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ABSTRACT

Helicobacter pylori is a pathogenic bacterium associated with various gastrointestinal diseases, 
including chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue lymphoma, 
and gastric cancer. The increasing rates of H. pylori antibiotic resistance and the emergence of 
multidrug-resistant strains pose significant challenges to its treatment. This comprehensive 
review explores the mechanisms underlying the resistance of H. pylori to commonly used 
antibiotics and the clinical implications of antibiotic resistance. Additionally, potential 
strategies for overcoming antibiotic resistance are discussed. These approaches aim to 
improve the treatment outcomes of H. pylori infections while minimizing the development 
of antibiotic resistance. The continuous evolution of treatment perspectives and ongoing 
research in this field are crucial for effectively combating this challenging infection.
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INTRODUCTION

Helicobacter pylori is a Gram-negative bacterium that colonizes and persists in the stomach.1 It 
can be transmitted from an infected person to an uninfected person by direct contact via an 
oral-oral, fecal-oral, or both routes.2,3 Most people become infected during their childhood, 
and parents and siblings appear to play a significant role in pathogen transmission.3,4 
Once infected, H. pylori causes lifelong chronic progressive gastric inflammation, which 
can lead to clinical complications in up to 10% of infected individuals.1,5 The major clinical 
complications include peptic ulcer disease, chronic gastritis, gastric cancer, and mucosa-
associated lymphoid tissue lymphoma.1,2,5-7 The prevalence of H. pylori infection varies widely 
according to geographic area, age, and socioeconomic status.6 Although the prevalence 
of H. pylori is decreasing due to improving hygiene and standard of living, it remains high, 
particularly in the Eastern Asian countries.6,8-10

A combination of two to three antibiotics (from a few antibiotics such as amoxicillin, 
clarithromycin, metronidazole, tetracycline, levofloxacin, and rifabutin) and an acid-
suppressive agent with or without bismuth are used to eradicate H. pylori.11-13 However, the 
successful eradication rate of H. pylori has decreased in the past decades, in parallel with 
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increasing antibiotic resistance.14-20 Antibiotic resistance of H. pylori is particularly important 
because this is one of the most common causes of bacterial infections worldwide, affecting 
millions of people every year.1,6 Additionally, overuse or inappropriate use of antibiotics 
can contribute to the development of antimicrobial resistance in H. pylori and other 
bacteria, which can have serious public health implications.21-23 Recently, the World Health 
Organization listed H. pylori as a serious threat to human health for their resistance against 
most available treatment regimens.24

The molecular mechanisms underlying antibiotic resistance in H. pylori infection are diverse 
and complex. Several mechanisms have been proposed to drive the antibiotic resistance of 
H. pylori, including genetic mutations in the bacterium itself and physiological changes that 
can upregulate efflux pump expression in bacterial cells.25-30 Cellular adaptation associated 
with biofilm or coccoid formation, which protects drug penetration into bacterial cells, is 
another potential resistance mechanism.31,32 Many of these resistance mechanisms can work 
in concert to confer multidrug resistance (MDR) in H. pylori, making eradication increasingly 
challenging and highlighting the need for new therapeutic strategies. In this review, 
the mechanism of resistance of H. pylori to commonly used antibiotics and their clinical 
implications are explored.

MOLECULAR MECHANISMS OF ANTIBIOTIC RESISTANCE

Mechanism of single-drug resistance
Single-drug resistance refers to a situation in which a microorganism, such as a bacterium, 
virus, or fungus, is resistant to only one type of drug while remaining susceptible to other 
drugs. Although the eradication regimen for H. pylori consists of a combination of antibiotics, 
resistance to a single antibiotic agent could result in eradication failure.33 Antibiotic resistance 
in H. pylori is mainly from de novo genetic mutations that disrupt the activity of antibiotics by 
either altering the drug target or inhibiting drug activation within cells (Table 1 and Fig. 1).7 
With advances in next-generation sequencing (NGS), many mutations have been observed 
in resistant clinical isolates.25,26,34,35 However, the relative contribution of each mutation to 
phenotypic resistance and the effect of combinations of mutations remain unclear.36

