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a b s t r a c t 

Background: Adult spinal deformity patients (ASD) experience altered spinal alignment affecting spatiotemporal 

parameters and joint kinematics. Differences in spinal deformity between patients with symptomatic idiopathic 

scoliosis (ID-ASD) and patients with “de novo ” scoliosis (DN-ASD) may affect gait characteristics differently. 

This study aims to compare gait characteristics between ID-ASD, DN-ASD, and asymptomatic healthy matched 

controls. 

Methods: In this observational case-control study, ID-ASD (n = 24) and DN-ASD (n = 26) patients visiting the out- 

patient spine clinic and scheduled for long-segment spinal fusion were included. Patients were matched, based on 

age, gender, leg length and BMI, with asymptomatic healthy controls. Gait was measured at comfortable walking 

speed on an instrumented treadmill with 3D motion capture system. Trunk, pelvic and lower extremities range 

of motion (ROM) and spatiotemporal parameters (SPT) are presented as median (first and thirds quartile). Inde- 

pendent t-test or Mann–Whitney U test was used to compare ID-ASD, DN-ASD and controls. Statistical Parametric 

Mapping (independent t-test) was used to compare 3D joint kinematics. 

Results: DN-ASD patients walk with increased anterior trunk tilt during the whole gait cycle compared with ID- 

ASD patients and controls. ID-ASD walk with decreased trunk lateroflexion compared with DN-ASD and controls. 

DN-ASD showed decreased pelvic obliquity and -rotation, increased knee flexion, and decreased ankle plantar 

flexion. ID-ASD and DN-ASD displayed decreased trunk, pelvic and lower extremity ROM compared with controls, 

but increased pelvic tilt ROM. ID-ASD patients walked with comparable SPT to controls, whereas DN-ASD patients 

walked significantly slower with corresponding changes in SPT and wider steps. 

Conclusions: DN-ASD patients exhibit distinct alterations in SPT and kinematic gait characteristics compared with 

ID-ASD and controls. These alterations seem to be predominantly influenced by sagittal spinal malalignment and 

kinematic findings in ASD patients should not be generalized as such, but always be interpreted with consideration 

for the nature of the ASD. 

B

 

s  

t  

t  

p  

N

M

p  

a  

i  

a  

t  

e  

u  

h

R

A

2

(

ackground 

Adult spinal deformity (ASD) disrupts the normal alignment of the

pine and can cause changes in posture and gait pattern, leading to func-

ional impairments, decreased mobility and quality of life [1] . To coun-

eract sagittal spinal malalignment during standing, ASD patients com-

ensate by thoracic hypokyphosis, reduced lumbar lordosis, posterior
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elvic tilt and/or increased hip and knee flexion along with increased

nkle dorsiflexion to preserve a horizontal gaze and maintain stabil-

ty [ 1 , 2 ]. However, it has been shown that these compensatory mech-

nisms are lost during walking and that the disbalance as a result of

he spinal malalignment in ASD patients strongly influences gait param-

ters and leading to deviation gait patterns [ 3–6 , 7 ]. Previous studies

sing 3-dimensional gait analysis in patients with ASD reported altered
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patiotemporal parameters, such as a slower walking speed and step ca-

ence with shorter steps in patients with ASD compared with healthy

ontrols [ 8–18 ]. Studies investigating kinematics in patients with ASD

eported an increased anterior trunk tilt [ 4 , 7 , 19 , 20 ], increased anterior

elvic tilt [ 4 , 19 , 20 ], and consequently more flexed hips and knees [ 5–7 ]

s compared with healthy controls, in an attempt to keep the center of

ass within the base of support. Furthermore, no studies investigated

he effect of ASD on gait alterations in the frontal plane with regards to

runk and pelvic motion, although it has previously been reported that

pinal deformity in the frontal plane is related to pain and dysfunction

n patients with ASD [21] . 

Symptomatic idiopathic scoliosis (ID-ASD) patients with progres-

ion of adolescent idiopathic scoliosis (AIS) typically experience on-

et of symptoms at a younger age and exhibit normal sagittal align-

ent on static radiographs [ 22 , 23 ]. However, they often display pos-

ural malalignment in the frontal plane. For these patients, surgical

ntervention may be recommended to prevent further deterioration

nd associated symptoms. Patients with “de novo ” ASD (DN-ASD),

ho tend to experience symptoms at an older age, show a more pro-

ounced sagittal malalignment. Persistent and severe back pain, along

ith impaired mobility resulting in difficulty in walking or maintain-

ng an upright posture due to the deformity, can be an indication for

urgery [ 5 , 7 , 24 ]. 

