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Abstract 

Background:  Quantification of the cerebral metabolic rate of glucose (CMRGlu) 
by dynamic [18F]FDG PET requires invasive arterial sampling. Alternatives to using 
an arterial input function (AIF) include the simultaneous estimation (SIME) approach, 
which models the image-derived input function (IDIF) by a series of exponentials 
with coefficients obtained by fitting time activity curves (TACs) from multiple volumes-
of-interest. A limitation of SIME is the assumption that the input function can be mod-
elled accurately by a series of exponentials. Alternatively, we propose a SIME approach 
based on the two-tissue compartment model to extract a high signal-to-noise ratio 
(SNR) model-derived input function (MDIF) from the whole-brain TAC. The purpose 
of this study is to present the MDIF approach and its implementation in the analysis 
of animal and human data.

Methods:  Simulations were performed to assess the accuracy of the MDIF approach. 
Animal experiments were conducted to compare derived MDIFs to measured AIFs 
(n = 5). Using dynamic [18F]FDG PET data from neurologically healthy volunteers 
(n = 18), the MDIF method was compared to the original SIME-IDIF. Lastly, the feasibility 
of extracting parametric images was investigated by implementing a variational Bayes-
ian parameter estimation approach.

Results:  Simulations demonstrated that the MDIF can be accurately extracted 
from a whole-brain TAC. Good agreement between MDIFs and measured AIFs 
was found in the animal experiments. Similarly, the MDIF-to-IDIF area-under-the-curve 
ratio from the human data was 1.02 ± 0.08, resulting in good agreement in grey matter 
CMRGlu: 24.5 ± 3.6 and 23.9 ± 3.2 mL/100 g/min for MDIF and IDIF, respectively. The 
MDIF method proved superior in characterizing the first pass of [18F]FDG. Groupwise 
parametric images obtained with the MDIF showed the expected spatial patterns.

Conclusions:  A model-driven SIME method was proposed to derive high SNR input 
functions. Its potential was demonstrated by the good agreement between MDIFs 
and AIFs in animal experiments. In addition, CMRGlu estimates obtained in the human 
study agreed to literature values. The MDIF approach requires fewer fitting parameters 
than the original SIME method and has the advantage that it can model the shape 
of any input function. In turn, the high SNR of the MDIFs has the potential to facilitate 
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the extraction of voxelwise parameters when combined with robust parameter estima-
tion methods such as the variational Bayesian approach.

Keywords:  [18F]FDG, Cerebral metabolic rate of glucose, Image-derived input 
function, Microparameters, Model-derived input function, Non-invasive measurement, 
PET, Simultaneous estimation

Background
Positron emission tomography (PET) imaging with 2-deoxy-2-[18F]fluoro-D-glucose 
([18F]FDG) has proven valuable for assessing cerebral energy metabolism in neurological 
diseases [1, 2]. Quantification of dynamic [18F]FDG PET data is typically performed by 
measuring the cerebral metabolic rate of glucose (CMRGlu) by means of Patlak graphi-
cal analysis [3, 4], which requires measuring the time-varying concentration of [18F]FDG 
in plasma (i.e., the arterial input function or AIF). Non-invasive alternatives to arterial 
sampling have primarily focused on extracting an image-derived input function (IDIF). 
PET-only methods of extracting the IDIF from the carotid arteries require careful cor-
rection of partial volume effects (PVE) [5, 6], which is typically performed by measuring 
the point-spread function of the PET system at the measurement location [7]. PVE cor-
rections can be facilitated by combining magnetic resonance imaging (MRI) angiogra-
phy of the feeding arteries [8], but PET and MRI misalignments can introduce errors 
in the IDIF—which require sophisticated registration methods [9]—and complex ves-
sel segmentation approaches can limit applicability [10]. Alternatively, hybrid PET/MR 
imaging allows for simultaneous acquisition of both functional and anatomical infor-
mation, reducing misalignment errors [11, 12] and facilitating PVE correction [13, 14]. 
Although these approaches are promising, their complexity hinders the widespread use 
of IDIFs when evaluating [18F]FDG PET images [15]. Lastly, acquiring dynamic [18F]
FDG PET data with a large axial field-of-view scanner may facilitate the localization of 
large arteries needed to extract the IDIF [16]; however, the limit access to such scanners 
fosters the development of simpler and readily available techniques to be implemented 
in any PET centre.

An alternative to extracting the IDIF from feeding arteries is the simultaneous estima-
tion (SIME) approach. By assuming the input function is the same for all brain regions, 
the SIME method models the IDIF as a series of exponentials by which parameters are 
obtained by simultaneously fitting time-activity curves (TACs) from various volumes-
of-interest (VOIs) and using blood samples as scalers [17–19]. Although promising, 
modelling the input function as a series of exponentials may not always be accurate 
[20], especially for the initial period following injection [21]. Strategies to overcome 
this limitation include maintaining a uniform experimental design across subjects and 
imaging sites (e.g., fixed injection duration), better characterizing the peak by incor-
porating the injection duration into the model [22], modelling the pre-peak phase as a 
straight line [23], and using the IDIF first pass extracted with an MR-based method as a 
prior [24, 25].

This study investigated an alternative SIME approach in which the input function is 
defined by the irreversible two-tissue compartment model (2TCM) used to characterize 
dynamic [18F]FDG PET data, rather than by a series of exponentials. The model-derived 
input function (MDIF) is derived from the whole-brain (WB) TAC, given it has the 
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highest signal-to-noise ratio (SNR) obtainable in the PET brain data, with rate constants 
obtained by SIME. This approach requires fewer fitting parameters to define the input 
function compared to the original SIME approach, although late time-point blood sam-
ples are still used as anchors as recommended when extracting IDIFs [6, 15]. The MDIF 
is free of the typical PVE that affect the IDIFs extracted from the feeding arteries and 
achieves low noise levels, while still retaining the subject- and study-specific shape of the 
input function, making the approach readily available and suitable for any experimental 
design and injection protocol. The overall objective of this work was to investigate the 
performance of the MDIF SIME approach.

Materials and methods
Model‑derived input function

PET imaging of cerebral glucose metabolism with [18F]FDG is typically based on the 
irreversible two-tissue compartment model [3], in which [18F]FDG enters the tissue via 
glucose transporters defined by an influx rate constant K1 (in mL/g/min). Once in the 
first compartment (i.e., the free pool), [18F]FDG can either return to the blood pool at 
an efflux rate defined by k2 (in min−1) or be phosphorylated at a rate defined by k3 (in 
min−1) and subsequently trapped in the metabolic pool. These processes are defined by 
the following two differential equations:

where C1(t) represents the activity concentration in the free pool and C2(t) in the meta-
bolic pool. Eq. (3) provides the solution to Eqs. (1) and (2) for the total measured activity 
(i.e., CPET (t) = (1− Vb)(C1(t)+ C2(t))+ VbCb(t) ), which includes an additional term 
Vb (in mL/g) to account for blood-borne [18F]FDG activity [26]:

where ∗ represents the convolution operation; Cp(t) and Cb(t) represent the plasma and 
whole-blood activity concentration of [18F]FDG, respectively; and kf = k2 + k3.