Beta-lactams
Amoxicillin is widely used for H. pylori eradication in combination with acid-suppressive 
agents to improve drug stability and efficacy. After administration, amoxicillin is well 
absorbed into bloodstream and then released into the gastric juice.37 In a favorable 
environment with acid-suppressive agents, amoxicillin exerts its antimicrobial effect by 
binding to penicillin-binding proteins (PBPs).38,39 Binding of amoxicillin to PBPs inhibits 
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Table 1. Mechanisms of antibiotic resistance in H. pylori
Antibiotics Antibiotic resistance mechanism Associated gene or sequence
Amoxicillin Mutational change of penicillin-binding protein pbp1A, pbp2, pbp3, pbp4

Production of beta-lactamase
Outer membrane protein mutations causing decreased membrane permeability hefC, hopC, hofH

Clarithromycin Point mutations in 23S rRNA 23S rRNA
Increased antibiotic efflux mediated by efflux pump systems rpl22, infB

Levofloxacin Point mutations in quinolone resistance determination region of DNA gyrase gene gyrA, gyrB
Metronidazole Mutations causing reduced or abolished nitroreductase activity rdxA, frxA
Tetracycline Mutations in 16S rRNA 16S rRNA
Rifabutin Point mutations in rifampicin-resistance determining region of RNA polymerase gene rpoB



the synthesis of peptidoglycan, a major component of bacterial cell walls, resulting in cell 
wall lysis in replicating bacteria.39,40 Amoxicillin generally shows a low antibiotic resistance 
rate.41-44 In H. pylori, amoxicillin resistance is mainly due to mutational changes in PBP1A.45-48 
Mutations in other PBPs (PBP2 and PBP 3) have also reported, and multiple mutations in all 
three isotypes PBP1, PBP2 and PBP3 was found to confer high level of amoxicillin resistance 
when compared to the amoxicillin susceptible strain.49 Beta-lactamase activity, which can 
hydrolyze amoxicillin to attenuate the optimum concentration needed to elicit bactericidal 
effect, was also found in H. pylori.40,50 Furthermore, amoxicillin resistance may be contributed 
by mutations in hefC, hopC, and hofH, which are likely associated with changes in the 
composition of the outer membrane and membrane permeability of H. pylori.51-53

Macrolides
Clarithromycin is widely used in the frontline regimen to eradicate H. pylori. Clarithromycin has 
pharmacokinetic advantages over other macrolides, including increased oral bioavailability, 
higher plasma concentration, and longer elimination half-life.54 Concomitant administration 
with acid-suppressive agents also increases its stability in acidic environments.55 
Clarithromycin exerts antimicrobial effects by binding to the peptidyl transferase loop 
of domain V in the 23S ribosomal RNA (rRNA) in the bacterial ribosomal subunit 50S. 
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Fig. 1. Overview of molecular mechanism of antibiotic resistance in H. pylori and strategies to overcome this resistance. This image was created with BioRender.
com. 
FrxA = NAD(P)H flavin oxidoreductase, GI = gastrointestinal, GyrA = DNA gyrase subunit A, GyrB = DNA gyrase subunit B, PBP = penicillin-binding protein, PCAB 
= potassium-competitive acid blocker, RdxA = oxygen-insensitive NAD(P)H nitroreductase, RpoB = β-subunit of DNA-dependent RNA polymerase, rRNA = 
ribosomal RNA, tRNA = transfer RNA.



Mutations in domain V of the 23S rRNA gene of H. pylori, A2142G/C and A2143G, can result in 
reduced binding affinity of the antibiotic agent, making it less effective at inhibiting bacterial 
growth.56,57 Other point mutations are also reported in the 23S rRNA in H. pylori isolates.25-27,58 
In addition, studies using experimentally induced resistant phenotype for clarithromycin found 
that mutations in rpl22 and infB genes had synergistic effects with mutations in the 23S rRNA 
genes, resulting in higher minimum inhibitory concentration of clarithromycin.34,35 Another 
relevant mechanism for clarithromycin resistance is attributed to the efflux pump system.29,59 
However, the role of novel mutations and specific function of efflux pump system in the 
development of clarithromycin resistance in clinical isolates should be further clarified.