When conservative measures prove to be insufficient in address-

ng the symptoms and functional limitations associated with the spinal

eformity, a therapeutic option for these patients is spinal fusion

urgery. The goals of surgery are to alleviate pain, improve spinal

lignment, restore neurological function, and enhance overall mobil-

ty by fusing affected vertebrae together to correct the misalignment

nd stabilize the spine. Instrumentation such as rods, screws, and

ther devices may be used to support the spine during the fusion

rocess. 

This study aims to investigate alterations in gait characteristics of

SD patients compared with asymptomatic healthy controls, while tak-

ng into account differences in the origin and nature of adult spinal de-

ormity between 2 patient groups: those with symptomatic idiopathic

coliosis with progression of adolescent idiopathic scoliosis, and those

ith “de novo ” ASD. 

ethods 

ubject sample 

In this observational retrospective case-control study, patients who

ere scheduled for long segment spinal fusion surgery of 4 segments or

ore between March 2017 and October 2021 were reviewed. Patients

ged 18 years or older that with available 3-dimensional gait analyses

rior to surgery were included. Exclusion criteria were active cancer,

ody weight exceeding the equipment rating for the treadmill (135 kg),

nability to walk, or mental disability. Three-dimensional gait analyses

as performed as part of standard care. Patients were measured within

 months (range 1–190 days) prior to surgery. This study was approved

y the local Medical Ethics Committee. Demographic variables including

ex (male or female), age at the time of the gait analysis, weight (kg),

eg length (m), height (m) and BMI (kg/m2 ) were recorded. Medical

ecords were examined to identify patients with a history of total hip or

nee replacement surgeries. For ASD patients, the indication for spinal

usion, symptomatic idiopathic scoliosis (ID-ASD) or “de novo ” scoliosis

DN-ASD) was recorded. 

Each ASD patient was matched with an asymptomatic healthy con-

rol subject based on age, gender, leg length and BMI. The healthy con-

rols were selected from a reference database. The controls had no self-

eported medical history resulting in walking difficulties, balance prob-

ems affecting daily activities, spinal deformity, and could walk for at
east 30 minutes without assistance. w  

2

rocedure 

ait analysis 

Three-dimensional gait analysis was conducted at the Computer As-

isted Rehabilitation ENvironment (CAREN, Motek Medical BV) sys-

em. CAREN includes a dual-belt instrumented treadmill (force plates:

000Hz), a 12-camera motion capture system (100Hz; Vicon Motion

ystems) and a virtual industrial environment providing optic flow. All

articipants wore standard gymnastic shoes and a safety harness con-

ected to an overhead frame to prevent falling. Both patients and con-

rols followed the same protocol, which has been described at proto-

ols.io [25] . Twenty-six reflective markers attached directly onto the

kin at specific bony landmarks according to the Human Body lower

imb model with trunk markers (HBM-II) were tracked by the motion

apture system ( Fig. 1 ). All subjects walked at their individual com-

ortable speed. To determine the comfortable walking speed, subjects

tarted to walk at 0.5 m/s and walking speed was increased every sec-

nd with 0.01 m/s until the subjects stated that their comfortable walk-

ng speed was reached. This was repeated 3 times and the average was

aken as the comfortable walking speed. After a 6-minute familiarization

eriod, a total of 250 steps (125 cycles) were recorded. 

iplanar radiographic exam 

Static alignment was analyzed using standardized anteriorposterior

nd lateral full-spine radiographs using validated software (Surgimap;

emaris). The following radiographic parameters were measured: max-

mal coronal Cobb angle (°), pelvic tilt (PT,°), pelvic incidence (PI,°),

acral slope (SS,°), L1–S1 lumbar lordosis (L1–S1 LL,°), L4–S1 lumbar

ordosis (L4–S1 LL,°), pelvic incidence —lumbar lordosis (PI–LL) mis-

atch (°), thoracic kyphosis (TK,°), global tilt (GT,°) and sagittal vertical

xis (SVA; mm). The Global Alignment and Proportion score was also

alculated [26] . 

utcomes 

Data recording and processing have been described in a paper at pro-

ocols.io [25] . The quality of the data was checked, and good kinematic

nd kinetic steps were identified using custom-made algorithms pro-

rammed in Matlab (R2016a, mathworks). The following spatiotempo-

al parameters were determined based on all valid steps: walking speed

m/s), cadence (steps/min), stride length (m), stride time (s), stance

ime (s), swing time (s), double support time (s), and step width (m).

