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Abstract:
Uromodulin, also known as the Tamm-Horsfall protein, is predominantly expressed in epithelial cells of the

kidney. It is secreted mainly in the urine, although small amounts are also found in serum. Uromodulin plays

an important role in maintaining renal homeostasis, particularly in salt/water transport mechanisms and is as-

sociated with salt-sensitive hypertension. It also regulates urinary tract infections, kidney stones, and the im-

mune response in the kidneys or extrarenal organs. Uromodulin has been shown to be associated with the re-

nal function, age, nephron volume, and metabolic abnormalities and has been proposed as a novel biomarker

for the tubular function or injury. These findings suggest that uromodulin is a key molecule underlying the

mechanisms or therapeutic approaches of chronic kidney disease, particularly nephrosclerosis and diabetic

nephropathy, which are causes of end-stage renal disease. This review focuses on the current understanding

of the role of uromodulin from a biological, physiological, and pathological standpoint.
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Introduction

Chronic kidney disease (CKD) is a public health burden

and an emerging risk factor for end-stage renal disease

(ESRD), cardiovascular disease, and mortality (1-3). The

prevalence of CKD increases with age and is significantly

higher in hypertensive populations than in normotensive

ones (4); therefore, with the increase in the elderly popula-

tion of Japan, CKD is becoming a common disease. This

epidemiological finding may partly underlie the recent

changes in the etiology of ESRD.

Diabetic nephropathy has been the most common primary

disease among incident dialysis patients in Japan since

1998 (5), but the percentage has remained nearly unchanged

for the past few years. In contrast, the percentage of patients

with nephrosclerosis has increased, becoming the second-

most common cause of ESRD (6). Therefore, it is important

to appropriately manage diabetes, hypertension, and other

CKD-related conditions. Therapies targeting blood pressure,

glucose, and other metabolic abnormalities can slow the pro-

gression of CKD (7); however, the detailed mechanisms un-

derlying these therapeutic approaches are not fully under-

stood. Furthermore, no biomarkers have been directly linked

to the mechanism of CKD. These limitations highlight the

need to elucidate the underlying mechanisms and identify

causal biomarkers of CKD.

Uromodulin, also known as the Tamm-Horsfall protein, is

a glycoprotein that is predominantly expressed in kidney

epithelial cells. Rare mutations in the UMOD, a gene that

encodes uromodulin, have been known to cause autosomal

dominant tubulo-interstitial kidney disease (ADTKD) (8).

Recent genome-wide association studies (GWASs) have re-

vealed various genetic loci associated with the renal function

and risk of CKD in European and Asian populations, includ-

ing the Japanese population (9, 10). Among these, the locus

UMOD shows a remarkable association with the renal func-

tion (9). The relevance of variation in the UMOD locus to

CKD was also evident in another study, which showed its

influence was stronger among older adults than younger

ones (11). Furthermore, the UMOD locus is associated with

hypertension (12). Recent advances in the investigation of

uromodulin and its relevance to kidney diseases have

changed our understanding of rare inherited diseases to
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Figure　1.　Local and systemic roles of uromodulin. Uromodulin is proposed to be involved in uri-
nary tract infection, blood pressure regulation, kidney stone formation, and immunomodulation.

common CKD. These observations suggest that uromodulin

may be a clue to understanding the underlying mechanism

of CKD, particularly for age-related or hypertensive nephro-

sclerosis, thus providing a novel therapeutic target.

In this review, we will summarize the current understand-

ing of the biology, function, and relevance of uromodulin in

clinical practice.

Biology of Uromodulin

Uromodulin, or Tamm-Horsfall protein, is the most abun-

dant protein in urine. Its structural components include a

leader peptide, epidermal growth factor-like domains,

cysteine-rich domain (D8C), and zona pellucida do-

main (13). The leader peptide directs its insertion to the en-

doplasmic reticulum (ER) (14). Because uromodulin has a

complex structure with many cysteine residues involved in

the formation of disulfide bonds, its processing in the ER is

important for the maturation of uromodulin (15). Mature

uromodulin is mainly accumulated in the apical membrane

by polarized trafficking and is then secreted into the urine

via proteolytic cleavage by the serin protease hepsin (16).

Previous investigations evaluating ADTKD pathophysiology

have revealed that mutant uromodulin alters membrane traf-

ficking, resulting in decreased urinary uromodulin secre-

tion (17-19). Defective transport of mutant uromodulin in

turn causes its accumulation in the ER, leading to ER stress

and inflammation (20-23). In addition to membrane traffick-

ing, defective urinary secretion of uromodulin causes stress

in the ER and renal injury. In a mouse model with mutant

hepsin, deficient cleavage of uromodulin induced the intra-

cellular accumulation of uromodulin and ER stress (24).

