

 Part A Trail making 1 85,595

 Part B Trail making 2 85,597

Reaction time Reaction time. Reaction time 335,066
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Cluster Measure Abbreviation Sample size

Non- heritable

Fluid intelligence:

 Numeric addition test N/a 162,846

 Identify largest number N/a 162,989

 Antonym N/a 17,417

 Subset inclusion logic N/a 3,627
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