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ABSTRACT
Epstein-Barr virus (EBV) infection in humans is ubiquitous and associated with various diseases. 
Remodeling of the immune microenvironment is the primary cause of EBV infection and patho
genesis; however, the underlying mechanism has not been fully elucidated. In this study, we used 
whole-transcriptome RNA-Seq to detect mRNAs, long non-coding RNAs (lncRNA), and microRNA 
(miRNA) profiles in the control group, 3 days, and 28 days after EBV infection, based on the tree 
shrew model that we reported previously. First, we estimated the proportion of 22 cell types in 
each sample using CIBERSORT software and identified 18 high-confidence DElncRNAs related to 
immune microenvironment regulation after EBV infection. Functional enrichment analysis of these 
differentially expressed lncRNAs primarily focused on the autophagy, endocytosis, and ferroptosis 
signalling pathways. Moreover, EBV infection affects miRNA expression patterns, and many 
miRNAs are silenced. Finally, three competing endogenous RNA regulatory networks were built 
using lncRNAs that significantly correlated with immune cell types, miRNAs that responded to EBV 
infection, and potentially targeted the mRNA of the miRNAs. Among them, MRPL42-AS-5 might 
act as an hsa-miR-296-5p “sponge” and compete with target mRNAs, thus increasing mRNA 
expression level, which could induce immune cell infiltration through the cellular senescence 
signalling pathway against EBV infection. Overall, we conducted a complete transcriptomic 
analysis of EBV infection in vivo for the first time and provided a novel perspective for further 
investigation of EBV-host interactions.
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Introduction

The Epstein-Barr virus (EBV) is one of the most ubiqui
tous γ-herpes viruses that establish lifelong persistent 
latent infection in over 90% of adults worldwide [1]. 
EBV is associated with several diseases, including acute 
or chronic inflammatory diseases and various human 
malignancies of lymphoid or epithelial origin [2]. Due to 
its co-evolution with its host, EBV has developed sophis
ticated strategies to evade human immune surveillance 
and ensure its replication and survival [3]. These pro
cesses are often accompanied by the remodelling of the 
microenvironment, making it more conducive to cellular 
transformation and tumour progression [4]. Non-coding 
RNA (ncRNAs) have received increasing attention due to 
their diverse functions and participation in many biolo
gical pathways. Herpesviruses have evolved strategies to 
evade host immune responses, including using 
microRNAs (miRNAs) to inhibit and hijack long non- 
coding RNA (lncRNAs) in vitro experiments. For 

example, in EBV-positive gastric carcinoma and naso
pharyngeal carcinoma cell lines, EBV-encoded miR- 
BART6-3p inhibits cancer cell metastasis and invasion 
by targeting lncRNA LOC553103 [5]. LncRNAs can be 
implicated in transcription regulatory processes through 
the competing endogenous RNA (ceRNA) mechanism, 
which indirectly inhibits miRNAs by regulating their 
target mRNA [6]. However, no systematic study has 
been done on the interaction between lncRNAs and 
miRNAs in remodelling the microenvironment after 
EBV infection, owing to the lack of suitable animal mod
els. We previously reported that the tree shrew (Tupaia 
belangeri chinensis) is a suitable animal model for evalu
ating the mechanisms of EBV infection [7].

In this study, we acquired RNA-Seq and miRNA-Seq 
data from the peripheral blood of the tree shrew model 
at pre-infection, acute infection (3 days post EBV 
infection), and chronic infection (28 days post EBV 
infection). First, we estimated the proportion of

CONTACT Anzhou Tang tanganzhou@gxmu.edu.cn
Supplemental data for this article can be accessed online at https://doi.org/10.1080/21505594.2024.2306795

VIRULENCE                                                                                                                                                 
2024, VOL. 15, NO. 1, 2306795
https://doi.org/10.1080/21505594.2024.2306795

© 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which 
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been 
published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

http://orcid.org/0000-0001-5397-7251
http://orcid.org/0009-0001-0462-4027
https://doi.org/10.1080/21505594.2024.2306795
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/21505594.2024.2306795&domain=pdf&date_stamp=2024-01-29


different cell types in each sample from RNA-Seq data 
to show the altered landscape of immune cells during 
different stages of infection. Furthermore, we extracted 
lncRNA expression profiles from all RNA-Seq data and 
filtered out lncRNAs with high expression abundance 
and significant correlations with changes in the immu
nological microenvironment. Consensus clustering was 
used to identify the expression patterns of infection- 
related miRNAs using the K-means method. Finally, 
based on these regulatory relationships, we built 
a ceRNA regulatory network using immune microen
vironment regulation-related lncRNAs, miRNAs with 
significant changes during infection, and potential tar
get mRNA of the miRNAs.