The previous equations can be combined and rearranged to derive an expression for 
the input function, i.e., the MDIF (see Appendix for full derivation). By selecting the 
WB TAC ( Cwb(t) ) to define the MDIF, considering it has the highest SNR obtainable 
in a dynamic PET brain image, and assuming Cb(t) = RCp(t) (where R is the blood-to-
plasma ratio), the MDIF is given by:

where α1,2 = a∓
√
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By employing this approach, the input function is defined by the four model param-
eters ( K1, k2, k3 and Vb ) that characterize the WB TAC. Eq. (4) was developed for [18F]
FDG given it obeys the irreversible 2TCM and follows two key assumptions. First, [18F]
FDG does not require metabolite correction as the tracer and its metabolites are trapped 
in the cell and clearance of [18F]FDG-6-phosphate is slow for acquisition times of up 
to 60 min [27]. Second, the blood-to-plasma ratio was assumed to be a constant value 
for simplification purposes [28], although this assumption might not be valid for non-
primates [29]. The appendix provides the general solution for reversible radiotracers. We 
are currently developing a variation of the MDIF method for tracers that require metab-
olite correction, but this is beyond the scope of the current work.

MDIF SIME implementation

The SIME procedure [17] requires TACs from multiple volumes-of-interest (VOIs) to 
derive the whole-brain kinetic parameters that define the MDIF (Eq. (4)). These TACs 
can be from anatomical VOIs or grouped based on functional similarity, as previously 
suggested by Wong et al., to identify TACs with distinct kinetics [18]. We implemented a 
k-means clustering algorithm (explained below) to group TACs by functional similarity. 
After initial investigation, we observed that 3 clusters of each tissue type (i.e., grey [GM] 
and white matter [WM]) were sufficient to derive the MDIF, with little-to-no improve-
ment observed by using more than 6 TACs (results not shown). A diagram outlining the 
MDIF SIME implementation is shown in Additional file 1: Fig. S1.

The parameters needed to compute the MDIF using Eq. (4) were obtained by simul-
taneously fitting six TACs to the irreversible 2TCM solution (Eq. (3)) using a non-
linear least squares (NLLS) fitting routine. The algorithm runs until the cost function, 
comprising of the residual sum of squares (RSS; in Eq. (5)), is minimized and the WB 
model parameters used to define the MDIF is obtained.

where Cj(t) is the [18F]FDG-PET activity concentration of the jth VOI, Cfit
j (t) is the cor-

responding model estimate, n is the number of VOIs (not including the WB TAC), and 
T  is the number of time-frames. Given the need for scalers (or anchors) to accurately 
obtain an input function with SIME [15], our procedure included two late time-point 
blood samples to act as anchors. Ck is the kth blood sample activity concentration, and 
CMDIF
k  is given by Eq. (4) at the same time as the blood sample.
The fitting procedure was performed in MATLAB (The MathWorks Inc., R2023a) 

using the optimization routine lsqnonlin and four parameters per TAC were included 
in the fitting routine ( K1 , k2 , k3 , and Vb , for a total of 28 parameters). The upper bounds 
were set to 0.2  mL/g/min, 0.4  min−1, 0.2  min−1, and 0.10  mL/g for K1 , k2 , k3 , and Vb , 
respectively (based on literature values, see Additional file 1: Table S1). All lower bounds 
were set to 0.01. A constraint was added to the nonlinear optimization function imple-
mented in this study to ensure the distribution volume (= K1/(k2 + k3) ) is less than unity 
(i.e., K1 < k2 + k3 ), which was based on literature values (Additional file 1: Table S1).

(5)RSS =
n∑

j=1

T∑

i=1

(
C
fit
j (ti)− Cj(ti)

)2
+

2∑

k=1

(
CMDIF
k − Ck

)2
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k‑means clustering

For the animal and human studies, VOIs were generated by clustering the TACs based 
on functional similarity by implementing a k-means clustering algorithm (Euclidean 
distance, 500  iterations, 10  replicates) that used the k-medoids MATLAB function 
kmediods [30]. For clustering only, PET images were denoised by applying the 3D 
highly constrained backprojection (HYPR3D) method [31], in which a Gaussian filter 
kernel of standard deviation 3 voxels was used (equivalent to 6.3 × 6.3 × 6.1 mm3 for 
the human PET data used in this study). Although HYPR3D introduces bias to the 
dynamic signal, which is known to affect quantification [32], this bias is not expected 
to influence the k-means clustering algorithm. Instead, denoising with HYPR3D 
improves the clustering of similar TACs. Additional k-means clustering implementa-
tion details are given in the appropriate sections below.

IDIF SIME implementation

For comparison to our MDIF SIME method, the original SIME approach based on 
the work by Feng et al. and Wong et al. [17, 18] was implemented to extract an IDIF 
by estimating its 7 parameters (Eq. (6)), while simultaneously fitting six VOI TACs 
(WB TAC not included) using a NLLS fitting routine. The same cost function from 
the MDIF SIME was used (Eq. (5)), except for an additional weight (= 10) included 
in the blood samples portion of Eq. (5). All fitting was performed in MATLAB using 
the optimization routine lsqnonlin and four parameters per TAC were included in the 
fitting routine ( K1 , k2 , k3 , and Vb ; same constraint and bounds as described above) 
in addition to the 7 parameters required for the IDIF (Eq. (6)): Ai , �i , with i = 1, 2, 3, 
and a delay term δ (total of 31 parameters). Upper bounds were 4000 kBq/mL/min, 
100 kBq/mL, 50 kBq/mL, 25 min−1, 1 min−1, and 0.1 min−1, for A1 , A2 , A3 , �1 , �1 , and 
�3 , respectively. Lower bounds were set to zero. The delay term ( δ ) was set to vary 
within ± 10 s of an initial delay computed a priori based on the rise of the WB TAC.

Standalone fitting routine

To extract microparameters from anatomical VOIs, each TAC was fit to the irre-
versible 2TCM solution (Eq. (3)) using the MATLAB optimization routine lsqnon-
lin. Four parameters were included in the weighted NLLS (WNLLS) fitting routine 
( K1 , k2 , k3 , and Vb ). Upper bounds were set to 0.5 mL/g/min, 0.5 min−1, 0.2 min−1, 
and 1 mL/g for K1 , k2 , k3 , and Vb , respectively. All lower bounds were set to zero. 
The cost function was defined as a weighted RSS (WRSS), given by 
WRSS =

∑T
i=1 wi

(
C
fit
j (ti)− Cj(ti)

)2
 . Weights for the fitting ( wi ) were defined as the 

inverse of variance of the PET measurement error (i.e., the ratio between the time-
frame duration and the WB activity concentration, normalized to the maximum 
weight) [33]. A brain density of 1.05 mL/g was used throughout the analyses.

