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Abstract 

Background  Sepsis is a severe condition characterized by acute organ dysfunction resulting from an imbalanced 
host immune response to infections. Apolipoprotein H (APOH) is a critical plasma protein that plays a crucial role 
in regulating various biological processes. However, the precise role of APOH in the immunopathology of paediatric 
sepsis remains unclear.

Methods  In this study, we evaluated the concentration of APOH in paediatric patients with sepsis and healthy 
individuals. In an experimental sepsis model of caecal ligation and puncture (CLP), the impact of APOH on survival, 
organ injury, and inflammation was measured. Furthermore, the anti-inflammatory effects of APOH were investigated 
across diverse immune cell types, encompassing peripheral blood mononuclear cells (PBMCs), peritoneal mac-
rophages (PMs), bone marrow-derived macrophages (BMDMs), and RAW 264.7 macrophages.

Results  In the pilot cohort, the relative abundance of APOH was found to be decreased in patients with sepsis 
(2.94 ± 0.61) compared to healthy controls (1.13 ± 0.84) (p < 0.001), non-survivors had lower levels of APOH (0.50 ± 0.37) 
compared to survivors (1.45 ± 0.83) (p < 0.05). In the validation cohort, the serum concentration of APOH was sig-
nificantly decreased in patients with sepsis (202.0 ± 22.5 ng/ml) compared to healthy controls (409.5 ± 182.9 ng/
ml) (p < 0.0001). The application of recombinant APOH protein as a therapeutic intervention significantly lowered 
the mortality rate, mitigated organ injury, and suppressed inflammation in mice with severe sepsis. In contrast, 
neutralizing APOH with an anti-APOH monoclonal antibody increased the mortality rate, exacerbated organ 
injury, and intensified inflammation in mice with non-severe sepsis. Intriguingly, APOH exhibited minimal effects 
on the bacterial burden, neutrophil, and macrophage counts in the sepsis mouse model, along with negligible effects 
on bacterial phagocytosis and killing during Pseudomonas aeruginosa infection in PMs, RAW 264.7 cells, and PBMCs. 
Mechanistic investigations in PMs and RAW 264.7 cells revealed that APOH inhibited M1 polarization in macrophages 
by suppressing toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signalling pathway.

Conclusion  This proof-of-concept study demonstrated that APOH has a protective role in the host defense response 
to sepsis, highlighting the potential therapeutic value of APOH in sepsis treatment.
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Graphical abstract

Introduction
Sepsis, a condition characterized by the dysregulation 
of the body’s response to infection, leading to organ 
injury, stands as the main cause of mortality in chil-
dren [1–3]. Approximately 40% of sepsis cases occur 
in children under the age of 5, and it is alarming that 
a staggering 20 million cases were reported worldwide 
in 2017 alone [4]. Despite the numerous clinical trials 
conducted, the quest for effective drugs to combat sep-
sis remains an immensely challenging undertaking.

Apolipoprotein H (APOH), also known as beta-2-gly-
coprotein I (β2-GPI), is a highly abundant plasma pro-
tein with a molecular size of approximately 50  kDa. It 
is primarily synthesized by liver cells and comprises 
five domains (I–V) [5]. APOH is a complement regula-
tor across diverse biological processes and conditions, 
including antiphospholipid syndrome (APS), the pro-
coagulant state, diabetes, and immune disorders [6–8]. 

Furthermore, studies have indicated APOH’s involve-
ment in innate immunity by binding to viruses and 
bacteria  [9, 10]. Despite the compelling evidence sup-
porting the role of APOH in numerous diseases, a clear 
correlation between the presence of APOH and the 
onset/progression of paediatric sepsis remains elusive.