Hepsin also regulates the uromodulin structure in urine.

Physiological cleavage by hepsin releases a zona pellucida

domain that mediates the polymerization of uromodu-

lin (16). Due to its ability to polymerize and form filaments,

uromodulin can trap uropathogens or inhibit the interaction

between the gallbladder epithelium and uropathogenic bacte-

ria (13). Based on these biological and structural features,

uromodulin is known to protect against urinary tract infec-

tions (UTIs). A protective role in UTIs is evident in the

clinical setting. In a case-control study of UTI patients, pa-

tients with low urinary uromodulin levels were more com-

mon in the bacteremia group than those without bactere-

mia (25). The relevance of urinary uromodulin to UTIs was

further demonstrated in a study of 953 subjects, in which

elevated urinary uromodulin levels were associated with a

decreased risk of UTIs (26). Recent investigations of the

three-dimensional structure of urinary uromodulin by cryo-

electron tomography have shown a polymerized zona pellu-

cida domain with protruding arms of an epidermal growth

factor-like domain and D8C (27). Most of the previously

identified UMOD mutations in ADTKD were located in

exon 4, which encodes D8C (28-30); however, the biological

functions of D8C have not yet been elucidated.

Functions of Uromodulin

Overview

Uromodulin has been shown to have pleiotropic roles in

renal homeostasis and systemic inflammation (Fig. 1).

Among these, its regulatory roles in the tubular epithelial

cell function have been extensively studied. The UMOD
gene is evolutionally conserved in all vertebrates (31). Uro-

modulin is predominantly produced in epithelial cells in the

thick ascending limb (TAL) of the loop of the Henle and is

present in lesser amounts in epithelial cells in the early dis-

tal convoluted tubule (DCT) of the mammalian kidney (32).

It has also been found on the skin and gills of fish and in
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the distal tubules of some amphibians (33). Since tissues in

which uromodulin is localized have a common function in

handling sodium and chloride transport, it is suggested that

uromodulin regulates the balance of salt and water (13). It

should be noted that excessive sodium and water reabsorp-

tion in the kidney causes fluid overload and hyperten-

sion (34). The relevance of uromodulin in hypertension can

be partially explained by the regulation of sodium and water

balance, which is further discussed below.

Another aspect of uromodulin activity is immunomodula-

tion. Uromodulin shows a distinct distribution in the kidney,

mostly located in the inner stripe of the outer medulla. Be-

cause the outer medulla is vulnerable to changes in perfu-

sion and is rich in immune cells, it has been suggested that

UMOD regulates the immune response in the kidney (35).

Electrolytes and water transport

Urine concentration and dilution are among the most im-

portant functions of renal tubules. TAL, which is the pri-

mary uromodulin producing segment, is impermeable to

water and contributes to the reabsorption of approximately

30% of filtered sodium and dilute tubular fluid. This water-

impermeable reabsorption of sodium is critical for the coun-

tercurrent multiplier mechanism for free water conservation;

the high interstitial osmolality produced by the reabsorption

of sodium is the driving force of passive water transport at

the collecting duct to concentrate urine (36).

Uromodulin has been shown to regulate sodium transport-

ers in epithelial cells along with TAL and DCT, where the

Na-K-2Cl cotransporter (NKCC2) and the Na-Cl cotrans-

porter (NCC) are the main transporters responsible for so-

dium reabsorption (37). In mice lacking UMOD (Umod-/-),

NKCC2 was detected in subapical vesicles but was less

strongly expressed in the apical membrane than in wild-type

(WT) mice. Furthermore, NKCC2 phosphorylation was sig-

nificantly decreased in Umod-/- mice (38). Because apical ex-

pression and phosphorylation are essential for the membrane

protein function (39), the downregulation of apical expres-

sion and phosphorylation of NKCC2 in Umod-/- mice indi-

cates defective transporter activation. The loss of function of

NKCC2 generates a phenotype similar to Bartter syndrome,

a salt-losing tubulopathy. Similar to NKCC2, uromodulin

activates NCC in the early DCT (32), indicating its impor-

tance in the regulation of sodium. Recently, vasopressin has

been shown to increase urinary secretion of uro-

modulin (40). Vasopressin plays an important role in deter-

mining the urine concentration by inducing the apical ex-

pression of the water channel aquaporin-2 (AQP2) (41, 42).