Results

Dynamic changes of immune microenvironment 
characteristics in whole blood samples among 
healthy controls and EBV-infected tree shrew

The experimental workflow is shown in Figure 1a. First, 
we constructed a tree shrew model of EBV infection by 
intravenous inoculation of EBV suspensions through 
the femoral vein. Tree shrews developed variable levels 
of viraemia within a week post-infection, and EBV 
DNA copies decreased over time, allowing the virus 
to enter a latent state gradually (Figure 1b). Moreover, 
immunohistochemistry against EBV latent membrane 
protein 1 (LMP-1) showed a detectable viral protein in 
the spleen at 28 days post-infection (dpi), and EBV- 
encoded small RNAs (EBERs) were detected by in situ 
hybridization (ISH) (Figure 1c).

Human microbial infections typically induce local 
and systemic immune responses in the host, and the 
cell components in the immune microenvironment 
changes during disease progression [8–10]. In this 
study, CIBERSORT software [11] was used to estimate 
relative proportions of 22 types of infiltrated immune 
cells present in each sample of the healthy control (Ctrl 
group), 3 dpi, and 28 dpi groups (fractions of different 
cells estimated by CIBERSORT in each sample are 
shown in Supplementary Figure S1). After EBV infec
tion, dynamic changes in the microenvironment com
position occurred over time (Figure 1d). Notably, the 
relative proportion of naive B cells gradually declined, 
and the differences became significant at 28 dpi (com
pared with the control group, p < 0.05). Similar changes 
were observed in the relative proportion of resting NK 
cells (compared to the Ctrl group, p < 0.01). The naïve 
CD4 T cell level markedly increased at 3 dpi (compared 
to the Ctrl group, p < 0.05) and then rapidly decreased 

at 28 dpi (compared to the 3 dpi group, p < 0.01). The 
relative proportion of immune cells was log- 
transformed to present the data clearly (Figure 1e). At 
3 dpi, monocytes, naïve CD4 T cells, and M2 macro
phages increased, and M0 macrophages increased sub
stantially compared to the Ctrl group. In the 28 dpi 
group, increases were observed in monocytes and neu
trophils, and naïve B, naïve CD4 T, naïve T, and resting 
NK cells decreased compared to the Ctrl group.

Identification of lncRNAs in response to EBV 
infection in tree shrews

To obtain a comprehensive list of lncRNAs associated 
with infiltrating immune cells, we first performed tran
scriptome assembly and identified novel lncRNAs 
(Supplementary Figure S2A shows the bioinformatics 
analysis pipeline). LncRNAs must have a read per kilo
base of exon per million reads mapped (FPKM) value 
of ≥ 0.2 in at least one sample to be considered 
expressed and to reduce analytical errors. After trim
ming, 273, 308, and 321 lncRNAs remained in the Ctrl, 
3 dpi, and 28 dpi groups, respectively, 198 of which 
were shared among the three groups (Figure 2a). 
Differential analyses of the mRNAs (DEmRNAs) and 
lncRNAs (DElncRNAs) were conducted using DEseq2 
(details are provided in the Methods). The number of 
DEmRNAs or DElncRNAs was at a maximum at 3 dpi 
and gradually recovered on day 28 dpi (Figure 2b).

Moreover, we performed Kyoto Encyclopedia of 
Genes and Genomes (KEGG) annotation and pathway 
enrichment analyses of the upregulated and downregu
lated DEmRNAs. Upregulated mRNAs were primarily 
enriched in pathways related to programmed cell death 
functions, such as autophagy, endocytosis, and ferrop
tosis signalling pathways. In contrast, downregulated 
mRNAs were predominantly enriched in the NF- 
kappa B and viral protein interaction with cytokine 
and cytokine receptor signalling pathways 
(Supplementary Table S2 and Supplementary Figures 
S2F and G). Our finding suggested that transcriptional 
repression of the NF-kB signalling pathway might be 
one of the main mechanisms of action against EBV 
infection in tree shrews.