Fluoroquinolones
Among the fluoroquinolones, levofloxacin, moxifloxacin, and sitafloxacin have been used 
for H. pylori eradication therapy. Due to high resistance rate, fluoroquinolones are generally 
used in rescue treatment after initial eradication failure.11,60,61 Fluoroquinolones act on 
microbes by inhibiting bacterial topoisomerase II (DNA gyrase) and topoisomerase IV 
enzymes involved in bacterial synthesis of nucleic acid, a step proceeding cell division and 
proliferation.28 The most common mechanism of fluoroquinolone resistance in H. pylori 
is due to a specific mutation in one or more of gyrA and gyrB genes.62 The region where 
mutations arise in these genes is a short DNA sequence known as the quinolone resistance-
determining region (QRDR).63,64 Fluoroquinolone resistance of H. pylori is mainly due to 
point mutations of codon position 87 and 91 in the QRDR of gyrA.65-67 These few mutations 
associated with most cases of phenotypic resistance indicate that molecular testing for 
levofloxacin can be a reliable substitute for culture and antimicrobial susceptibility testing. 
Mutations present outside the QRDR region of gyrA or in the QRDR region of gyrB have also 
been reported to be associated with levofloxacin resistance; however, the impact of these 
mutations requires further investigation.26,27,58,66

Nitroimidazole
Among the nitroimidazoles, metronidazole is frequently used to eradicate H. pylori 
infections. Metronidazole is actively released into gastric juice after oral ingestion, with the 
acidic condition in the stomach rarely affecting its antimicrobial activity.68 Metronidazole is 
a prodrug that needs to be activated by intracellular reduction of the nitro group attached to 
the imidazole ring.69 Reductive activation of metronidazole causes imidazole fragmentation 
and nitro-anion free radicals which are cytotoxic.69,70 The reduction of metronidazole is 
mainly mediated by oxygen-insensitive NAD(P)H nitroreductase (RdxA), NAD(P)H flavin 
oxidoreductase (FrxA), and ferredoxin-like enzymes (FdxB) in H. pylori. Metronidazole 
resistance in H. pylori is primarily due to decreased drug activation mediated by mutations 
in RdxA gene which encodes an oxygen-insensitive NAD(P)H nitroreductase.70-76 Mutations 
involving the FrxA gene were also reported.35,74,77 However, metronidazole resistance was 
observed in H. pylori isolates without the loss of functional RdxA and FrxA, suggesting that 
other factors are involved in metronidazole resistance.72,78-81 Other putative mechanisms of 
metronidazole resistance in H. pylori include mutations in FdxB, ferric uptake regulator (Fur), 
and enhancement of efflux pump (HefA) protein.72,82-84

Tetracyclines
Tetracycline is stable in gastric pH and acts as a topical agent on the surface of the gastric 
mucosa against H. pylori.85 At the bacterial cytoplasm, tetracycline binds to bacterial 
ribosomes and interacts with a highly conserved 16S rRNA target in the 30S ribosomal 
subunit, arresting translation and protein synthesis.86 Resistance mechanism of H. pylori 
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against tetracycline is not widely studied because tetracycline resistance is not common in 
clinical isolates.14,41,44,87 Among various mechanisms of tetracycline resistance, the major 
resistance mechanisms are related to mutations in the 16S rRNA genes.88-90 However, 
tetracycline resistance without mutation in the 16S rRNA gene has been reported, suggesting 
that other mechanisms, such as efflux, are associated with tetracycline resistance.84,91

Rifamycins
Rifamycins are transcriptional inhibitors that specifically inhibit the activity of bacterial 
transcription by binding to RNA polymerase, mostly β-subunit encoded by the rpoB gene.92 
Among the rifamycins, rifabutin has better pharmacokinetics than rifampicin and is used 
for H. pylori eradication. Rifabutin is chemically stable at a wide range of pH values and 
is not inactivated by gastric acid.93 The resistance rate of H. pylori against rifabutin is low, 
and most rifabutin-resistant strains were isolated after treatment failure.94-96 In H. pylori, 
the molecular mechanism driving rifabutin resistance is at least one point mutation in the 
rifampicin resistance-determining region of the rpoB gene.27,97-100 However, a previous study 
reported that rifabutin-resistant strains were successfully eradicated with rifabutin-based 
triple therapy.101 Correlations between rpoB gene mutation status, phenotypic resistance, and 
treatment outcome need further clarification.