he coefficient of variation (CoV, [standard deviation / mean]∗ 100) of

he stride time (%) and stride length (%) was calculated as a measure

f variability. Data of joint kinematics were time normalized (gait cycle

%–100%). For every time point of the gait cycle, the average over all

alid steps was calculated per subject. The following joint kinematics

ere calculated: sagittal, frontal and transversal plane trunk and pelvis

oint angles ( ̊) and sagittal hip, knee and ankle angle ( ̊). In addition,

ange of motion (ROM) in joint kinematics was calculated as maximum–

inimum value over the whole gait cycle. Subsequently, group averages

or the ID-ASD patient group, DN-ASD patient group and both control

roups were calculated. 

tatistics 

Normality of demographic data, spatiotemporal and CoV parameters

nd ROM in joint kinematics data was tested with Shapiro —Wilk test

nd reported as median and Q1 to Q3. Depending on the normality of

ata, the independent t-test or Mann —Whitney U test was used to com-

are spatiotemporal —and CoV parameters and ROM in joint kinematics

f both patient groups with their control group. Statistical parametric

apping (SPM), using 2-tailed 2-sample t-test, was used to compare

he joint kinematics of the patient versus control groups, and the pa-

ients with ID-ASD versus patients with DN-ASD [27] . Joint kinematics

aveforms were presented as group average with standard deviations.
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Fig. 1. Front, side and rear view of the marker set used in human body model lower limb with trunk markers. JN, jugular notch of the sternum; C7, 7th cervical 

vertebra; XIPH, xiphoid process of the sternum; T10, 10th thoracic vertebra; RASIS/LASIS, right/left anterior superior iliac spine; RPSIS/LPSIS, right/left posterior 

superior iliac spine; RLTHI/LLTHI, right/left lateral thigh; RLEK/LLEK, right/left lateral epicondyle of the knee; RMEK/LMEK, right/left medial epicondyle of the 

knee; RLSHA/LLSHA, right/left lateral shank; RMM/LMM, right/left medial malleolus of the ankle; RLM/LL, right/left lateral malleolus of the ankle; RMT5/LMT5, 

caput of the 5th meta tarsal bone; RMT2/LMT2, right/left caput of the 2nd meta tarsal bone; RHEE/LHEE, right/left heel (same height as LMT). 
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he analyses were done using the Statistical Package for the Social Sci-

nces version 25 (SPSS) and SPM analyses were implemented using the

pen-source spm1d code (v.M0.4.7 (2019.11.27), www.spm1d.org ) in

ATLAB (Mathworks, R2016a) [28] . Significance level was set for all

nalyses at p < .05. 

esults 

emographics 

Demographics of the symptomatic idiopathic scoliosis (ID-ASD)

roup (n = 24), “de novo ” scoliosis (DN-ASD) group (n = 26) and their

wn matched control group (N = 50) are shown in Table 1 . Age, gender,

eight, leg length, height and Body Mass Index (BMI, weight∗ height2 )

ere comparable between the patient groups and their control groups.

s anticipated, patients with ID-ASD were significantly younger com-

ared with patients with DN-ASD, and had significantly lower BMI. 

adiographic parameters 

Radiographic parameters of the ID-ASD group and DN-ASD group

re shown in Table 2 and 2 exemplary radiographs are shown in
3

ig. 2 . In the coronal plane, a significant difference in Cobb angle be-

ween the ID-ASD and the DN-ASD group was found with the ID-ASD

atients displaying a larger Cobb angle compared with the DN-ASD

roup ( Δ17°). With regards to radiographic parameters in the sagittal

lane increased anterior pelvic tilt ( Δ11°), and a larger pelvic incidence

 Δ13.5°), global tilt ( Δ19.0°) and sagittal vertical axis ( Δ68mm) was

ound for the DN-ASD group compared with the ID-ASD group. Further-

ore, the DN-ASD group had a significantly larger Global Alignment

nd Proportion score compared with the ID-ASD group (7.0 [3–10] vs.

.0 [0–5]). 

oint kinematics 

Patients with ID-ASD walked with significant less trunk lateroflexion

uring stance phase and midswing, while trunk tilt, trunk rotation and

D pelvic motion was comparable to their control group ( Figs. 3 and 4 ).

n addition, the ID-ASD group showed similar hip, knee and ankle joint

inematics compared with controls ( Fig. 5 ). 

Patients with DN-ASD showed significantly increased anterior trunk

ilt during the whole gait cycle, decreased pelvic obliquity during load-

ng response and decreased external pelvic rotation from midstance to

reswing as compared with their controls. Conversely, no differences

http://www.spm1d.org/
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Fig. 2. Typical radiographic images of ASD patients. (A) "de novo" ASD patient, (B) symptomatic idiopathic scoliosis ASD patient. 