(6)CIDIF
p (t) = (A1(t − δ)− A2 − A3)e

−�1(t−δ) + A2e
−�2(t−δ) + A3e

−�3(t−δ)
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Simulations

A theoretical AIF ( Cp(t) ) was generated by Eq. (6) using A1 = 850 (in arbitrary units 
[a.u.]/min), A2 = 22 and A3 = 21 (in a.u.), �1 = 4, �2 = 0.12 and �3 = 0.01 (in min−1), 
and δ = 0. These constants were obtained from Feng et al. and are based on experi-
mental AIF measurements from a human study [34]. The theoretical AIF was used 
in the irreversible 2TCM solution (Eq. (3)) to generate simulated regional TACs for 
six theoretical VOIs (Table  1). The microparameters shown in Table  1 were cho-
sen from a variety of studies [9, 35–37] and reflect the need for TACs with distinct 
kinetics for the SIME approach [18, 38]. The net clearance rate constant of [18F]FDG 
( Ki = K1k3/kf  , in mL/g/min), is also shown in Table  1. A theoretical WB TAC was 
obtained by using the average microparameters from the six VOIs. Fig. 1 shows the 
theoretical AIF alongside simulated TACs. These curves and microparameters were 
considered the ground-truth for the simulations. Lastly, simulations used anchors 
extracted from the theoretical AIF at 28.5 and 53.5 min timepoints, as indicated by 
the arrows in Fig. 1A.

To confirm the accuracy of the MDIF SIME routine, errors due to estimating the 
WB microparameters (Eq. (4)) with the SIME routine were evaluated. The MDIF 
was generated as described above and used to fit the six VOI TACs (Table 1) to the 

Table 1  Microparameters used to define regional TACs for six theoretical VOIs included in the 
simulations

a Based on the work of Reivich et al. [35]
b Based on the work of Sari et al. [9]
c Based on the work of Zanotti-Fregonara et al. [36]
d Based on the work of Huisman et al. [37]
e WB TAC was obtained by using the average microparameters
f CBV was not reported

CBV Cerebral blood volume; TACs Time-activity curve; VOI Volume-of-interest; WB Whole brain

Microparameters VOI 1a VOI 2b VOI 3c VOI 4d VOI 5a VOI 6d Average (WB)e

K1(mL/g/min) 0.105 0.123 0.096 0.088 0.069 0.062 0.090

k2(min−1) 0.148 0.121 0.109 0.123 0.129 0.071 0.117

k3(min−1) 0.074 0.079 0.042 0.071 0.064 0.067 0.066

Vb(mL/g) 0.050f 0.059 0.050f 0.084 0.050d 0.050 0.067

Ki(mL/g/min) 0.035 0.049 0.027 0.032 0.023 0.030 0.033

Fig. 1  Theoretical A AIF and B TACs used in the simulations. Curves were interpolated to the time frames 
used in the human experiments (symbols). The arrows represent the scalers used in the SIME simulations. AIF: 
Arterial input function; TAC: Time-activity curve; VOI: Volume-of-interest; WB: Whole brain
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irreversible 2TCM solution (Eq. (3)) in the standalone fitting routine. Then, the best-
fit estimates of the four parameters ( K1 , k2 , k3 , and Vb ) were compared to their input 
values.

Animal study

The MDIFs were assessed in comparison to AIFs using retrospective data from animal 
experiments [12] collected at the Lawson Health Research Institute. All experiments 
were conducted according to the regulations of the Canadian Council on Animal Care 
and approved by the Animal Care Committee at Western University. Data from juve-
nile Duroc pigs were collected on a 3 T hybrid PET/MR scanner (Biograph mMR, Sie-
mens Heathineers, Erlangen, Bavaria, Germany) using a 12-channel PET-compatible 
receiver head coil. The five animals included in this study (weight, 21 ± 2 kg; injected 
[18F]FDG activity, 90 ± 20 MBq; blood glucose level, 5.0 ± 1.6 mmol/L) were scanned 
under an anaesthetic combination of 1–3% isoflurane and 6–25 mL/kg/h intravenous 
infusion of propofol. [18F]FDG was administered via a cephalic vein immediately fol-
lowed by a 60-min acquisition of PET data in list-mode. Arterial blood was continu-
ously withdrawn from a femoral artery using an automated MR-compatible system 
(Swisstrace GmbH, Menzingen, Canton of Zug, Switzerland) at a sampling rate of 
4 mL/min for the first 5 min, 1 mL/min for the next 5 min, and 0.5 mL/min for the 
remaining 50 min. Arterial blood samples were processed and converted into AIFs via 
rebinning to match the reconstructed PET time frames using pSample (PMOD Tech-
nologies LLC). Each measured AIF was corrected for dispersion and delay [39].

Dynamic PET images were reconstructed offline with the Siemens e7 tools into 51 
time-frames (15 × 2  s, 6 × 5  s, 8 × 15  s, 4 × 30  s, 5 × 60  s, 5 × 120  s, 8 × 300  s) using a 
3-dimensional ordinary Poisson ordered subset expectation maximization (3D-OP-
OSEM) method (3 iterations, 21 subsets) with corrections for decay, random coin-
cidences, dead-time, detector normalization, data rebinning, attenuation, and 
scatter. Images were reconstructed into a 344 × 344 × 127 matrix with voxel size of 
0.8 × 0.8 × 2.0 mm and smoothed with a 3D gaussian filter of 4 mm. Simultaneously to 
the PET acquisition, T1-weighted MR images were acquired (magnetization-prepared 
rapid gradient-echo sequence [MPRAGE]; repetition/echo times [TR/TE], 2000/2.98 ms; 
inversion time, 900 ms; field-of-view [FoV], 256 × 256 mm2; isotropic voxel size, 1 mm3; 
flip angle [α], 9°; 176 slices). At the end of the experiment, the animals were euthanized 
according to the animal care guidelines and transported to a computed tomography 
(CT) scanner to obtain a post-mortem CT-based attenuation correction map.

For the k-means clustering algorithm, a semi-automatic procedure was used to 
define a VOI encompassing the brain in each anatomical slice. The final WB VOI, 
which was the composite of all the slices, was used to generate seven clusters with 
the k-means clustering approach as described above. The cluster containing mostly 
non-brain regions (i.e., blood vessels and cerebrospinal fluid voxels) was excluded 
from the SIME algorithm. The SIME approach incorporated arterial samples collected 
at 20–30 min and 40–60 min post-injection as anchors. Although a constant blood-
to-plasma ratio may not be valid for the porcine model used in this study [29], we 
assumed R = 1 throughout the analysis of the animal data.
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Human study

Retrospective data from 18 neurologically healthy volunteers (44 ± 15 years, 77 ± 17 kg, 
9 M/9F; average injected activity, 180 ± 40 MBq [range 130–260 MBq]; average injected 
activity per body weight, 2.43 ± 0.39  MBq/kg [range 1.80–3.70  MBq/kg]; blood glu-
cose level, 5.0 ± 0.7  mmol/L [range 4.1–6.8  mmol/L]) collected at the Lawson Health 
Research Institute were used to assess the feasibility of obtaining MDIFs from dynamic 
[18F]FDG PET data. The study was approved by the Western University Health Sci-
ences Research Ethics Board and was conducted in accordance with the Declaration of 
Helsinki ethical standards. Participants provided written informed consent in compli-
ance with the Tri-Council Policy Statement of Ethical Conduct for Research Involving 
Humans.