MDR in H. pylori
The presence of H. pylori strains with MDR profiles poses a significant challenge for H. pylori 
eradication and complicates the management of H. pylori-related diseases. The MDR profile 
of H. pylori is expressed as the cumulative result of genetic mutations conferring resistance 
to each antibiotic agent.7 Other putative mechanisms of H. pylori MDR include physiologic 
changes in bacterial cells (upregulation of efflux pump systems or downregulation of drug 
uptake proteins in the outer membrane of bacteria) and cellular adaptation properties 
(biofilm or coccoid formation).59,102-105

Bacterial biofilms are complex microbiological ecosystems where adherent aggregates 
of microorganisms surround themselves in multidimensional extracellular polymeric 
substances.106,107 Biofilms are often associated with chronic infectious diseases as they protect 
the bacteria from unfavorable environments, antimicrobial exposure, and host immune 
system.31,108 Biofilm formation in H. pylori has been observed both in vitro (environmental 
water body) and in vivo (gastric mucosa).109,110 The presence of biofilm was shown to be 
associated with decreased susceptibility to antibiotics in H. pylori.31 Previous studies showed 
that mutations in several genes coding for flagellar protein, outer membrane protein, 
cytotoxin-associated gene pathogenicity island protein, or efflux pumps were responsible 
for biofilm formation in H. pylori, which can further potentiate antibiotic resistance.84,111,112 
However, the precise mechanisms for H. pylori biofilm formation have yet to be determined. 
In addition, the clinical implications of biofilm formation on the development of antibiotic 
resistance in H. pylori and treatment outcomes should be further investigated.

An exceptional feature of H. pylori is the formation of a viable but non-culturable coccoid 
morphology. In H. pylori, the coccoid form becomes dominant when bacteria are exposed 
to environmental stress conditions, such as starvation, prolonged culture, and exposure 
to antibiotics.113,114 It has been reported that this dormant state of H. pylori induces 
ultrastructural modifications in the cell membrane and metabolic pathways that contribute 
to antibiotic resistance.24,107 However, the clinical relevance of coccoid formation in the 
development of MDR profile and treatment outcome of H. pylori is not fully understood.
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Heteroresistance
Heteroresistance refers to a phenomenon where subpopulations of bacteria have different 
antibiotic susceptibility profiles.115 Heteroresistance in H. pylori has been reported in several 
studies in which both susceptible and resistant bacterial strains were isolated either from the 
same biopsy site (intraniche) or from different sites (interniche).87,115-122 Heteroresistance 
can be developed through evolutionary change in a single strain or mixed infection of 
multiple bacterial strains.7 Previous studies reported that heteroresistant H. pylori strains had 
similar fingerprinting patterns, suggesting that the presence of the same strain with mixed 
susceptible and resistant phenotype, rather than coinfection of different strains, is associated 
with the development of H. pylori heteroresistance.117-121 The possibility of heteroresistance 
should be considered during antimicrobial susceptibility testing and eradication therapy 
for H. pylori infection since underestimation of the presence of antibiotic-resistant strain 
may lead to treatment failure. To address this issue, multiple biopsies from different sites in 
the stomach or multiple bacterial colonies from the same sample should be obtained when 
evaluating the antimicrobial susceptibility of H. pylori.