Fig. 3. 3D Trunk kinematic waveforms presented as group average with standard deviations for trunk tilt, trunk lateroflexion and trunk rotation during complete gait 

cycle (0%–100%). Comparison between patients with ID-ASD (green) compared with controls (black) in the first row, patients with DN-ASD (green) compared with 

controls (black) in the second row and patients with ID-ASD (black) compared with patients with DN-ASD (green) in the third row. The blue shaded areas indicate 

the part of the gait cycle (%) were the kinematic waveforms significantly differ between groups tested with SPM 2-tailed 2-sample t-test. 3D, three-dimensional; 

ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, "de novo"-adult spinal deformity; SPM, statistical parametric mapping. 

4
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Table 1 

Demographics. 

ID-ASD Controls ID-ASD vs C DN-ASD Controls DN-ASD vs C ID-ASD vs. DN-ASD 

Median Q1 Q3 Median Q1 Q3 p-value Median Q1 Q3 Median Q1 Q3 p-value p-value 

Gender (F/M) 15/9 - - 15/9 - - - 21/5 - - 21/5 - - - - 

Age (y) 20.0 19.0 26.5 22.0 20.3 30.0 .119 60.5 55.0 65.5 59.5 51.5 66.3 .558 < .001 ∗ 

Weight (kg) 68.5 58.3 75.4 70.3 62.3 76.8 .571 75.5 64.9 87.3 73.4 66.1 82.1 .616 .061 

Height (m) 1.71 1.64 1.78 1.73 1.68 1.78 .371 1.65 1.58 1.73 1.66 1.61 1.75 .782 .126 

BMI (kg/m2 ) 23.1 20.7 26.7 22.3 20.9 25.6 .934 28.1 25.1 30.1 27.3 23.9 28.7 .477 .006 ∗ 

Leg length (m) 0.90 0.85 0.93 0.89 0.86 0.94 .898 0.89 0.83 0.93 0.87 0.84 0.92 .729 .176 

Total hip replacements 0 - - 0 - - - 1 (bilateral) - - 0 - - - - 

Total knee replacements 0 - - 0 - - - 1 - - 0 - - - - 

Gender is reported as absolute numbers. Age, weight, height BMI and leg length is reported as medians and first and third quartile. 
∗ Significance level: p < .05. 

ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, “de novo ” scoliosis-adult spinal deformity; C, controls. 

Table 2 

Radiographic parameters. 

ID-ASD DN-ASD ID-ASD vs. DN-ASD 

Median Q1 Q3 Median Q1 Q3 p-value 

Maximal coronal Cobb angle (°) 46.00 36.50 54.00 29.00 15.25 42.75 .003 ∗ 

Pelvic tilt (°) 13.00 7.00 18.00 24.00 17.75 33.00 < .001 ∗ 

Pelvic incidence (°) 42.00 38.00 56.00 55.5 42.5 63.75 .006 ∗ 

Sacral slope (°) 33.00 28.00 42.00 31.5 22.00 39.25 .792 

Lumbar lordosis L1S1 (°) 52.00 41.00 60.00 39.5 28.25 57.00 .099 

Lumbar lordosis L4S1 (°) 33.00 29.00 40.00 32.50 21.00 38.25 .313 

Pelvic incidence – Lumbar lordosis mismatch (°) 11.00 6.00 20.00 17.00 3.75 27.50 .176 

Thoracic kyphosis (°) 39.00 20.00 49.00 42.00 29.50 54.25 .307 

Global tilt (°) 9.00 5.00 22.00 28.00 24.00 42.00 < .001 ∗ 

Sagittal vertical axis (mm) 20.00 0.00 29.00 88.00 40.00 131.00 < .001 ∗ 

GAP score 2.00 0.00 5.00 7.00 3.00 10.00 .001 ∗ 

Data is reported as medians and interquartile ranges. 
∗ Significance level: p < .05. 

Not all parameters were available for all patients: ID-ASD maximal coronal Cobb angle n = 21; ID-ASD sagittal parameters n = 23; DN-ASD maximal coronal Cobb 

angle n = 18; DN-ASD sagittal parameters n = 26. 

ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, “de novo ” scoliosis-adult spinal deformity. 