Scanning was performed on a 3 T hybrid PET/MR scanner (Biograph mMR) using a 
16-channel PET-compatible coil (12- and 4-channel head and neck coils, respectively). 
Each participant had their head immobilized during the 60-min list-mode PET acqui-
sition performed following the [18F]FDG bolus injection, which was immediately fol-
lowed by saline flush. PET data were reconstructed offline with the Siemens e7 tools into 
50 time-frames (15 × 2  s, 6 × 5  s, 8 × 15  s, 4 × 30  s, 5 × 60  s, 3 × 120  s, 8 × 300  s, and 
1 × 240  s) using the iterative reconstruction algorithm  3D-OP-OSEM (3 iterations, 21 
subsets, 3D gaussian filter of 2 mm3, and a zoom factor of 2). Dynamic PET images were 
reconstructed into a 172 × 172 × 127 matrix with voxel size of 2.1 × 2.1 × 2.0 mm (FoV, 
359 × 359 × 258  mm3). Corrections for decay, random coincidences, dead-time, detec-
tor normalization, data rebinning, attenuation, and scatter were performed. MR-based 
attenuation correction was performed with a vendor-provided ultrashort echo time MRI 
sequence (TR, 11.94 ms; TE, 0.07 and 2.46 ms; α, 10º; FoV, 300 × 300 × 300 mm3; voxel 
size, 1.6 × 1.6 × 1.6 mm3). Motion correction was applied to the time frames 24–50 (cor-
responding to 1.5 to 60 min) by realigning each frame to the mean image using statistical 
parametric mapping (v12, SPM12; https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/​softw​are/​spm12/). 
Each session also included acquiring an MPRAGE image (TR/TE, 2400/2.25 ms; α, 8°; 
FoV, 205 × 205 mm2; 240 slices; voxel size, 0.8 × 0.8 × 0.8 mm3), which was coregistered 
to the PET space using SPM12.

The MPRAGE image was segmented into six tissue classes using SPM12. A WB mask 
was created by combining GM and WM tissue probability maps (80% threshold; cer-
ebrospinal fluid voxels excluded). Five clusters for each tissue class (i.e., GM and WM) 
were generated by implementing the k-means clustering algorithm as described above. 
Out of the 5 clusters, the 3 largest ones were chosen for the SIME algorithms. Two 
venous samples collected during dynamic PET imaging (one 20–30 min post-injection 
and the other 45–60 min post-injection) were used as scalers when arterial-to-venous 
[18F]FDG equilibrium was assumed [6, 40]. The blood-to-plasma ratio was assumed to 
be ~ 0.9 ( R = 0.9) to derive the MDIF from the human data [28].

Variance of estimated Ki

Coefficient of variation (CV) of Ki estimates obtained by fitting each cluster TAC to the 
2TCM solution was computed as CV (%) = 100

√
σ 2/Ki , where the variance ( σ 2 ) was 

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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obtained from the error propagation rule: σ 2
=

[
∂Ki

∂K1

∂Ki

∂k2

∂Ki

∂k3

]
γ (K1, k2, k3)

[
∂Ki

∂K1

∂Ki

∂k2

∂Ki

∂k3

]T
 , 

where the Hessian (covariance) matrix ( γ ) was approximated as γ =
(
JT J

)−1
WRSS/T  ( J  

is the Jacobian matrix from the MATLAB function lsqnonlin and T  the number of time 
frames).

Goodness of fit

Following the derivation of the MDIF and IDIF with their respective SIME algorithms, 
goodness of fit of each input function was assessed via the WRSS from the standalone 
fitting routine. For this, each input function was used to fit the GM and WM TACs, and 
WRSS was calculated for the first 3 min of data, as well as for the entire 60 min of data. 
In addition, fitting to the irreversible 2TCM solution was evaluated qualitatively for the 
GM and WM TACs of one representative subject, as well as for TACs from two ran-
domly selected GM and WM voxels.

Regional measurements

Anatomical MPRAGE images were normalized to the Montreal Neurological Institute 
(MNI; McGill University, Montreal, Quebec, Canada) space using SPM12 and the same 
deformation field was applied to the dynamic PET data. Average TACs were extracted for 
GM and WM (99% threshold; subject space), as well as twelve VOIs (frontal, occipital, 
parietal, and temporal lobes, as well as insula, cingulate, hippocampus, precuneus, caudate 
nucleus, putamen, thalamus, and cerebellum; MNI space) using the automated anatomical 
labelling atlas (Wake Forest University PickAtlas, http://​fmri.​wfubmc.​edu/​cms/​softw​are). 
The mask generated for the twelve VOIs was multiplied by the GM mask (80% threshold; 
MNI space) to extract the central portion of the VOIs, avoiding PVE at the boundaries.

Patlak analysis ( t > t∗ = 20 min) was performed for each VOI, from which the slope 
( Ki ; in mL/100 g/min) was converted to CMRGlu (in µmol/100 g/min) by assuming a 
lumped constant of 0.52 [35] and incorporating measurements of the blood concentra-
tion of glucose (in µmol/mL).

Voxelwise parametric images of microparameters were generated by incorporating the 
MDIF into the variational Bayesian approach proposed by Castellaro et al. [33]. Specifi-
cally for this step, the k-means clustering algorithm described above was used to gener-
ate a functional atlas containing 40 clusters for each subject: 20 GM, 10 WM and 10 
non-brain clusters, the latter including cerebrospinal fluid and voxels surrounding the 
brain. In the variational Bayesian fitting routine, each cluster TAC was fit to the irre-
versible 2TCM solution, with its rate constants used as priors for all intra-cluster voxels 
assuming a Gaussian distribution of possible values. Parametric maps of CMRGlu were 
computed from Ki images (= K1k3/(k2 + k3) ) [35]. Resulting parametric images (i.e., 
CMRGlu, K1 , k2 , k3 , and Vb ) were normalized to the MNI space using SPM12.