Antimicrobial susceptibility testing
With increasing antibiotic resistance, it is imperative to develop individualized therapeutic 
approaches based on the results of antimicrobial susceptibility tests. Common methods 
for antimicrobial susceptibility testing include culture-based antimicrobial susceptibility 
testing and molecular detection. Bacterial culture is necessary for the use of conventional 
antimicrobial susceptibility tests, such as E-test, disk diffusion method, and agar dilution 
method.39,42,123 However, H. pylori culture requires specific conditions, is time-consuming, 
and is affected by several factors, such as transport conditions and the time interval between 
specimen collection and inoculation, limiting its availability in clinical practice.

Molecular methods are also used to assess antimicrobial susceptibility. Since the resistance 
of H. pylori to clarithromycin, fluoroquinolones, and tetracycline is mainly driven by specific 
point mutations in a small region of the responsible gene, molecular methods can be utilized 
for antimicrobial susceptibility testing. Polymerase chain reaction (PCR) was used to assess 
antibiotic resistance by detecting resistance-associated mutations. Similarly, PCR-restriction 
fragment length polymorphism, real-time PCR, multiplex PCR, and droplet digital PCR 
have been widely used to determine antibiotic resistance in H. pylori.124-129 Currently, several 
commercial kits are available to detect clarithromycin resistance, levofloxacin resistance, 
or both.130-135 Another diagnostic tool using loop-mediated isothermal amplification 
methods, combined PCR and quenching probe method, and single cell-based antimicrobial 
susceptibility test Ramanometry has been introduced.136-139

Compared to conventional methods, molecular detection methods have the advantages 
of high sensitivity, specificity, and reproducibility, and disadvantages such as high cost. 
Furthermore, as molecular detection methods target specific gene loci, antibiotic resistance 
caused by other mutations cannot be detected, leading to false-negative results.140 In 
addition, as metronidazole has complex resistance mechanisms and the presence of 
metronidazole resistance does not necessarily lead to treatment failure, the role of molecular 
detection of metronidazole resistance is limited.

Recent advances in high-throughput molecular detection technology, including NGS and 
metagenomic analysis, have enabled the detection of H. pylori infection and antibiotic 
resistance.25-27,34 While NGS provides comprehensive information, applying NGS results to 
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clinical practice requires additional knowledge about the correlation between NGS results 
and phenotypic resistance as well as treatment outcomes.141 In addition, cost-effectiveness 
and availability should be considered for the clinical application of NGS to predict antibiotic 
susceptibility profiles.

CILNICAL IMPLICATION AND FUTURE DIRECTIONS

The main clinical implication of antibiotic resistance in H. pylori is significantly compromised 
eradication therapy efficacy. It is well-known that the eradication success rate using 
clarithromycin-based regimens is markedly decreased in the presence of clarithromycin 
resistance.33,142,143 Accordingly, clarithromycin containing standard triple therapy is 
recommended only in areas with a clarithromycin resistance rate of less than 15%.11 On 
the other hand, a lower decrease in eradication rates has been observed for metronidazole, 
and successful eradication was reported using bismuth quadruple therapy, especially with 
higher metronidazole dose, even in the presence of metronidazole resistance.33,142,143 
Multiple different mechanisms leading to metronidazole resistance and diversity of identified 
mutations may explain the relatively poor correlation between phenotypic resistance against 
metronidazole and treatment outcome. The increasing number of MDR H. pylori strains has 
made eradication therapy more challenging. Given that the first-line treatment regimen is 
usually selected empirically rather than based on antimicrobial susceptibility testing, failure of 
initial eradication therapy is another important cause of the emergence of MDR H. pylori strains.

The development of antibiotic resistance in H. pylori has reduced available treatment options. 
Eradication failure necessitates additional rounds of therapy, including alternative antibiotic 
combinations. With the decline in the eradication rates of standard therapies, physicians 
face challenges in selecting effective alternatives. However, these options are not always 
effective, involve higher pill burdens, and can lead to more side effects. There have been some 
important changes to expert recommendations for H. pylori eradication: more frequent use 
of bismuth-containing quadruple therapy as a first-line treatment instead of clarithromycin-
based triple therapy is recommended.144 The limited arsenal of effective treatments against 
antibiotic-resistant H. pylori strains underscores the need for novel treatment strategies, 
including non-antibiotic approaches, to address this growing problem (Fig. 1).