Fig. 4. 3D Pelvic kinematic waveforms presented as group average with standard deviations for pelvic tilt, pelvic obliquity and pelvic rotation during complete gait 

cycle (0%–100%). Comparison between patients with ID-ASD (green) compared with controls (black) in the first row, patients with DN-ASD (green) compared with 

controls (black) in the second row and patients with ID-ASD (black) compared with patients with DN-ASD (green) in the third row. The blue shaded areas indicate 

the part of the gait cycle (%) were the kinematic waveforms significantly differ between groups tested with SPM 2-tailed 2-sample t-test. 3D, three-dimensional; 

ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, "de novo"-adult spinal deformity; SPM, statistical parametric mapping. 

5
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Fig. 5. Sagittal hip, knee and ankle kinematic waveforms presented as group average with standard deviations for pelvic tilt, pelvic obliquity and pelvic rotation 

during complete gait cycle (0%–100%). Comparison between patients with ID-ASD (green) compared with controls (black) in the first row, patients with DN-ASD 

(green) compared with controls (black) in the second row and patients with ID-ASD (black) compared with patients with DN-ASD (green) in the third row. The blue 

shaded areas indicate the part of the gait cycle (%) were the kinematic waveforms significantly differ between groups tested with SPM 2-tailed 2-sample t-test. 3D, 

three-dimensional; ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, "de novo"-adult spinal deformity; SPM, statistical parametric mapping. 

Table 3 

Range of motion during walking. 

ID-ASD Controls ID v C DN-ASD Controls DN v C ID v DN 

Median Q1 Q3 Median Q1 Q3 p-value Median Q1 Q3 Median Q1 Q3 p-value p-value 

ROM trunk tilt (°) 3.70 2.86 4.68 3.95 3.46 5.22 .213 3.14 2.41 3.77 3.21 2.50 4.16 .464 .081 

ROM trunk lateroflexion (°) 12.42 9.63 15.06 15.46 12.27 18.64 .024 ∗ 8.35 5.36 10.29 10.50 7.08 13.74 .052 < .001 ∗ 

ROM trunk rotation (°) 9.56 6.73 11.27 10.17 7.99 12.90 .098 6.16 4.11 8.26 9.74 7.51 14.08 < .001 ∗ .013 ∗ 

ROM pelvic tilt (°) 2.94 2.11 4.06 2.13 1.76 2.38 < .001 ∗ 3.91 2.87 4.49 2.50 2.06 2.82 < .001 ∗ .107 

ROM pelvic obliquity (°) 10.22 7.37 12.53 12.09 11.11 13.87 .011 ∗ 5.65 4.27 8.39 10.69 8.14 12.15 < .001 ∗ < .001 ∗ 

ROM pelvic rotation (°) 6.27 4.59 7.83 6.75 5.29 8.88 .213 4.74 3.84 7.33 6.32 3.79 9.90 .234 .251 

ROM hip flexion/extension (°) 41.60 36.65 44.74 43.43 41.48 48.37 .008 ∗ 39.81 32.95 43.81 46.17 41.00 49.74 .002 ∗ .254 

ROM knee flexion/extension (°) 62.56 57.09 65.91 63.29 61.35 66.49 .089 56.16 48.88 59.86 63.61 57.81 65.86 < .001 ∗ < .001 ∗ 

ROM ankle dorsi/plantar flexion (°) 29.05 26.62 31.87 28.40 24.69 31.09 .771 25.76 19.74 30.26 27.46 22.56 29.10 .689 .122 

Medians and interquartile ranges are reported. 
∗ Significance level: p < .05. 

ROM, range of motion; ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, “de novo ”-adult spinal deformity; C, controls. 
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with ID-ASD. 
ere found in trunk lateroflexion, trunk rotation or pelvic tilt ( Figs. 3

nd 4 ). Besides, the DN-ASD group had significantly increased knee flex-

on from midstance to preswing and decreased ankle plantar flexion dur-

ng preswing compared with their controls ( Fig. 5 ). 

When comparing ID-ASD patients with DN-ASD patients, patients

ith DN-ASD walked with significantly increased anterior trunk tilt,

ecreased trunk lateroflexion from midstance until midswing, while

runk rotation and 3D pelvic motion were comparable to the patients

ith ID-ASD ( Figs. 3 and 4 ). Further, the DN-ASD group displayed de-

reased knee extension from terminal swing until midstance with sig-

ificantly decreased plantar flexion during preswing (55%–66% of gait

ycle). 

ange of motion 

Patients with ID-ASD showed significantly decreased ROM in

runk lateroflexion ( Δ3.04°), significantly increased ROM in pelvic tilt

 Δ0.71°), and significantly decreased pelvic obliquity ( Δ1.87°) and hip

exion/extension ( Δ3.45°) compared with their controls ( Table 3 ). Pa-

ients with DN-ASD displayed significantly decreased ROM in trunk ro-
6

ation ( Δ3.58°), significantly increased ROM in pelvic tilt ( Δ1.41°), sig-

ificantly decreased pelvic obliquity ( Δ5.04°), pelvic rotation ( Δ1.58°),

ip flexion/extension ( Δ6.33°) and knee flexion/extension ( Δ7.45°)