Statistics

Area under the curve (AUC) was used to assess the similarity between input functions. 
Percent error was calculated as 100

(
m− m̂

)
/m̂ , where m and m̂ are the observed and 

expected values, respectively. Percent difference between two observed measurements 
m1 and m2 was computed as 100|m1 −m2|/m , where m is the average measurement. 

http://fmri.wfubmc.edu/cms/software
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A repeated measures two-way ANOVA was used to evaluate if estimates were affected 
by input function (MDIF vs. IDIF) and VOI; multiple comparisons tests were used to 
evaluate differences between MDIF and IDIF estimates. Linear regression was used to 
compare MDIF and IDIF results, from which the line-of-best fit was obtained along-
side the 95% confidence intervals (CIs) for both the slope and intercept. Correlation was 
assessed by means of the Pearson correlation coefficient ( ρ ). All datasets were found to 
be normally distributed with normal Q-Q plots. Statistical tests were performed using 
GraphPad Prism (version 9, GraphPad Software, San Diego, California USA, www.​graph​
pad.​com). Statistical significance was defined by α = 0.05. Measurements are expressed 
in terms of mean ± one standard deviation alongside the CIs in square brackets when 
relevant.

Results
Simulations

Figure  2A shows the MDIF obtained with the SIME algorithm and Fig.  2B the differ-
ence between the simulated (true) input function and the MDIF. Average error of 
microparameters were 0.33 ± 0.01% for K1 , 0.31 ± 0.07% for k2, − 0.13 ± 0.04% for k3 , 
0.32 ± 0.01% for Vb , and 0.05 ± 0.01% for Ki . These values were computed from the 6 
VOIs used in the MDIF SIME approach. Regional Ki estimates obtained with the MDIF 
(3.26 ± 0.89 mL/100 g/min) were nearly identical to their input values.

Animal study

Average WB estimates of K1 , k2 , k3 , and Vb obtained using the AIF were 
0.098 ± 0.021  mL/g/min, 0.148 ± 0.034  min−1, 0.013 ± 0.009  min−1, and 
0.060 ± 0.019  mL/g, respectively (n = 5). Corresponding average WB Ki was 
0.86 ± 0.65 mL/100 g/min. Good MDIF-to-AIF agreement was observed across the five 
animals with an AUC ratio of 0.99 ± 0.06 (difference of 5.1 ± 2.2%; AUC​0-5 = 0.93 ± 0.14, 
AUC​5-10 = 0.92 ± 0.09, AUC​10-30 = 1.05 ± 0.08, AUC​30-60 = 0.99 ± 0.07, where the sub-
script refers to the time period in minutes). Percent difference between the arterial 
blood measurements used as anchors and the MDIF was 6.8 ± 4.1% for the 20–30-min 

Fig. 2  A True simulated input AIF ( Cp(t) ; solid grey line) and MDIF ( CMDIF
p (t) ; dashed black line) obtained 

with the SIME algorithm. B Percent difference between MDIF and the true simulated AIF as a function of 
time. AIF: Arterial input function; MDIF: Model-derived input function; SIME: Simultaneous estimation; VOI: 
Volume-of-interest; WB: Whole brain

http://www.graphpad.com
http://www.graphpad.com
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anchor and 8.9 ± 6.6% for the 40–60-min anchor. Average WB estimates of the fitting 
parameters obtained using the MDIF were K1 =  0.123 ± 0.028  mL/g/min (p = 0.048), 
k2  =  0.195 ± 0.060  min−1 (p = 0.058), k3  =  0.013 ± 0.004  min−1 (p = 0.958), and 
Vb = 0.056 ± 0.016 mL/g (p = 0.691). No significant difference was observed in average 
WB Ki estimates obtained with the MDIF (0.85 ± 0.48 mL/100 g/min, p = 0.911) com-
pared to AIF measurements. Figure 3 shows a comparison between the average meas-
ured AIF and MDIF curves.

Human study

MDIFs were successfully extracted from all 18 subjects (average plasma curve is shown 
in Fig. 4A). Good overall agreement was observed between plasma MDIFs and IDIFs, 
with an AUC ratio of 1.02 ± 0.08 (difference of 6.3 ± 4.6%; AUC​0-5 = 1.06 ± 0.24, AUC​

5-10 = 1.06 ± 0.20, AUC​10-30 = 1.04 ± 0.10, AUC​30-60 = 0.97 ± 0.05). Percent difference 
between the venous samples and the MDIFs was 4.2 ± 3.3% for the 20–30-min anchor 
(29.3 ± 2.6 min) and 9.3 ± 9.0% for the 45–60-min anchor (55.2 ± 1.7 min). Likewise, dif-
ferences of 1.6 ± 2.0% and 2.4 ± 2.5% were found between the venous samples and the 
SIME IDIFs values at the two time points. Figure 4B presents the average plasma IDIF 
obtained with the original SIME approach (i.e., Eq.  (6)). Figure  4C shows the plasma 
MDIF and IDIF (series of exponentials) from one representative subject, alongside the 
two venous samples used as anchors for all three input functions. In addition, Fig. 4D 
shows the corresponding WB [18F]FDG-TAC used to define the MDIF, Fig. 4E the cluster 
TACs used in both SIME procedures, and Fig. 4F the anatomical localization of the clus-
ters presented in Fig. 4E. Average IDIF parameters obtained from the SIME routine were 
2941 ± 1045 kBq/min, 6.6 ± 6.8 kBq, 9.2 ± 2.5 kBq, 10.1 ± 1.9  min−1, 0.32 ± 0.34  min−1, 
0.012 ± 0.004 min−1, and 26 ± 7 s, for A1 , A2 , A3 , �1 , �2 , �3 , and δ , respectively.

The microparameters obtained from the two SIME approaches are summarized 
in Additional file  1: Table  S2, alongside the CV values for each cluster. Average WB 
MDIF parameters were K1  =  0.103 ± 0.019  mL/g/min, k2  =  0.153 ± 0.055  min−1, 

Fig. 3  Comparison between average AIF (red) and MDIF (blue) for the five animals included in the study. 
Input functions were aligned to 0.5 min to compute each average curve. The inset shows the first 3 min 
of the two input functions including error bars that represent one standard deviation. AIF: arterial input 
function; MDIF: model-derived input function
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k3 =  0.050 ± 0.029  min−1, and Vb =  0.067 ± 0.012  mL/g, with a CV of 0.4 ± 0.1%. For 
comparison, respective IDIF estimates from the standalone fitting routine were 
K1  =  0.109 ± 0.024  mL/g/min (p = 0.473), k2  =  0.145 ± 0.048  min−1 (p = 0.633), 
k3 = 0.040 ± 0.012 min−1 (p = 0.095), and Vb = 0.043 ± 0.010 mL/g (p < 0.001), with a CV 
of 4.9 ± 2.0%. Compared to MDIF SIME resulting clusters parameters, IDIF SIME results 
had higher estimates of K1 (difference of approx. 9%) and k2 (~ 4%), and lower estimates 
of k3 (~ 16%) and Vb (~ 30%), although significance was only observed for CBV (p < 0.001 
for all clusters).