Optimizing eradication therapy
Current treatment regimens for H. pylori eradication are derived from empirical approaches 
developed by gastroenterologists over the past few decades. A significant decrease in the 
eradication rate worldwide, along with an increasing trend of H. pylori antibiotic resistances 
warrants more specific approach to H. pylori eradication therapy, utilizing antimicrobial 
stewardship.145 Given that antibiotic resistance patterns differ according to geographic regions, 
it is recommended to use treatment regimens that are locally effective according to regional 
susceptibility patterns.87,145,146 However, many regions lack reliable data on the prevalence and 
characteristics of antibiotic resistance in local populations to guide the selection of empirical 
eradication therapy. Currently, bismuth quadruple therapy is recommended in regions with 
high antibiotic resistance to both clarithromycin and metronidazole.11 In addition, adding 
bismuth to some triple regimens and prolonging the treatment duration to 14 days can increase 
eradication rates up to 30% or more, even in the presence of antibiotic resistance in some 
strains.13 Recent meta-analysis also showed that bismuth supplements as the first-line regimen 
showed better eradication rate compared to non-bismuth containing regimens.147
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Tailored therapy
With increasing resistance rates and MDR H. pylori strains, the role of antimicrobial susceptibility 
testing and subsequent individualized antibiotic treatment has been emphasized.11 Tailored 
therapy, in which antibiotics are chosen based on the antimicrobial susceptibility profile, is an 
ideal therapeutic option to improve the efficacy of H. pylori eradication therapy while minimizing 
unnecessary prescription of antibiotics. Studies have reported better eradication success rates 
using tailored therapy than empiric therapy, especially when antimicrobial susceptibility testing 
was performed before treatment.148-151 However, the benefit of tailored therapy has not been 
demonstrated in clinical trials comparing tailored therapy with empirical quadruple regimens 
as a first-line treatment or tailored therapy after previous treatment failure.151-153 This suggests 
that the benefit of tailored therapy is not obvious when the empirical regimen is highly effective 
for H. pylori eradication. In addition, the limited availability of H. pylori cultures and antimicrobial 
susceptibility testing has made this approach difficult. More evidence is required to establish the 
generalized use of tailored therapy for H. pylori eradication.

Acid suppression with potassium-competitive acid blocker
To increase eradication success, antibiotic resistance patterns and patient characteristics, such 
as compliance and cytochrome P450 2C19 genetic polymorphisms, should be considered. 
Potassium-competitive acid blocker provides fast and long-lasting acid suppression and is 
recently used for H. pylori eradication therapy in combination with various antibiotics.154-157 
Vonoprazan-based triple therapy showed higher eradication rate compared to proton pump 
inhibitor (PPI), especially in the subpopulation with clarithromycin resistance, potentially 
overcoming clarithromycin resistance.158,159 Recent meta-analysis of randomized controlled 
trials also showed that vonoprazan-containing regimens achieved a higher eradication success 
rate compared to PPI-based regimens.160 In line with this, a Japanese guideline recommends 
vonoprazan-based triple therapy or PPI-based triple therapy as the first-line treatment for H. 
pylori eradication.161 Vonoprazan-based dual therapy consisting amoxicillin may be another 
treatment option while minimizing unnecessary antibiotic use; however, the dosage and 
duration of dual therapy need to be further determined.159,162,163 Notably, most studies on 
vonoprazan-based regimens were conducted in Japan, and further studies are needed to 
confirm these promising results in different regions.164,165

Adjuvant therapies
Adjuvant therapies aim to enhance the efficacy of antibiotic treatment either by overcoming the 
bacterial mechanisms of antibiotic resistance or by modifying the host response. These include 
the use of probiotics and anti-biofilm agents. As supplementary to conventional eradication 
therapy, probiotics can reduce gastrointestinal adverse events and thus improve patient 
compliance.166,167 In a recent meta-analysis, it has been found that most probiotics added to 
triple therapy provided better treatment outcomes.167 The potential mechanisms of probiotic 
action against H. pylori include direct and indirect inhibitory effects against H. pylori colonization, 
stabilization of gastric mucosal protective barrier and reduction of gastric mucosal inflammation, 
and modulation of host immune response to the infection.168,169 Probiotic supplementation also 
reduced antibiotic-induced alteration of gut microbiota and helped the restoration of dysbiosis 
caused by eradication therapy.170,171 However, further research is needed to better understand 
the role and mechanism of action of probiotics in H. pylori eradication therapy, as the species and 
strains, dose, and duration of investigated probiotics are heterogeneous.