 Table 3 ). Compared with patients with ID-ASD, patients with DN-ASD

howed significantly decreased ROM in trunk lateroflexion ( Δ4.07°),

runk rotation ( Δ3.40°), pelvic obliquity ( Δ4.57°) and knee flex-

on/extension ( Δ6.40°) ( Table 3 ). 

patiotemporal parameters 

Spatiotemporal parameters ( Table 4 ) were comparable for patients

ith ID-ASD and their control group. Patients with DN-ASD walked sig-

ificantly slower ( Δ0.31m/s) with decreased cadence ( Δ10steps/min)

nd stride length ( Δ0.21m) and increased stride time ( Δ0.09s), stance

ime (0.09s), double support time (0.03s) and step width (0.04m) com-

ared with controls. Furthermore, patients with DN-ASD walked signifi-

antly slower ( Δ0.18m/s) with decreased stride length ( Δ0.17m), stance

ime ( Δ0.04s) and double support time ( Δ0.02s) compared with patients
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Table 4 

Spatiotemporal parameters during walking. 

ID-ASD Controls ID v C DN-ASD Controls DN v C ID v DN 

Median Q1 Q3 Median Q1 Q3 p-value Median Q1 Q3 Median Q1 Q3 p-value p-value 

Speed (m/s) 1.17 1.04 1.28 1.21 1.09 1.34 .210 0.99 0.73 1.14 1.30 1.13 1.39 < .001 ∗ .004 ∗ 

Cadence (steps/min) 112.76 101.18 118.54 110.9 104.7 115.2 .683 108.40 101.83 113.25 118.24 111.32 122.79 .001 ∗ .400 

Stride length (m) 1.25 1.16 1.37 1.31 1.17 1.49 .186 1.08 0.84 1.28 1.29 1.21 1.37 < .001 ∗ < .001 ∗ 

Stride time (s) 1.07 1.01 1.19 1.08 1.04 1.15 .967 1.11 1.07 1.18 1.02 0.98 1.08 .001 ∗ .312 

Stance time (s) 0.66 0.60 0.73 0.67 0.62 0.68 .773 0.70 0.66 0.76 0.61 0.58 0.66 < .001 ∗ .047 ∗ 

Swing time (s) 0.42 0.41 0.46 0.43 0.42 0.45 .379 0.42 0.40 0.44 0.41 0.38 0.43 .399 .572 

Double support time (s) 0.12 0.10 0.13 0.11 0.10 0.12 .241 0.14 0.12 0.17 0.11 0.09 0.13 < .001 ∗ .002 ∗ 

Step width (m) 0.18 0.14 0.20 0.18 0.13 0.21 .606 0.20 0.18 0.24 0.16 0.14 0.20 .024 ∗ .193 

Medians and interquartile ranges are reported. 
∗ Significance level: p < .05. 

ID-ASD, symptomatic idiopathic scoliosis-adult spinal deformity; DN-ASD, “de novo ”-adult spinal deformity; C, controls. 
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ait variability (CoV) 

With regards to gait variability, the ID-ASD group walked with

omparable stride time variability (1.81 [1.29–2.00]% vs. 1.72[1.01–

.89]%) and stride length variability (2.13 [1.56–2.63]% vs. 1.92 [1.48–

.38]%) to their controls. The patients with DN-ASD showed increased

ariability in stride time (2.00 [1.78–3.07]% vs. 1.52 [1.01–1.85]%) and

tride length (2.92[2.19-4.39]% vs. 1.72[1.49–2.61]%) compared with

ontrols and compared with patients with ID-ASD ( Δ0.19%; Δ0.79%

esp.). 

iscussion 

Identifying and characterizing gait alterations caused by ASD is cru-

ial for evaluating the functional impact of spinal deformity on a pa-

ient’s daily mobility, designing interventions customized to their spe-

ific needs, and monitoring treatment progress effectively. The cur-

ent study aimed to compare gait characteristics between ASD patients

ith symptomatic idiopathic scoliosis (ID-ASD) and ASD patients with

de novo ” scoliosis (DN-ASD) scheduled for spinal fusion, along with

atched asymptomatic healthy controls. The results reveal that patients

ith DN-ASD exhibited greater alterations in spatiotemporal and kine-

atic gait parameters compared with controls, as well as in compar-

son to patients with ID-ASD. Moreover, patients with DN-ASD show

ncreased variability in stride time and stride length. 