Fig. 4  Average A MDIF and B IDIF curves obtained with their respective SIME approaches (n = 18). Grey-filled 
area on each graph represents ± one standard deviation. C SIME MDIF (black line) and SIME IDIF (solid 
grey line) from one representative subject. D WB TAC (solid black line) and E TACs from the six clusters 
used to obtain the MDIF and IDIF shown in C. The insets present the first 3 min of the respective curves. F 
Anatomical localization of the clusters whose TACs are shown in E. IDIF: image-derived input function. MDIF: 
Model-derived input function; TAC: Time-activity curve; GM: Grey matter; SIME: Simultaneous estimation; WB: 
Whole brain; WM: White matter
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Fig. 5  A and B Boxplots of WRSS obtained from the weighted square difference between measured 
and fitted curves obtained with the MDIFs (white-) and IDIFs (grey-filled rectangles). Results are shown 
for GM and WM TACs (n = 18). WRSS values are shown for A the first 3 min and B the complete 60 min 
of data. Logarithmic scale (base 10) was used for the y-axis. C Total GM (circles) and WM (squares) TACs 
together with the respective best-fit curves obtained with the MDIF (dashed black) and IDIF (grey) for the 
representative subject shown in Fig. 4. Fitted curves obtained with the MDIF presented a WRSS of 4.6 × 10−3 
and 6.9 × 10−2 kBq2/mL2 for the GM and WM TACs, respectively. Respective fitted curves using the IDIF 
presented WRSS of 4.8 × 10−1 and 2.0 × 10−1 kBq2/mL2. D First 3 min of the TACs to visualize the initial pass 
of [18F]FDG. Similar graphs are shown in E and F for two randomly chosen voxels (one for each tissue type). 
Fitted curves obtained with the MDIF presented a WRSS of 7.2 and 2.8 kBq2/mL2 for the GM and WM voxel 
TACs, respectively. Respective fitted curves using the IDIF presented WRSS of 7.0 and 2.9 kBq2/mL2. [18F]FDG: 
2-deoxy-2-[18F]fluoro-D-glucose; GM: grey matter; IDIF: Image-derived input function; MDIF: Model-derived 
input function; TAC: Time-activity curve; VOI: Volume-of-interest; WM: White matter; WRSS: weighted residual 
sum of squares
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Goodness of fit

WRSS, indicating goodness of fit, for the first 3  min of each GM TAC was two 
orders of magnitude lower (p < 0.001) for the TACs fit using the MDIFs compared 
to corresponding TACs fit using the IDIFs (Fig.  5A). Likewise, a significantly lower 
WRSS for curves fitted with the MDIFs was also observed for the entirety of data 
(p < 0.001; Fig.  5B). Average WRSS for the first 3  min of data was (2.1 ± 1.2) × 10−3 
and (1.1 ± 0.9) × 10−1  (kBq/mL)2 for the GM TACs fitted with the MDIFs and 
IDIFs, respectively (n = 18); corresponding average WRSS for the 60  min of data 
was (5.6 ± 3.3) × 10−3 and (2.7 ± 2.3) × 10−1  (kBq/mL)2. The stronger goodness of fit 
obtained with the MDIF is also demonstrated in Fig. 5C-F, which shows the fit of GM 
and WM TACs to the irreversible 2TCM solution. Results are for data from the same 
representative subject shown in Fig. 4.

Regional measurements

No significant differences between the two methods (i.e., MDIF and IDIF) were 
observed for either Ki or CMRGlu estimates for anatomical VOIs, except for the cere-
bellum (p = 0.030 and p = 0.034 for Ki and CMRGlu, respectively). Macro- and micro-
parameter estimates for anatomical VOIs obtained with the MDIF are summarized 
in Table 2. For comparison, total GM and WM Ki estimates obtained using the IDIFs 
were 2.51 ± 0.50 (p = 0.008) and 1.12 ± 0.22  mL/100  g/min (p = 0.139), respectively. 
Respective CMRGlu estimates were 23.9 ± 3.2 (p = 0.010) and 10.7 ± 1.3 µmol/100 g/
min (p = 0.142). Figure  6 shows the linear regression comparing IDIF- and MDIF-
derived CMRGlu estimates. Average (± standard error) regression for GM had a 
slope of 0.85 ± 0.06 [0.71–0.98] and an intercept of 3.1 ± 1.6 µmol/100 g/min [− 0.2 
to 6.5 µmol/100 g/min] (R2 = 0.92, ρ = 0.96, p < 0.001). Similarly, average (± standard 
error) regression for WM had a slope of 0.82 ± 0.06 [0.69 to 0.95] and an intercept of 

Table 2  Ki (mL/100 g/min) and CMRGlu (µmol/100 g/min) estimates obtained from Patlak graphical 
analysis alongside microparameters ( K1 [mL/g/min], k2 [min−1], k3 [min−1], and Vb [mL/g]) from the 
standalone fitting routine for the healthy individuals included in this study (n = 18)

Results were obtained with the derived MDIFs and are presented as mean ± one standard deviation

CMRGlu Cerebral metabolic rate of glucose; GM Grey matter; MDIF Model-derived input function; VOI Volume-of-interest; 
WM White matter

VOI Ki CMRGlu K1 k2 k3 Vb

Total GM 2.58 ± 0.56 24.5 ± 3.6 0.120 ± 0.022 0.160 ± 0.057 0.051 ± 0.029 0.072 ± 0.013

Total WM 1.16 ± 0.25 11.0 ± 1.6 0.054 ± 0.011 0.132 ± 0.041 0.040 ± 0.022 0.042 ± 0.007

Frontal lobe 3.06 ± 0.67 29.0 ± 4.3 0.115 ± 0.021 0.133 ± 0.054 0.055 ± 0.035 0.065 ± 0.012

Occipital lobe 2.65 ± 0.55 25.2 ± 3.5 0.114 ± 0.022 0.146 ± 0.052 0.053 ± 0.031 0.084 ± 0.013

Parietal lobe 2.76 ± 0.66 26.2 ± 4.5 0.111 ± 0.023 0.184 ± 0.055 0.042 ± 0.023 0.089 ± 0.019

Temporal lobe 2.64 ± 0.56 25.0 ± 3.6 0.115 ± 0.020 0.162 ± 0.069 0.055 ± 0.032 0.063 ± 0.013

Insula 2.70 ± 0.62 25.6 ± 4.1 0.107 ± 0.019 0.137 ± 0.051 0.055 ± 0.033 0.065 ± 0.014

Hippocampus 1.84 ± 0.38 17.5 ± 2.5 0.125 ± 0.022 0.153 ± 0.063 0.057 ± 0.036 0.079 ± 0.016

Precuneus 2.99 ± 0.69 28.4 ± 4.7 0.134 ± 0.025 0.146 ± 0.060 0.057 ± 0.035 0.076 ± 0.015

Putamen 3.34 ± 0.70 31.7 ± 4.2 0.136 ± 0.025 0.177 ± 0.075 0.054 ± 0.034 0.097 ± 0.019

Thalamus 2.77 ± 0.63 26.2 ± 4.0 0.114 ± 0.021 0.152 ± 0.055 0.053 ± 0.031 0.071 ± 0.011

Cerebellum 2.21 ± 0.50 20.9 ± 3.3 0.150 ± 0.030 0.202 ± 0.063 0.041 ± 0.021 0.083 ± 0.016
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1.7 ± 0.7 µmol/100 g/min [0.2 to 3.1 µmol/100 g/min] (R2 = 0.92, ρ = 0.96, p < 0.001). 
Lastly, Fig. 7 shows average CMRGlu and microparameter images obtained with the 
variational Bayesian approach using MDIFs (n = 18); respective images obtained using 
the IDIFs are shown in Additional file 1: Fig. S2; differences between microparameters 
are shown in Additional file 1: Fig. S3.