Notably, within the three groups, the principal com
ponent analysis (PCA) of the DElncRNAs separated 
them from each other (Figure 2c). These DElncRNAs 
may be one of the major factors responsible for EBV 
infection in the tree shrew model. Among these 
DElncRNAs, we further screened 18 DElncRNAs (for 
example: ADCY5-AS-5, CCDC51-AS-1, DKC1-AS-2 
and so on) with high relative expression (Figure 2d, 
absolute FPKM of the difference ≥ 1) and significant
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Figure 1. Dynamic immune microenvironment characteristic changes in whole blood samples among healthy controls (ctrl) and 
Epstein-Barr virus (EBV)-infected tree shrew. (a) Flow chart of the study design. (b) The EBV DNA loads in blood at different time 
points are shown. The red dotted lines indicate the limit of detection of the assay. (c) Detection of EBV latent membrane protein 1 
(LMP-1) and EBV-encoded small RNAs (EBERs) in tree shrew spleens using immunohistochemistry and in situ hybridization at the 
endpoint (28 days post-infection [dpi]) of animal experimentation. Positive immunoreactivity of LMP-1 protein is indicated by brown 
staining in the first row. The red color represents the positive staining of EBERs in the second row. (d) Boxplot showing the fraction 
of each cell type in each group. The significant difference in the immune cell fractions among the ctrl, 3 dpi, and 28 dpi samples was 
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co-expression patterns. A significant correlation 
between these DElncRNAs and various immune cell 
types (Pearson’s correlation value ≥ 0.8 or ≤ −0.8, 
p < 0.01) was observed (Figure 2E). Finally, to link the 
lncRNA to its associated protein-coding gene, lncRNA 
co-expressed mRNAs were extracted (Pearson’s corre
lation value ≥ 0.6 or ≤ −0.6, p ≤ 0.01), and KEGG path
way analysis was performed (http://www.genome.jp/ 
kegg). Notably, similar to our previous enrichment 
results, autophagy, endocytosis, and ferroptosis signal
ling pathways were significantly enriched (Figure 2F).

Furthermore, we used transmission electron micro
scopy (TEM) and Western blotting (WB) to examine 
the autophagy and ferroptosis signalling pathways. The 
cristae were well preserved, and the electron density of the 
mitochondrial matrix appeared regular in the Ctrl group 
(Figure 3A). In contrast, cells undergoing ferroptosis in 
the 28 dpi group had several distinguishing features, 
including mitochondrial atrophy, higher mitochondrial 
membrane density, reduced mitochondrial cristae, and 
outer mitochondrial membrane rupture. Double- 
membrane autophagosomes were observed in the 28 dpi 
group. WB analysis showed that the expression of the 
autophagy marker LC3II/I and Beclin-1 was significantly 
increased, and that of p62 was significantly decreased 
after EBV infection in the 28 dpi group (compared to 
the Ctrl group, p < 0.05). Simultaneously, EBV infection 
significantly reduced the protein expression of the ferrop
tosis biomarker proteins SLC7A11, NRF2, and GPX4, 
whereas that of FTH1 (a major intracellular iron storage 
protein) was significantly increased (28 dpi vs. Ctrl group, 
p < 0.05) (Figure 3B).

Dynamic miRNA changes before and after EBV 
infection in tree shrews

The pairwise differential expression analysis was first 
implemented to identify miRNAs with significant dif
ferential expression (DEmiRNAs, fold change (FC) 
value ≥ 1.5 or ≤ −1.5, p < 0.05). These results are sum
marized in the Upset plot, and only the DEmiRNAs 
with significant variance were retained in the chosen 
comparison (Figure 4A). miRNAs were clustered based 
on K-means, resulting in the five groups in Figure 4B 
and Supplementary Figure S3. Specifically, the K3 
group (252 miRNAs) was predominately characterized 
by downregulation and contained the largest number of 
miRNAs, whereas the K2 group (28 miRNAs) showed 

a constant downregulation pattern. The K4 group (30 
miRNAs) showed little change at 3 dpi compared to 
that of the Ctrl animals but significantly increased at 28 
dpi. miRNA expression in the K5 group (16 miRNAs) 
was upregulated at first (3 dpi) and then returned to 
Ctrl levels by 28 dpi. Because a sample (F12) with 
strong heterogeneity was present in the K1 group (17 
miRNAs), this group was excluded from subsequent 
analyses (Figure 4C).

Construction of ceRNA network mediated by 
immune microenvironment-related lncRnas during 
EBV infection

According to the ceRNA hypothesis, lncRNAs can 
serve as ceRNAs to compete for miRNA response ele
ments, thereby regulating the expression of target genes 
[6]. A ceRNA regulatory network was constructed 
using 18 lncRNAs related to immune cell changes 
from Figure 2E, the miRNAs regulated by EBV infec
tion identified in Figure 4C (except for the K1 cluster), 
and miRNA-targeted mRNAs, to gain insight into the 
function of immune-related lncRNAs during EBV 
infection. The interaction between lncRNAs and 
miRNAs was identified using miRanda [12] (score 
>150) and Rnahybrid [13] (p < 0.05), and the results 
were considered as the intersection. We identified 
three lncRNA-miRNA pairs: MRPL42-AS-5/hsa-miR 
-296-5p, GATA1-AS-1/hsa-miR-423-5p, and 
PDZK1IP1-AS-1/hsa-miR-671-5p (Figure 5B,C).