In delving into the potential role of APOH in sepsis, 
we assessed the circulating levels of APOH in paediatric 
patients with sepsis in both the pilot and validation cohorts. 
Furthermore, we utilized a clinically relevant model of sep-
sis induced by caecal ligation and puncture (CLP), along 
with multiple types of macrophages (including peritoneal 
macrophages (PMs), bone marrow-derived macrophages 
(BMDMs), peripheral blood mononuclear cells (PBMCs), 
and RAW 264.7 cells), to explore the involvement of APOH 
in host defense and unravel the underlying molecular 
mechanism.
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Materials and methods
Detailed methods are available in the online supplement 
(Additional file 1)
Study population
In the pilot cohort, a total of sixty-eight paediatric 
patients were recruited from the Paediatric Intensive 
Care Unit (PICU) of the Children’s Hospital of Chong-
qing Medical University between December 2016 and 
October 2018. These patients met the clinical criteria for 
the International Paediatric Sepsis Conference 2005 [11]. 
Among the recruited patients, there were 42 survivors 
and 26 non-survivors. Additionally, twenty-six healthy 
volunteers were included as controls. In this cohort, 
peripheral blood samples were collected from each group 
and pooled into six samples for analysis using liquid 
chromatography tandem mass spectrometry (LC–MS/
MS).

In the validation cohort, thirty-six paediatric patients 
with sepsis were enrolled at admission to the PICU of 
Children’s Hospital of Chongqing Medical University 
between January 2022 and March 2023. Peripheral blood 
was collected at 24 h, 48 h, and 72 h after admission. The 
collected serum was isolated and stored at -80  °C until 
further analysis. Various clinical data were recorded at 
24 h after admission, including sex, age, white blood cells 
(WBCs), procalcitonin (PCT), C-reactive protein (CRP), 
Paediatric Sequential Organ Failure (pSOFA), Paediat-
ric Critical Illness Score (PCIS), and systemic inflam-
matory response syndrome (SIRS) score. Additionally, 
information on microbiological findings, ventilation, use 
of adrenocortical hormone, renal replacement therapy, 
length of PICU stays, and mortality during the 28-day 
study period was recorded. Sixty-nine healthy control 
blood samples were taken from healthy donors.

The protocols described in this study were approved 
by the Clinical Research Ethics Committee of the Institu-
tional Review Board of Children’s Hospital of Chongqing 
Medical University (File No: ChiCTR-ROC-17011164 
and (2022) Ethical Review Research No. 427). Informed 
consent was obtained from all participants in accord-
ance with the principles outlined in the Declaration of 
Helsinki.

Experimental animals
All animal experiments were conducted following the 
guidelines provided by the Chongqing Experimental 
Animal Center and the Animal Committee of Children’s 
Hospital (CHCMU-IACUC20221227002). C57BL/6 mice 
were obtained from Chongqing Medical University and 
bred in a controlled environment with a temperature 
range of 20–24 °C and a 12-h light/dark cycle. They were 
provided with free access to standard chow and water. To 
establish a model of polymicrobial sepsis, caecal ligation 

and puncture (CLP) was performed [12]. Prior to the sur-
gery, the mice were anesthetized intraperitoneally with 
pentobarbital sodium (75  mg/kg body weight). A 1  cm 
incision was made in the midline abdomen after disin-
fecting the skin, and the caecum was exposed. The cae-
cum was ligatured at either 60% (severe CLP, 20–40% 
survival) or 40% (non-severe CLP, 60–80% survival) and 
punctured with a 21-gauge needle. Then, the caecum was 
placed back into the abdominal cavity and the incisions 
were closed. Intraperitoneal injection of normal saline 
(0.05 ml/g body weight) was administered for resuscita-
tion, and water and lab chow were reintroduced after the 
operation. Survival of the mice was monitored daily from 
Day 2 to Day 14 after the surgery. A humane endpoint 
was used for the CLP-treated mice.

In vivo administration of recombinant APOH
The mice were divided into two groups: CLP + 0.1% 
bovine serum albumin (BSA) and CLP + recombinant 
murine apolipoprotein H (rAPOH). In the rAPOH group, 
mice were intraperitoneally injected with 20 μg of murine 
rAPOH (R&D Systems, 6575-AH-050, USA) dissolved 
in 100 μl of phosphate buffer solution (PBS). In the BSA 
group, mice received 0.1% BSA in 100 μl of PBS instead.

Antibody‑mediated blockade of APOH
To neutralize APOH activity in non-severe CLP, mice in 
the CLP + anti-APOH (anti-APOH) group were injected 
with 10 μg of anti-mouse APOH neutralizing monoclonal 
antibody (Proteintech, Monoclonal Mouse IgG1, 66,074-
1-Ig, China) dissolved in 100 μl of PBS. Another group of 
mice was injected with mouse IgG1 antibody as a control 
(IgG control).