Because vasopressin is a hormone secreted during dehydra-

tion or volume depletion, upregulated uromodulin secretion

by vasopressin is considered a reasonable physiological re-

sponse. Furthermore, urinary uromodulin secretion increases

under dehydration condition and, conversely, activates AQP2

in collecting duct cells (43). These findings suggest that the

TAL and collecting duct work cooperatively to retain so-

dium and water through cross-talk with uromodulin (Fig. 2).

As mentioned above, excess sodium and water retention

cause fluid overload, leading to hypertension. Mice overex-

pressing WT uromodulin (TgUmodwt) showed increased levels

of phosphorylated NKCC2 along with an increased blood

pressure on a high-salt diet, and their blood pressure de-

creased on a low-salt diet (44). The relevance of uromodulin

and its regulatory effect on sodium homeostasis are consis-

tent with those of GWAS in humans. Single nucleotide

polymorphisms in the UMOD gene are associated with hy-

pertension. Conversely, variants with low urinary uro-

modulin are associated with a lower risk of hyperten-

sion (12). In a cohort study of the general population, sub-

jects with high urinary uromodulin expression showed a

trend for higher blood pressure with high salt intake, while

subjects with low urinary uromodulin expression did not

show an association between blood pressure and the sodium

intake (45). These findings indicated that uromodulin is as-

sociated with salt-sensitive hypertension. Uromodulin

upregulates NKCC2 and NCC through SPS1-related proline-

alanine-rich kinase (SPAK) and oxidative stress response 1

(OSR1) kinase (32, 46), which are involved in the patho-

genesis of salt-sensitive hypertension (47-49).

In addition to its key roles in modulating sodium and

water reabsorption, uromodulin is involved in the regulation

of calcium and magnesium. Umod-/- mice show supersatura-

tion of urine with calcium oxalate or calcium phosphate and

are prone to the formation of calcium crystals in the kid-

ney (50). It has been suggested that osteopontin, an inhibitor

of calcium crystal formation, cooperatively prevents crystal

formation (51). A proposed mechanism of protection against

urinary stone formation is increased Ca2+ reabsorption in the

DCT through transient receptor potential vanilloid (TRPV)

5. Uromodulin stimulates the expression of apical TRPV5

by inhibiting endocytosis (52). Uromodulin upregulates

membrane proteins, such as TRPV5 and AQP2, by inhibit-

ing endocytosis (43, 52). Interestingly, the regulatory effect

of uromodulin on apical membrane proteins is executed in a

segment distant from its production, suggesting an

autocrine-like function of uromodulin.

Immunomodulation

The role of uromodulin is not limited to the TAL, DCT,

or the distal parts of the nephrons. Although its concentra-

tion is much lower than in urine, it is also secreted from the

basolateral side and can be detected in serum (35, 53, 54).

Serum and urinary uromodulin secretion are independently

regulated and are suggested to have different functions. Im-

munomodulation is considered a distinct function of circu-

lating uromodulin and protects against systemic inflamma-

tion and oxidative stress. Uromodulin activates interleukin

(IL)-23/IL-17 and pro-inflammatory cytokines and induces

granulopoiesis (55). In fact, Umod-/- mice show higher levels

of pro-inflammatory cytokines/chemokines and neutrophilia

than WT mice (56). These regulatory effects contribute to

protection against ischemic reperfusion-induced proximal tu-

bular injury (57, 58), sepsis (59, 60), and vascular calcifica-
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Figure　2.　Physiological role of uromodulin on water retention. TAL and CD cooperatively work to 
retain free water through cross-talk via uromodulin. Vasopressin or water deprivation increase uri-
nary secretion of uromodulin from the TAL. Urinary uromodulin at the epithelial surface of the CD 
cells induces the apical sorting of the water channel aquaporin-2. AQP2: aquaporin-2, AVP: arginine 
vasopressin, CD: collecting duct, NKCC2: Na-K-Cl cotransporter, TAL: thick ascending limb of loop 
of Henle, V2R: vasopressin-2 receptor

tion in CKD (61). Furthermore, uromodulin is involved in

the binding of probiotic bacteria to the gastrointestinal epi-

thelium and modulates the immune system (62). These find-

ings indicate that uromodulin is a potential therapeutic target

for systemic diseases; however, its relevance to extrarenal

organs requires further research.