An alternative therapeutic approach is to target and disrupt bacterial biofilms. Previous 
studies have shown that the use of N-acetylcysteine (NAC) reduces bacterial load and 

8/18

H. pylori Antibiotic Resistance

https://doi.org/10.3346/jkms.2024.39.e44https://jkms.org



enhances eradication rate.172,173 The effect of NAC was also found in a clinical trial, showing 
better clearance of H. pylori in patients treated with NAC before antibiotic treatment.174 
However, the exact mechanism underlying the reported therapeutic effect of NAC in the 
disruption of biofilms and overcoming H. pylori antibiotic resistance has yet to be defined. 
In a recent study, the combination of antibiotics and rhamnolipid, a glycolipid biosurfactant 
capable of disrupting biofilm and potentially inhibiting bacterial adhesion, was reported to 
effectively inhibit biofilm formation in vitro.175 Although the results are promising, the roles 
of rhamnolipid and anti-biofilm compounds need further investigation in vitro and in vivo.

Phage therapy
The rise in antibiotic resistance has increased interest in studying bacteriophages, 
particularly lytic bacteriophages. Phage therapy has various potential advantages over 
antibiotics because phages and their cleaved proteins are highly specific, affecting the target 
strain but not the microbiome.176 Furthermore, phages exclusively replicate at the site of 
infection, and no secondary effects have been reported.177 Few studies have investigated 
the presence of phages in H. pylori strains, including prophages and lytic phages.178-181 
However, the exact function and properties of phages to be used therapeutically are yet 
to be determined. Although phage therapy appears to be a promising approach for future 
treatment options for H. pylori infection, further investigations are required to improve our 
understanding of phage and H. pylori interactions, which are still in the exploratory stage.

Vaccination
Developing an effective vaccine against H. pylori could be a game-changer in preventing 
infections and reducing the reliance on antibiotic treatment. Several vaccine candidates are 
currently under investigation, aiming to elicit a protective immune response against H. pylori; 
however, few have shown a protective effect.182-194 In a randomized, double-blind, placebo-
controlled, phase 3 clinical trial, three doses of oral recombinant H pylori vaccine were introduced 
in children and were followed up for the next three years.194 The vaccine was effective against H. 
pylori in 71.8% of subjects without any serious adverse events. However, the authors suggested 
a longer follow-up period to confirm protective effects against H. pylori-associated diseases. 
The search for an effective vaccine is in the exploratory stage and needs further investigations, 
considering better design of vaccine strategies, optimal combination of antigens, selection of 
suitable adjuvants, and proper delivery carriers. Additionally, given that H. pylori infection usually 
occurs in early childhood, the optimal timing of vaccination and subsequent follow-up strategies 
to ensure the protective effects of vaccination should be further elucidated.

CONCLUSIONS

The increasing rates of H. pylori antibiotic resistance and MDR strains pose significant 
challenges for eradication therapy. Substantial progress has been made in understanding 
the fundamental mechanisms underlying antibiotic resistance in H. pylori, including genetic 
mutations, efflux pump systems, and biofilm formation. To overcome antibiotic resistance 
of H. pylori, antibiotic stewardship and tailored therapy based on antimicrobial susceptibility 
testing are recommended. Strategies such as adjuvant treatment, phage therapy, and vaccine 
development are currently being explored. In addition to optimizing currently available 
treatment options, continuous monitoring of local resistance profiles, ongoing research, 
and the development of innovative therapies are required to effectively manage antibiotic-
resistant H. pylori infections and associated gastrointestinal diseases.
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