In vitro administration of recombinant APOH
RAW 264.7 macrophages were obtained from the Insti-
tute of Children’s Hospital Affiliated to Chongqing Medi-
cal University. PMs, BMDMs, PBMCs, and RAW 264.7 
macrophages were cultured in DMEM or 1640 medium 
supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin–streptomycin. The cells were incubated in a 
5% CO2 incubator at 37  °C. Prior to treatment, the cells 
were preincubated with recombinant APOH (rAPOH) 
at a concentration of 20 ng/ml for 30 min. Subsequently, 
the cells were treated with purified lipopolysaccharide 
(LPS) (100 ng/ml) obtained from Escherichia coli O55:B5 
(Abmole, M9524, USA) for 6 h.

Statistical analysis
Data were presented as the mean ± standard deviation 
(S.D.). Group differences were determined using a t test 
(Mann‒Whitney U test) or one-way ANOVA (Tuk-
ey’s multiple comparisons test). Survival studies were 
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analyzed using log-rank (Mantel‒Cox) tests, and correla-
tions were analyzed using the nonparametric Spearman’s 
rank correlation coefficient. All statistical tests were per-
formed using GraphPad Prism version 9 (GraphPad Soft-
ware, San Diego, CA). Statistical significance was defined 
as P < 0.05.

Results
The concentration of APOH is significantly decreased 
in paediatric patients with sepsis
In this study, LC–MS/MS was employed to identify 
potential biomarkers for sepsis in a pilot cohort, and 

ELISAs were used to confirm the expression of APOH in 
a validation cohort. To evaluate the therapeutic impact 
of APOH, a murine model of CLP-induced sepsis was 
employed (Fig.  1a). The characteristics of the patients 
with sepsis and healthy controls in the pilot cohort are 
presented in Additional file  2: Table  S1. The analysis 
revealed a lower APOH level in sepsis patients com-
pared to healthy controls in pooled samples (Fig.  1b). 
Moreover, non-survivors with sepsis exhibited decreased 
expression of APOH compared to survivors in the pilot 
cohort (Fig.  1c). The expression levels of APOH were 
subsequently validated in an independent patient cohort, 
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Fig. 1  APOH levels are significantly decreased in patients with sepsis. a LC–MS/MS was employed to identify potential biomarkers for sepsis 
in a pilot cohort, and ELISAs were used to confirm the expression of APOH in a validation cohort. A murine model of CLP-induced sepsis 
was employed to evaluate the therapeutic impact of APOH. b LC‒MS/MS was employed to identify the level of APOH in patients with sepsis 
and healthy controls in the pilot cohort. c LC‒MS/MS was employed to identify the level of APOH in survivors and non-survivors with sepsis 
in the pilot cohort. d Serum levels of APOH in 36 paediatric patients with sepsis and 69 healthy controls in the validation cohort. e The 
dynamics of APOH levels in the serum of paediatric patients with sepsis at 24, 48 and 72 h in the validation cohort. The data are presented 
as the means ± standard deviations (S.D.). “*” indicates a difference between groups. *p < 0.05, **p < 0.01, *** p < 0.001, ****p < 0.0001. Apolipoprotein 
H, APOH; liquid chromatography tandem mass spectrometry, LC‒MS/MS; enzyme-linked immunosorbent assay, ELISA.
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comprising thirty-six sepsis patients and sixty-nine 
healthy controls. The characteristics of these individu-
als are outlined in Table  1. Consistent with expecta-
tions, serum concentrations of APOH were significantly 
reduced in patients with sepsis compared to healthy 
control subjects (Fig.  1d). Furthermore, the levels of 
APOH showed a progressive decrease as sepsis advanced 
(Fig.  1e). However, in the validation cohort, no signifi-
cant difference in APOH was observed between survi-
vors (n = 30, 202.7 ± 23.4 ng/ml) and non-survivors (n = 6, 
199.1 ± 18.2 ng/ml).