Fig. 6  Linear regression comparing CMRGlu estimates from IDIF (y-axis) and MDIF (x-axis) for total GM 
(exes) and WM (circles) TACs extracted from healthy individuals (n = 18). Line-of-best fit is shown as a solid 
line. The identity line is represented by the dashed line. Average (± standard error) regression for GM had 
a slope of 0.85 ± 0.06 [0.71 to 0.98] and an intercept of 3.1 ± 1.6 µmol/100 g/min [− 0.2 to 6.5 µmol/100 g/
min] (R2 = 0.92, ρ = 0.96, p < 0.001). Similarly, average (± standard error) regression for WM had a slope of 
0.82 ± 0.06 [0.69 to 0.95] and an intercept of 1.7 ± 0.7 µmol/100 g/min [0.2 to 3.1 µmol/100 g/min] (R2 = 0.92, 
ρ = 0.96, p < 0.001). CMRGlu: Cerebral metabolic rate of glucose; GM: Grey matter; IDIF: Image-derived input 
function; MDIF: Model-derived input function; TAC: Time-activity curve; WM: White matter

Fig. 7  Groupwise (n = 18) A CMRGlu (in µmol/100 g/min) images, alongside B K1 (in mL/g/min), C k2 (in 
min−1), D k3 (in min−1), and E Vb (in mL/100 g) images, all generated by the variational Bayesian fitting routine. 
All images were generated using the MDIFs and normalized to the MNI space with SPM12
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Discussion
This study investigated a SIME approach to generate an input function that replaced 
the commonly used series of exponentials by a model-derived equation based on the 
irreversible two-tissue compartment model. The simulations demonstrated that the 
input function can be recovered accurately by the SIME routine, with errors in macro- 
and microparameters of less than 1%. The accuracy of the MDIF approach predicted 
by the simulations was confirmed in the animal study in which the MDIF-to-AIF 
AUC ratio was close to unity and the input functions demonstrated good agreement 
(Fig. 3). The discrepancy between MDIF and AIF peaks could be partially explained 
by the assumption of a constant blood-to-plasma ratio of one, which might not be 
accurate in this animal model. For instance, Somogyi observed that the entirety of 
true sugars in the blood of pigs was present in plasma [41], although we could not 
find any studies that measured the blood-to-plasma ratio of [18F]FDG in this species. 
Future studies are needed to measure the [18F]FDG blood-to-plasma for this animal 
model.

Good agreement between MDIFs and IDIFs was observed when the two SIME 
approaches were applied to dynamic [18F]FDG PET data from healthy human par-
ticipants (Fig.  4). No significant differences between Ki or CMRGlu estimates were 
found, most likely since both methods used the same anchors. Since the MDIF is 
derived directly from the tissue TAC, and not restricted to gamma distribution func-
tions as the original SIME, it is applicable to any injection protocol. The flexibility of 
the method is evident in Fig. 5. The injection protocol in this study involved a flush of 
saline that resulted in an inadvertent second peak during the early phase of the tissue 
TACs. This unexpected shape was only properly characterized by the MDIF method 
as evident by the improved fit of the tissue TACs to the 2TCM solution (Fig. 5C–F). A 
further advantage of the MDIF approach is the number of fitting parameters required 
to characterize the input function was reduced from seven (i.e., Eq. (6)) to four. The 
higher number of parameters needed to characterize the IDIF leads to multiple local 
minima during the minimization procedure, making the IDIF SIME procedure more 
sensitive to the chosen starting values. Consequently, higher variance of the estimated 
macroparameter ( Ki ) was observed when deriving the IDIF with the SIME routine 
(CV of ~ 5%) compared to MDIF SIME (~ 2%).

As with all SIME methods, the MDIF approach requires TACs with varying kinetics 
and anchors to stabilize the minimization routine. The former was achieved using the 
k-means clustering algorithm, as previously suggested [42]. For the latter, either one 
or two blood samples were sufficient to properly capture the shape of the MDIF; how-
ever, the presence of noise in experimental PET data could introduce errors in the 
procedure. Care should be taken when selecting the appropriate number of anchors 
since previous studies observed that the use of a single scaling point was not sufficient 
to calibrate IDIFs [9, 18]. A potential limitation with anchors is that measurement 
errors will propagate through the SIME procedure. Increasing the number of venous 
samples could reduce these errors. In addition, consideration should be given when 
selecting the time-window to collect venous blood, as arterio-venous equilibrium 
occurs at different times for different tracers [43]. Although a completely non-invasive 
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approach would be ideal, as proposed previously [23, 44], arterial or venous samples 
should always be considered to improve quantification accuracy.

The MDIF method has several advantages over other methods proposed to extract 
an IDIF. Compared to vessel segmentation approaches, it is free of PVEs and can pro-
duce input functions with greater SNR given the MDIF is derived from the WB TAC, 
while segmentation approaches often suffer from lower SNR due to the limited vessel 
volume used to extract the IDIF. Furthermore, IDIFs extracted from carotid arteries 
tend to overestimate their tails and scaling them with blood samples is recommended 
for quantification [15]. Additionally, the MDIF method can be used for any PET scan-
ner given that the segmentation portion (i.e., k-means clustering; Fig. 4F) can be imple-
mented by using a WB mask obtained from PET-only data. Thus, there is no need for 
specific anatomical data, such as time-of-flight MR images—often required in standard 
IDIF extraction methods. A further advantage of the MDIF approach is that it accounts 
for subject-specific variations in metabolism, which is a known limitation of population-
based input functions. These advantages place the MDIF SIME approach at a unique 
position to be implemented in any PET centre. However, it may be necessary to incor-
porate a distributed parameter model to better character the vascular phase of the tracer 
considering recent advances in PET imaging are enabling the temporal resolution to be 
reduced to 1 or 2 s [45].

Although no arterial sampling was available to validate the MDIF SIME approach in 
humans, the CMRGlu values and rate constants obtained in the human study were in 
agreement with literature estimates [9, 35–37, 46–48] (Additional file 1: Table S1). Future 
studies involving human participants aimed at validating the MDIF SIME method would 
also provide the opportunity to optimize the technique by investigating the use of other 
parameter estimation methods—such as the simulated annealing method [49] imple-
mented by Ogden et al. to minimize the SIME cost function [38]. As it is, the derived 
MDIF better characterized the first pass of [18F]FDG when compared to the IDIF mod-
elled as a series of exponentials (Fig. 5).