Uromodulin in Clinical Practice

Recently, uromodulin has been proposed as a novel

biomarker for the diagnosis of CKD (63). Given that uro-

modulin is essentially generated in the kidney, primarily in

the TAL, and is secreted in urine with lower levels in the se-

rum, it would be expected that uromodulin is correlated with

several renal properties, such as the nephron mass and renal

function. The loss of functioning nephron causes hyperfiltra-

tion of the remaining nephrons, leading to glomerulosclero-

sis. Morphological parameters of the kidney or renal cortex,

such as volume and length, which are proxies of the neph-

ron mass, are well correlated with the renal function and

predict the progression of CKD (64, 65). Urinary uro-

modulin has been shown to be associated with predictors of

kidney mass, including the height, birth weight, and age in

healthy subjects (66). Furthermore, urinary uromodulin was

positively associated with an estimated glomerular filtration

rate (eGFR) <90 mL/min/1.73 m2 and urinary volume but

negatively associated with age and diabetes (67). Similarly,

serum uromodulin was associated with the eGFR calculated

from cystatin C and was more sensitive than conventional

markers, such as creatinine and cystatin C (68, 69). Serum

uromodulin is also associated with the kidney function in

transplanted kidneys and predicts a delayed graft func-

tion (70, 71).

The associations between uromodulin and the renal func-

tion or nephron mass indicate that uromodulin is a promis-

ing biomarker in CKD; however, several concerns have been

raised about its feasibility. Urinary uromodulin secretion in-

creased with diabetes mellitus and water diuresis (72, 73),

and in turn, the serum level of uromodulin level was low in

patients with diabetes (74, 75). Therefore, uromodulin secre-

tion varies with physiological stimuli or pathological condi-

tions underlying kidney injury. Uromodulin production per

functioning nephron unit is thought to increase under condi-

tions of kidney injury (35). These characteristics may shed

light on uromodulin as a new biomarker of the tubular func-

tion, in contrast to creatinine reflecting glomerular filtration.

Based on its biological aspects, it is likely that uro-

modulin protects kidneys against CKD. In fact, a high se-

rum uromodulin level at baseline was protective against a

decline in the renal function and urinary albumin secretion

in patients at high risk for cardiovascular disease during four

years of follow-up (76). A similar link has been observed
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between urinary uromodulin and the onset of CKD (77).

Low serum uromodulin concentrations can be used to detect

early kidney injury, even when serum creatinine levels are

within the normal range (76), indicating that uromodulin is

useful for detecting early CKD. In light of these predictive

abilities and its potency as a biomarker for hypertension,

metabolic abnormalities and tubular injury, measurement of

uromodulin seems to be useful in stratifying patients at risk

for CKD and comorbid conditions or in detecting alterations

in the renal function at an early stage.

Conclusions and Perspectives

In this review, we summarized the current knowledge on

uromodulin and its relevance in CKD. Our understanding of

uromodulin has changed from its role in rare inherited dis-

eases to a common public health problem. The biology and

functions of uromodulin under physiological conditions have

been widely investigated. Uromodulin upregulates tubular

epithelial sodium transporters and water channels, and the

inappropriate reabsorption of sodium and water leads to hy-

pertension. It is reasonable to expect that suppression of

uromodulin would modify hypertension or volume overload

via natriuresis and water diuresis. It is also reasonable to

propose that uromodulin regulates the tubulo-glomerular

feedback (TGF) system. The macula densa, located in be-

tween the TAL and DCT, lacks uromodulin expression. Be-

cause the macula densa acts as the sensor of the luminal

fluid by apical NKCC2 and regulates the TGF, urinary uro-

modulin may affect the TGF, thereby leading to a reduction

in the intraglomerular pressure. This hypothesis potentiates

uromodulin as a novel reno-protective agents. The regulatory

roles of uromodulin in ion transport, especially sodium

transport, require further studies to establish novel therapeu-

tic approaches.

Although evidence is still scarce at present, basolateral se-

cretion and the immunomodulatory effects are also impor-

tant characteristics of uromodulin. Renal tubular inflamma-

tion and oxidative stress are closely related to the progres-

sion of kidney disease caused by various etiologies, includ-

ing diabetic kidney disease. Understanding the precise func-

tion of circulating uromodulin may open new avenues of re-

search and advances in therapeutic strategies for CKD.

In addition, whether or not uromodulin is associated with

age-related kidney disease is also unclear. The evaluation of

the GFR based on the serum creatinine or cystatin C levels

has long been the primary index of CKD. Based on its deri-

vation, uromodulin highlights the roles of renal tubules and

the importance of assessing the tubular function, which is

another aspect of kidney health. Combining conventional

markers of the glomerular function and new tubular function

biomarkers will improve the assessment of CKD and its

complications. Further research on uromodulin will surely

benefit the clinical practice of CKD.
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