Administration of recombinant APOH protein protects 
septic mice
To illustrate the variation of APOH expression through-
out sepsis progression, we determined the serum levels 
of APOH in polymicrobial sepsis induced by CLP. The 
concentration of APOH was significantly decreased in 

CLP-induced mice compared to sham mice throughout 
the subsequent progression of sepsis (Fig.  2a). Notably, 
CLP-induced septic mice displayed higher IL-6 levels 
compared to sham mice (Additional file 3: Fig. S1a). IL-6 
levels had a significant negative correlation with APOH 
expression (Additional file  3: Fig. S1b). In addition, we 
found that the APOH levels in the lung, liver, and kidney 
were decreased in the CLP-induced septic mice com-
pared to the sham mice (Additional file  3: Fig. S1c and 
Fig.  2b). For the induction of severe sepsis resulting in 
survival rates of 20–40%, the caecum was ligated (indi-
cated by the dotted green line) at a 60% distance between 
the distal pole and the base of the caecum (yellow dot-
ted line) (Fig. 3a). To further confirm the protective role 
of APOH in CLP-induced sepsis, we assessed the effects 
of different doses (5–20  μg) of recombinant murine 
APOH on severe sepsis in the CLP model (Fig.  3b). 
The results showed that supplementation with rAPOH 

Table 1  Characteristics of paediatric patients with sepsis and healthy controls

The data are expressed as the median (interquartile range) unless otherwise indicated. WBC white blood cell, CRP C-reactive protein, PCT procalcitonin, SOFA 
sequential organ failure assessment, PICU paediatric intensive care unit, NA not applicable

Characteristics Sepsis patients
(n = 36)

healthy controls (n = 69) P value

Sex (male/female) 16/20 41/28 0.144

Age (years) 2.54(0.88–6.86) 6.58(4.88–8.09) 0.004

WBC (109/L) 7.94(4.21–13.24) NA

CRP (mg/L) 65.23(16.57–99.96) NA

Procalcitonin (ng/ml) 2.2(0.40–9.080) NA

Infection site
(Number of patients)

Respiratory 31 NA

Abdominal 4 NA

Vascular 0 NA

Urinary 1 NA

Bacteraemia 1 NA

Isolates
(Number of patients)

Gram positive 0 NA

Gram negative 9 NA

Fungus 0 NA

Virus 4 NA

Miscellaneous 13 NA

Other 10 NA

pSOFA score 4 (4–7) NA

PCIS score 79(74–86) NA

SIRS score 3(2–4) NA

PICU stay(days) 7 (4–10.75) NA

Ventilation 24/36 NA

Use of adrenocortical hormone 13/36 NA

Renal replacement therapy 10/36 NA

Died/survived 6/36 NA
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(20 μg) significantly improved mouse survival compared 
to BSA treatment (Fig.  3c). The increased survival of 
the rAPOH group may be attributed to decreased tissue 
inflammation and organ injury, as evidenced by amelio-
ration observed in the lung, liver, and kidney (Fig. 3d–e). 
Moreover, significantly reduced inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6, while increased IL-10 
levels were observed in serum and PLF samples from 
rAPOH-treated septic mice compared to the BSA control 
group (Fig. 3f–g).

Anti‑APOH antibody worsens non‑severe sepsis in mice
In addition, a non-severe CLP model was established by 
ligating the caecum (indicated by the dotted green line) 
at a 40% distance between the distal pole and the base 
of the caecum (yellow dotted line) (Fig.  4a). To explore 
the potentially detrimental effects of APOH blockade, 
we conducted an in vivo study using 5 or 10 μg of anti-
APOH antibody (Fig.  4b). As shown in Fig.  4c, the sur-
vival rate of septic mice in the anti-APOH group was 
significantly lower compared to the septic mice treated 
with the IgG control (Fig.  4c). Furthermore, the septic 
mice treated with the anti-APOH antibody after CLP 

exhibited significantly aggravated lung, liver, and kidney 
injuries compared to the IgG-control mice (Fig.  4d–e). 
Additionally, the blockade of APOH after CLP led to 
a significant increase in the levels of serum and perito-
neal inflammatory cytokines, such as TNF-α, IL-1β, and 
IL-6, alongside a decrease in IL-10 levels after non-severe 
sepsis (Fig.  4f–g). These findings indicate that blocking 
APOH could exacerbate the severity of sepsis.