The most obvious application of the MDIF would be to estimate CMRGlu from 
dynamic [18F]FDG PET data; however, there is growing interest in understanding how 
glucose metabolism is potentially affected by disease-related alterations in glucose 
delivery and phosphorylation [50, 51]. Altered microparameters have been observed 
in gliomas [52], suggesting they could improve differential diagnosis of malignant brain 
tumors [53]. Likewise, evidence of cerebrovascular contributions to Alzheimer’s disease 
has led to the hypothesis that hypometabolism characteristic of neurodegeneration is 
related, in part, to impaired glucose transport across the blood–brain barrier (i.e., K1 ) 
[51]. These examples highlight the value of optimizing key steps in quantifying glucose 
metabolism to better understand major neurological diseases. However, accurately esti-
mating the model rate constants at a voxelwise level is challenging [54]. Quantification 
of microparameters by kinetic modelling suffers from substantial statistical uncertain-
ties due to the high noise level affecting voxel TACs. Efforts to develop image denoising 
approaches to improve quantification accuracy include post-reconstruction methods, 
such as the 4-dimensional iterative highly constrained backprojection algorithm [55], 
and during image reconstruction, such as physics-informed artificial intelligence recon-
struction algorithms trained to increase the SNR [56]. Additionally, the accuracy of 
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microparameters is linked to the choice of parameter estimation method [57, 58]. Lastly, 
the measured AIF, required for proper quantification, is an inherently noisy procedure 
that is often fit with a mathematical model to generate a continuous noiseless version 
for kinetic analysis [22]. The ability to generate high-quality input functions with the 
model-driven SIME approach could improve the reliability of microparameter estimates 
(Fig. 5), especially when combined with the variational Bayesian [33] parameter estima-
tion method. In the parametric images obtained in this study (Fig. 7), K1 maps presented 
the expected pattern of higher delivery of [18F]FDG to GM tissue.

Although a more sophisticated implementation is required, the MDIF SIME approach 
described here can be extended to other radiotracers that follow a reversible 2TCM (see 
Appendix), including when there are concerns regarding the irreversibility of [18F]FDG. 
Sari et  al. implemented the IDIF SIME approach to evaluate dynamic data acquired 
with a serotonin receptor tracer and observed similar results in comparison to those 
obtained with the measured AIF [25]. Bartlett et al. and Ogden et al. used venous sam-
ples as scalers in the IDIF SIME method for a variety of radiotracers, including [18F]
FDG, and reported good agreement to results obtained when arterial blood scalers 
were used, albeit with slightly biased estimates [38, 43]. Like with other SIME methods, 
only the plasma input function is recovered, while correcting for vascular contributions 
requires the whole-blood input function [38]. Further work is required to investigate if 
the MDIF method can be extended to simultaneously estimate the whole-blood input 
function while performing metabolite correction. Finally, similar to methods proposed 
for measuring cerebral blood flow [59, 60], an MDIF equation for radiotracers that fol-
low the one-tissue compartment model could be derived following the steps outlined in 
the Appendix.

Conclusion
In this study, we presented a SIME method based on the irreversible 2TCM to derive 
a high SNR input function. The extracted MDIF was compared to AIF curves in ani-
mal experiments and good MDIF-to-AIF agreement was observed. In the human study, 
MDIF macroparameters (i.e., Ki and CMRGlu) estimates were in agreement with esti-
mates obtained using the IDIF SIME method, which models the input function by a 
series of exponentials. Rate constants obtained with the MDIF were in good agreement 
with literature values. The MDIF approach has the advantages that it can model the 
shape of any input function and requires fewer fitting parameters. Additionally, combin-
ing the derived MDIF with the variational Bayesian approach allowed for the generation 
of parametric images of kinetic parameters.

Appendix
The derivation of the MDIF equation (Eq. (4)) begins by combining the differential equa-
tions from the irreversible 2TCM (Eqs. (1) and (2)) after applying the Laplace Transform. 
Thus, the activity concentration in the first ( C1(s) ), second ( C2(s) ), and total ( CT (s) ) 
compartments are given by:
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where s is the Laplace variable. For this step, the following Laplace transform was used: 
L
{
f ′(t)

}
= sF(s)− f (0) , given C1(0) = C2(0) = 0.

As PET measurements ( CPET (s) ) include both tissue and blood activity contribu-
tions (i.e., CPET (t) = (1− Vb)CT (t)+ VbCb(t) ), an additional term must be included 
to account for blood volume ( Vb ) activity concentration originated from the whole-
blood input function ( Cb(t) = RCp(t) , where R is the blood-to-plasma ratio):

Including Eqs. (9) in (10) yields:

which can be rewritten as:

where α1,2 = a∓
√
a2 − b , with a = 1

2

(
1−Vb
RVb

K1 + kf

)
 , and b = 1−Vb

RVb
K1k3.

Next, the MDIF can be obtained by isolating Cp(s) in Eq. (12), which requires partial 
fraction decomposition, and the resulting equation is given by:

The solution for CMDIF
p (t) given by Eq. (4) is obtained by applying the inverse Laplace 

Transform to Eq. (13), considering: L−1
{

1
s+a

}
= e−at and L−1

{
F(s) • G(s)

}
= f (t) ∗ g(t) , 

where ∗ is the convolution operator.
The MDIF, CMDIF

p (t) , for reversible radiotracers is obtained by solving for Cp(s) fol-
lowing the steps outlined above:

where α1,2 = a∓
√
a2 − 4b a = 1

2

(
1−Vb
RVb

K1 + kf + k4

)
 , and b = 1−Vb

RVb
K1(k3 + k4)+ k2k4 . 

Note, here we considered radiotracers of constant blood-to-plasma ratio and no 

(7)C1(s) =
K1

s + kf
Cp(s)

(8)C2(s) =
K1k3

s
(
s + kf

)Cp(s)

(9)CT (s) = C1(s)+ C2(s) =
(
1+

k3

s

)
K1

s + kf
Cp(s)

(10)CPET (s) = (1− Vb)CT (s)+ VbRCp(s)

(11)CPET (s) =
[
(1− Vb)

(
1+

k3

s

)
K1

s + kf
+ RVb

]
Cp(s)

(12)CPET (s) =

[
(s + α1)(s + α2)

s
(
s + kf

) RVb

]
Cp(s)

(13)Cp(s) =
1

RVb

[
1+

1− Vb

RVb
K1

1

α2 − α1

(
k3 − α2

s + α2
−

k3 − α1

s + α1

)]
CPET (s)

(14)

CMDIF
p (t) =

1

RVb

[
Cwb(t)+

1− Vb

RVb
K1

(
k3 + k4 − α2

α2 − α1
e−α2t −

k3 + k4 − α1

α2 − α1
e−α1t

)
∗ Cwb(t)

]
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metabolite production. The inclusion of metabolite correction would require a more 
sophisticated solution, which is outside the scope of this work.
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