During the whole gait cycle, DN-ASD patients walk with significantly

ncreased anterior trunk tilt, which is in line with previous studies on pa-

ients with ASD [ 3 , 6 , 18 , 29 ]. The observed increase in anterior trunk tilt

ndicates sagittal imbalance and might be attributed to spinal malalign-

ent in the sagittal place, which corresponds with the radiographic

nding showing a significantly SVA and global tilt for DN-ASD patients

ompared with ID-ASD patients. It suggests a relation between SVA and

lobal tilt with trunk tilt waveforms, which is confirmed with additional

nalysis (Appendix). This sagittal imbalance may also arise from in-

reased stiffness of the spine and can be a consequence from limited

elvic obliquity and pelvic rotation due to weakness of hip abductors,

eneral deconditioning and lumbar deformity [ 28–31 ]. 

In contrast, the patients with ID-ASD do not show deviating trunk

ilt, but do show significantly reduced trunk lateroflexion during stance.

his corresponds with the static radiographs, where the ID-ASD group

ad significant smaller SVA and global tilt compared with the DN-ASD

roups. This is in line with Karam et al. [23] , who states that patients

ith ID-ASD often display postural malalignment in the frontal plane,

ut normal alignment in the sagittal plane as shown by static radio-

raphs. Semaan et al. [29] also found that when scoliosis is limited to the

rontal plane, it does not impact sagittal trunk tilt during walking. Inter-

stingly, additional analyses (Appendix) showed no significant positive

orrelation between maximal coronal Cobb angle and trunk lateroflex-

on waveforms. But, is has previously been shown in AIS patients that a
7

coliosis can lead to asymmetric trunk movement in the frontal plane,

here patients lean towards either side, depending on the nature of the

pinal deformity [32] . This asymmetry in trunk lateroflexion means that

art of the ID-ASD group may display increased trunk lateroflexion in

ne direction, while another part of the ID-ASD group may have in-

reased trunk lateroflexion in the opposite direction. This difference in

hese trunk movements may partially cancel each other out, leading to

 reduced net trunk lateroflexion on average. 

Despite a significant increased static radiographic pelvic tilt in the

N-ASD patients compared with the ID-ASD patients, no significant dif-

erences are found in pelvic tilt during walking neither between ID-ASD

atients and DN-patients, nor when compared with their control groups

hich is in line with prior investigations [ 3 , 4 , 12 , 19 , 20 , 29 , 33 , 34 ]. More-

ver, the significant positive correlation between trunk tilt during walk-

ng and the static radiographic pelvic tilt highlights that DN-ASD pa-

ients experience more sagittal spinal malalignment compared with ID-

SD while standing (Appendix). And, as the dynamic pelvic tilt is com-

arable to controls, that this compensation mechanism of pelvic retro-

ersion during standing in DN-ASD patients is lost during walking [ 3–

 ]. In addition, ASD patients demonstrate a larger standard deviation in

elvic tilt kinematics when compared with controls, signifying interindi-

idual variations in pelvic tilt during walking [ 12 , 29 ]. Both ID-ASD and

N-ASD patients exhibit a significantly increased ROM in pelvic tilt than

ontrols, suggesting increased pelvic motion in the sagittal plane on indi-

idual level. This may be attributed to the need to minimize the center of

ass excursion [ 6 , 35 ], or due to the loss of compensatory mechanisms

imed at maintaining sagittal balance during walking. A study of Bae

t al. [36] investigated the impact of fatigue on compensatory mecha-

isms during walking in patients with ASD. Their findings reveal that,

ollowing 10 minutes of walking, 84.6% of ASD patients with compen-

ated sagittal deformity before walking lose the capacity to compensate

hrough pelvic retroversion or thoracic hyperextension. Consequently,

agittal misbalance occurred. In the current study, participants were re-

uired to walk for a prolonged duration, lasting up to 12 minutes, en-

ompassing both the familiarization period and the measuring period.

lthough not investigated in the current study, it is plausible that, simi-

ar to the patients in the study of Bae et al. [36] , ASD patients are able to

ompensate at the beginning of the measurements but lose this ability at

he end of the measurement. This may partly explain the larger standard

eviation in pelvic tilt kinematics and pelvic tilt ROM in the ASD patient

roups, especially in the DN-ASD group who are expected to experience

ore pronounced deviations in the sagittal plane and more progressive

uscle fatigue with activity, general deconditioning and secondary pain

 5 , 7 , 24 , 37 ]. 