APOH has minimal influence on bacterial phagocytosis 
and killing capacities upon Pseudomonas aeruginosa 
infection
The decreased inflammation levels observed in rAPOH 
mice can not be attributed to enhanced bacterial clear-
ance. This is because there was no significant difference 
in local or systemic bacterial colony-forming unit (CFU) 
levels between the septic mice treated with recombinant 
APOH and those treated with the BSA (Fig.  5a). Addi-
tionally, flow cytometry experiments were conducted to 
determine the proportions of different cell types of infil-
trating leukocytes within the PLF between the rAPOH 
and BSA groups. The results revealed minimal differ-
ences in the proportions of neutrophils and macrophages 
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Fig. 2  The expression of APOH in mice with CLP. a Serum levels of APOH in sham mice and mice with CLP at 24, 48, and 72 h after CLP (n = 6). b The 
relative protein levels of APOH in the lungs, livers, and kidneys (n = 5). The data are presented as the means ± standard deviations (S.D.). “*” indicates 
a difference between groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Apolipoprotein H, APOH; caecum ligation and puncture, CLP

(See figure on next page.)
Fig. 3  Administration of recombinant APOH protein protects septic mice. a Ligation of the caecum at designated positions to establish a severe 
CLP model. The caecum was ligated (indicated by the dotted green line) at a 60% distance between the distal pole and the base of the caecum 
(yellow dotted line). b The procedures for rAPOH treatment in CLP-induced severe sepsis. c Survival of mice with CLP after treatment with BSA 
and rAPOH (n = 8). d Lung, liver, and kidney tissues were stained with H&E in the BSA and rAPOH groups. e Semiquantitative scores of tissues were 
calculated in the BSA and rAPOH groups (n = 7). (f) Serum cytokine levels in the BSA and rAPOH groups at 24 h after severe CLP (n = 7). g Cytokine 
levels in the PLF in the BSA and rAPOH groups at 24 h after severe CLP (n = 7). The data are presented as the means ± standard deviations (S.D.). 
“*” indicates a difference between groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Apolipoprotein H, APOH; recombinant murine APOH, 
rAPOH; bovine serum albumin, BSA; caecal ligation and puncture, CLP; peritoneal lavage fluid, PLF; haematoxylin and eosin staining, H&E
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between the two groups. However, an increasing trend 
in macrophages was observed after APOH intervention 
(Additional file  4: Fig. S2a and Fig.  5b). To investigate 

further the effects of APOH on the intrinsic antibacte-
rial functions of macrophages, PMs and RAW 264.7 mac-
rophages were preincubated with recombinant APOH 
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for 20 h before exposure to P. aeruginosa. However, pre-
incubation with APOH did not directly affect the killing 
capacities (Additional file 4: Fig. S2b and Fig. 5c) or bac-
terial uptake (Fig. 5d–e) in macrophages upon P. aerugi-
nosa infection.

APOH decreases inflammatory cytokine responses 
in macrophage cells
To illustrate the mechanisms contributing to the lower 
levels of inflammation in rAPOH-treated mice compared 
to BSA-treated mice, we examined the effects of APOH 
on cytokine expression in cells challenged with LPS. 
As depicted in Fig.  6, preincubation with recombinant 
APOH significantly reduced both the mRNA and pro-
tein levels of TNF-α and IL-1β in PMs, BMDMs, PBMCs, 
and RAW 264.7 cells when contrasted with the LPS-
alone group (Fig.  6a–l). This inhibitory effect of APOH 
on inflammatory cytokines may be associated with the 
modulation of macrophage polarization from M1 to M2 
subtypes. To explore this hypothesis, we assessed the 
ability of APOH to regulate macrophage polarization 
in PMs and RAW 264.7 cells. Although no differences 
were observed in the proportion of CD206 cells and the 
protein level of Arg-1, preincubation with recombinant 
APOH led to a reduction in the proportion of CD86 cells 
and the protein level of iNOS (Fig.  7a–l). These find-
ings suggest that pretreatment with APOH can partially 
inhibit M1 polarization in macrophages.

APOH inhibits the TLR4/NF‑κB pathway in macrophage 
cells treats with LPS
As a pattern recognition receptor, TLR4 plays a crucial 
role in the inflammatory response mediated by mac-
rophages [13, 14]. Our results demonstrated an elevation 
in the mRNA levels of the TLR4/NF-κB pathway in PMs 
and RAW 264.7 cells after LPS stimulation. However, this 
effect was effectively mitigated by APOH (Fig. 8a and j). 
Furthermore, APOH pretreatment inhibited the protein 
levels of the TLR4/NF-κB pathway in PMs (Fig. 8b–i) and 
RAW 264.7 cells (Fig.  8k–r). These findings suggest the 

capacity of APOH to inhibit the TLR4/NF-κB pathway in 
macrophage cells treated with LPS.

Discussion
In this study, we investigated the involvement of APOH 
in sepsis. We specifically focused on its impact on pae-
diatric patients, an area that has not yet been previously 
explored. Our findings demonstrated that circulating 
levels of APOH decreased in paediatric patients with 
sepsis compared to healthy controls, a trend consist-
ently observed in both the pilot and validation cohorts. 
Moreover, we observed that APOH levels remained 
low throughout the disease progression in the valida-
tion cohort. These results suggest that APOH is closely 
linked with paediatric patients with sepsis. Addition-
ally, our investigation into the therapeutic potential of 
APOH administration in septic mice showed improved 
survival rates by reducing the expression of inflammatory 
cytokines (TNF-α, IL-1β, and IL-6) and mitigating tis-
sue injuries. Conversely, neutralizing APOH activity with 
an anti-APOH antibody exacerbated the mortality rate 
in a non-severe sepsis model. Furthermore, our in vitro 
experiments demonstrated that APOH pretreatment reg-
ulated macrophage polarization by inhibiting the TLR4/
NF-κB pathway upon LPS challenge without enhancing 
bacterial phagocytosis and killing capacities.

In previous studies, it has been suggested that APOH 
acts as an immunoregulatory factor by binding to the 
surfaces of apoptotic cells and bacteria [15]. Upon inter-
action with LPS, monocytes/macrophages phagocytose 
the APOH complex, resulting in a decrease in APOH 
levels [9, 10]. In this study, we observed a decrease in 
the relative abundance of APOH in patients with sepsis 
compared to healthy controls. Furthermore, we observed 
that patients with lower APOH levels exhibited higher 
mortality rates in a pilot cohort. In a study by Adolfo 
et al., an analysis of plasma proteins in sepsis patients and 
their correlation with organ dysfunction and mortality 
revealed that the decrease in APOH had a strong asso-
ciation with lower mortality. This suggested that APOH 
acts as a lipoprotein with a protective effect on mortal-
ity [16]. Similarly, El-Assaad et al. observed a decrease in 

Fig. 4  Anti-APOH antibody worsens non-severe sepsis in mice. a Ligation of the caecum at designated positions to establish a non-severe CLP 
model. The caecum was ligated (indicated by the dotted green line) at a 40% distance between the distal pole and the base of the caecum 
(yellow dotted line). b The procedures for the administration of an anti-APOH antibody in mice with CLP-induced non-severe sepsis. c Survival 
of mice with CLP-induced non-severe sepsis after treatment with the anti-APOH antibody (n = 8). d Lung, liver, and kidney tissues were stained 
with H&E in the IgG control and anti-APOH groups. e Semiquantitative scores of tissues were calculated in the IgG control and anti-APOH groups 
(n = 7). f Serum cytokine levels in blood in the IgG control and anti-APOH groups at 24 h after non-severe CLP (n = 7). g Cytokine levels in the PLF 
in the IgG control and anti-APOH groups at 24 h after non-severe CLP (n = 7). The data are presented as the means ± standard deviations (S.D.). “*” 
indicates a difference between groups. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001. Apolipoprotein H, APOH; caecal ligation and puncture, CLP; 
peritoneal lavage fluid, PLF; haematoxylin and eosin staining, H&E