Regarding lower extremity kinematics, patients with DN-ASD exhibit

ecreased knee extension during stance and decreased ankle plantar

exion around toe off compared with controls, while ID-ASD patients

how decreased hip extension, accounting for the decreased ROM in

oth hip and knee. These findings are consistent with a crouched gait
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attern, which has been previously reported in patients with ASD as a

ompensatory mechanism to keep the center of gravity above the feet

nd remain a horizontal gaze during walking [ 3 , 5 , 6 , 7 , 29 ]. 

Patients with ID-ASD show similar spatiotemporal gait parameters

ompared with their controls, suggesting that the spinal deformation

or these patients does not yet impose a significant problem concern-

ng ambulation. A study by Semaan et al. [29] evaluated differences in

SD patients with different types of spinal deformity and also found

hat spatiotemporal parameters of ASD patients with a spinal defor-

ity in the frontal plane were similar to controls. In contrast, DN-ASD

atients walk with slower walking speed compared with controls, and

ith smaller and wider steps with increased double support time. This

ight be a compensation mechanism to improve stability during walk-

ng [ 6 , 12 , 29 ], as the sagittal deformation challenges the sagittal bal-

nce. Furthermore, we found that DN-ASD patients show increased gait

ariability compared with controls. The increased stride time and stride

ength variability in combination with slower walking speed in DN-ASD

atients indicates a less consistent and less balanced gait [ 6 , 38 , 39 ]. This

s in line with results found by Simon et al. [13] who showed signifi-

antly less step length consistency in patients with ASD compared with

ontrols. Also, increased variability in stride time and stride length have

reviously been identified as fall predictors in patients with gait and bal-

nce problems, suggesting that the DN-ASD group experiences sagittal

mbalance and may be at a higher risk for falling than their control group

 13 , 29 , 38–41 ]. 

The study has some limitations that warrant consideration. First, pa-

ients walked at a slower comfortable walking speed compared with con-

rols, which may have influenced spatiotemporal parameters and joint

inematics [42] . However, this slower speed is a study finding in itself,

nd using a fixed walking speed would have potentially forced subjects

o walk at an uncomfortable pace, potentially leading to an unnatural

ait pattern. Second, this study examined trunk motion as 1 rigid seg-

ent, which limits the ability to gather information on the curvature

f the spine or kinematic changes within the spine [ 3 , 43–45 , 46 ]. Third,

o radiographic images were available for the controls, which made it

mpossible to compare radiographic parameters of ASD patients with

heir matched controls. Last, although it is known that musculoskele-

al conditions such as osteoarthritis or neurological disorders such as

arkinson’s disease may influence gait patterns, we did not take this

nto consideration in the current study [47] . 

This study boasts several notable strengths. Unlike common presen-

ation of kinematic parameters as peak values and/or range of motion

 12 , 17 , 20 ], the utilization of SPM analyses enables a comprehensive

omparison of joint kinematics throughout the entire gait cycle, offer-

ng deeper insights into the gait characteristics of patients with ASD.

oreover, 3-dimensional gait analysis conducted on a treadmill system

llows for the measurement of numerous successive steps, resulting in a

arge dataset and increased data reliability [48] . Conversely, overground

rials are constrained by limited walking distance, which restricts the

umber of recorded successive steps. The acquisition of many successive

teps not only facilitates the assessment of gait variability but would also

ermit the detection of compensatory mechanism failure by fatigue, a

ask that may not be feasible in short-distance tracks [24] . Additionally,

hile many studies tend to report only kinematics in the sagittal plane,

his study encompasses kinematic data from 3-dimensional planes, pro-

iding a more comprehensive perspective on gait characteristics. Last,

he meticulous matching of each patient to an age, sex, leg length, and

MI-matched control individual ensures that any differences found in

ait characteristics are not influenced by these demographic variables. 

onclusion 

This study demonstrates that ASD patients with “de novo ” scoliosis

DN-ASD) exhibit distinct alterations in spatiotemporal and kinematic

ait characteristics compared with ASD patients with symptomatic id-

opathic scoliosis (ID-ASD) and compared with asymptomatic controls.
8

pecifically, patients with ID-ASD display limited trunk lateroflexion

nd hip extension during stance, whereas DN-ASD patients exhibit

 slower walking speed and corresponding changes in spatiotempo-

al parameters, accompanied by increased anterior trunk tilt, limited

elvic obliquity and rotation, and limited knee extension during stance.

hese alterations seem to be predominantly influenced by sagittal spinal

alalignment. These findings emphasize the significance of taking into

onsideration the nature of spinal deformity in ASD patients as it may

ave a different effect on daily functioning and therefore overall quality

f life. 
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