(See figure on next page.)
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APOH levels in male sepsis patients compared to healthy 
male controls. They further investigated this phenom-
enon using a murine model challenged with Escherichia 
coli (E. coli). They proposed that the reduced APOH level 

in males was due to APOH being functionally utilized as 
part of the immune system’s protective response against 
E. coli [10]. These findings align with our observations.
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The present study found significantly lower APOH lev-
els in paediatric sepsis patients than in healthy controls, 
in the pilot and validation cohorts. Furthermore, the 
concentration of APOH at 48 and 72  h after admission 

was significantly decreased compared to that at 24  h in 
the validation cohort. However, there was no significant 
difference in APOH levels between the survivors and 
non-survivors. Interestingly, we observed distinct results 
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(See figure on next page.)
Fig. 7  The effect of APOH administration on macrophage polarization. a Flow cytometry was employed to determine the change in the M1 
and M2 polarization in PMs. b–c The percentage of M1- and M2-polarized PMs was detected. d Flow cytometry was employed to determine 
the change in the M1 and M2 polarization in RAW 264.7 macrophages. e–f The percentage of M1- and M2-polarized RAW 264.7 cells were detected. 
g Western blot analysis of iNOS and Arg-1 in PMs. h–i Relative expression levels of iNOS and Arg-1 in PMs. j Western blot analysis of iNOS and Arg-1 
in RAW 264.7 cells. k–l Relative expression levels of iNOS and Arg-1 in RAW 264.7 cells. The data are presented as the means ± standard deviations 
(S.D.). “*” indicates a difference between groups. *p < 0.05, **p < 0.01, *** p < 0.001, **** p < 0.0001. Apolipoprotein H, APOH; peritoneal macrophages, 
PMs; lipopolysaccharide, LPS; inducible nitric oxide synthase, iNOS; Arginase 1, Arg-1
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Fig. 7  (See legend on previous page.)
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in APOH levels between survivors and non-survivors in 
the pilot and validation cohorts. The differences between 
the two cohorts may stem from the inclusion of a smaller 
number of non-survivors in the validation cohort (n = 6) 
compared to the pilot cohort (n = 26 pooled to N = 6), 

potentially introducing bias into the APOH levels in 
the validation cohort. Additionally, Schrijver et al. dem-
onstrated that APOH levels were decreased in patients 
with sepsis, particularly those with septic shock, with-
out observing a significant difference between survivors 
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and non-survivors [17]. Overall, these findings suggest a 
potential role of APOH in modulating the pathophysiol-
ogy of sepsis, and continuous monitoring of APOH levels 
could aid in stratifying sepsis patients.

To further investigate the role of APOH in the patho-
genesis of sepsis, we established a clinically relevant 
murine model of sepsis induced by CLP. Subsequently, 
we observed a decrease in APOH levels during the onset 
and progression of sepsis. However, the differences in 
APOH levels among the 24/48/72 h time points did not 
reach statistical significance. Several plausible reasons 
might underlie this discrepancy between paediatric sep-
sis patients and the murine sepsis model. Firstly, the 
decrease in APOH may be determined at earlier time 
points, such as 6, 12, or 18 h after CLP operation, con-
sidering the APOH content at 24  h had already sharply 
decreased to an extremely low level. Consequently, a 
further decrease may be challenging to observe at 48 or 
72  h after CLP operation. Secondly, the higher number 
of included patients compared to the number of included 
mice could have influenced the statistical efficiency. Fur-
thermore, our study revealed that mice subjected to CLP 
exhibited decreased expression of APOH in the lung, 
liver, and kidney compared to sham mice.

Our study demonstrated that supplementing with 
recombinant APOH increased survival rates and miti-
gated tissue inflammation and injuries in mice sub-
jected to a severe CLP-induced sepsis model. Conversely, 
neutralizing APOH led to a higher mortality rate and 
increased systemic inflammation and tissue injuries in a 
non-severe CLP-induced sepsis model. Previous research 
has shown that APOH-deficient mice (APOH−/−) devel-
oped earlier onset of severe septicaemia than WT mice 
(male APOH−/−: 71.4% vs. male WT: 28.6%, with a sever-
ity score of ≥ 3) within 24  h following an intravenous 
injection of E. coli [10]. In a similar study, APOH−/− mice 
displayed significantly higher levels of inflammatory 
cytokines than WT mice after an LPS challenge, and the 
total APOH levels were markedly decreased in WT mice 
after LPS injection compared to the saline control mice 
[18]. These findings strongly underscored that APOH is 
crucial in controlling bacterial infection in CLP-induced 
polymicrobial sepsis. This suggests that targeting APOH 
could be a promising novel therapeutic approach for sep-
sis treatment.

To elucidate the molecular mechanisms underlying 
the protective effect of APOH, we examined its impact 
on bacterial CFU levels and the abundance of infiltrat-
ing leukocyte types in septic mice. Our results showed 
no significant difference in bacterial CFU levels, but there 
was a tendency for an increase in macrophage abundance 
following APOH intervention. Macrophages, and other 
phagocytic cells are crucial in initiating the inflammatory 

process and clearing invasive bacteria [19, 20]. However, 
our study did not observe any direct effects of APOH on 
the phagocytosis and intracellular killing of live P. aerugi-
nosa by macrophage. Previous studies have reported that 
APOH cannot kill bacteria directly, but peptides from 
domain V have exhibited antibacterial activities against 
Streptococcus pyogenes [21]. Conversely, other research-
ers demonstrated that APOH can enhance phagocytosis 
by binding to phosphatidylserine (PS)-containing vesicles 
or apoptotic cells, thereby promoting phagocytic engulf-
ment [22]. These discrepancies suggest that the multiple 
functions of APOH may be mediated by its interaction 
with different partners in a cell-specific or disease-spe-
cific manner.

Macrophages undergo polarization into the M1 phe-
notype during the early stage of infection, leading to the 
release of inflammatory cytokines. However, to counter-
act the excessive inflammatory response, macrophages 
shift to the M2 phenotype to facilitate wound healing [23]. 
In our study, the supplementation of APOH decreased 
proinflammatory mediators TNF-α and IL-1β in various 
types of macrophages, including PMs, BMDMs, PBMCs, 
and RAW 264.7 cells. This prompted further investiga-
tion of the effect of APOH on macrophage polarization. 
Interestingly, we found that preincubation with recom-
binant APOH reduced M1 polarization without signifi-
cantly increasing M2 polarization. The TLR4 signalling 
pathway is pivotal in releasing of inflammatory media-
tors such as IL-1, IL-6, TNF-α, and iNOS by activating 
the NF-κB signalling pathway in macrophages [24, 25]. 
Consequently, we explored whether the TLR4/NF-κB sig-
nalling pathway was involved in APOH-mediated mac-
rophage polarization. Our results showed that APOH 
decreased the LPS-induced increase in the TLR4/NF-κB 
pathway. Overall, these findings suggest that APOH plays 
a protective role in sepsis by suppressing M1 polariza-
tion, at least partially, by inhibiting of the TLR4/NF-κB 
signalling pathway.

The present study has several limitations that merit 
consideration. Firstly, it was a single-center study with a 
relatively small sample size of sepsis patients. The absence 
of a significant difference in the APOH level between 
survivors and non-survivors underscores the neces-
sity for a larger-scale clinical trial and further studies to 
investigate the potential discriminative role of APOH 
in sepsis patients. Secondly, for a more comprehensive 
understanding of the molecular mechanisms underlying 
local and systemic inflammation amplification during 
sepsis, additional research using APOH knockout mice is 
necessary. Lastly, it is essential to note that the ages of the 
healthy control group in the validation cohort were sig-
nificantly higher than those in the sepsis group. This dis-
crepancy was due to the difficulty in obtaining samples 
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from healthy children under 3 years of age. Intriguingly, 
our study did not find a significant association between 
APOH levels and age in either sepsis patients or control 
subjects.

In summary, our study highlights a consistent and 
sustained reduction in serum APOH levels among pae-
diatric sepsis patients, a phenomenon tightly linked to 
disease severity and mortality. Notably, the therapeu-
tic administration of recombinant APOH demonstrated 
beneficial effects in a septic mouse model by reshaping 
macrophage polarization and inhibiting the intracellular 
activation of the TLR4/NF-κB signalling pathway. These 
findings provide valuable insights into APOH-driven 
regulation of the anti-inflammatory functions of mac-
rophages, which might offer a novel therapeutic strategy 
for treating sepsis.
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