First, through co-expression analysis, the miRNA- 
mRNA co-expression pair with a correlation coefficient 
of ≤ −0.8 (negative correlation) and a p value of ≤ 0.01 
was acquired to ascertain the relationship between 
miRNA and mRNA. On the one hand, we overlapped 
the targets of three miRNAs (hsa-miR-296-5p/hsa-miR 
-423-5p/hsa-miR-671-5p) in Targetscan [14] or mirDB 
database (http://mirdb.org/) with the miRNA-mRNA 
co-expression pair. On the other hand, miRanda [12] 
and Rnahybrid [13] were also used to identify potential 
new target relationships and overlapped with the 
miRNA-mRNA co-expression pair. Finally, the above 
results were combined to determine the potential 
mRNA-target relationships of the miRNAs 
(Supplementary Figure S4B).

LncRNA-miRNA and miRNA-mRNA pairs sharing 
the same miRNA were merged into a lncRNA-miRNA- 
mRNA interaction as a candidate ceRNA regulatory

calculated using the Student’s t-test. *, p ≤ 0.05; **, p ≤ 0.01. (e) Fractions of immune cells rank ordered based on decreasing values 
of the relative frequency ratio at the 3 dpi group relative to the ctrl group (the leftmost panel), 28 dpi group relative to the ctrl group 
(middle picture), and 28 dpi group relative to the 3 dpi group (the rightmost panel).
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Figure 2. Identification of lncRnas in response to EBV infection in tree shrews. (A) Venn diagram showing the number of detected 
lncRnas. The known and novel predicted lncRnas were combined, and more than one sample with reads per kilobase of exon 
per million reads mapped (FPKM) ≤ 0.2 was supposed to be detected. (B) Bar plot showing the number of upregulated and 
downregulated annotated genes (DEG, left panel) and lncRNA (DElncRNA, right panel). DESeq2 was used for differential expression 
analysis with criteria of false discovery rate (FDR) ≤ 0.05 and fold change (FC) ≥ 2 or ≤ 0.5. (C) Principal component analysis (PCA) 
based on FPKM values of all DElncRNAs. The ellipse for each group is the confidence ellipse. (D) Compared within any two groups, 
DElncRNAs with an absolute FPKM value ≥ 1 of the difference between the two groups were screened out. Heatmap showing the 
expression profile of these lncRnas. (E) Co-expression analysis of DElncRNA from (D) with at least one immune cell with p ≤ 0.01 and 
Pearson’s correlation value ≥ 0.8 or ≤ −0.8. *, p ≤ 0.05; **, p ≤ 0.01. (F) Co-expression analysis was performed on the 18 DElncRNA in 
(E) and DEmRNAs. Cutoffs of P-value ≤ 0.01 and Pearson’s coefficient ≥ 0.6 or ≤ −0.6 were used to identify the co-expression pairs. 
The bar plot exhibits the most enriched KEGG pathways of co-expressed DEmRNA genes. dpi, days post-infection.
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network (Figure 5A). A significant increase in MRPL42- 
AS-5 expression after infection was observed (Figure 5B). 
However, hsa-miR-296-5p, which belongs to the same 
ceRNA network, exhibited the opposite response 
(Figure 5C). Moreover, mRNA co-expressed with hsa- 
miR-296-5p showed similar trends to MRPL42-AS-5 

changes (Figure 5D). The target genes in the ceRNA net
work were primarily associated with the cellular senes
cence signalling pathway (Supplementary Table S4).

To validate the RNA-Seq data, we performed reverse 
transcription quantitative polymerase chain reaction (RT- 
qPCR) to detect the seven target genes (Figure 5E). In

Figure 3. Autophagy and ferroptosis signalling pathways are activated in animals infected with Epstein-Barr virus (EBV). 
(A) Transmission electron microscopy examinations. Black arrows: normal mitochondria; green arrows: mitochondria with varying 
cristae densities; red arrows: mitochondria with swelling and cristolysis; yellow arrows: autophagosome. (B) Western blotting (WB) 
analysis of autophagy and ferroptosis signalling pathways related proteins. ACTIN served as the internal control for the WB assay. *, 
p ≤ 0.05; **, p ≤ 0.01.
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addition, we performed fluorescence in situ hybridization 
(FISH) to detect the expression of hsa-miR-296-5p, and the 
expression of the target protein CCND3 was assessed by 
immunofluorescence (IF)(Figure 5F).

Discussion

Viral infections trigger a broad host immune response that 
controls viral replication [15]. However, our understanding 
of the immunological mechanisms involved in EBV infec
tion is limited, particularly under in vivo conditions, 
because there are no suitable animal models. Previously, 
we found that tree shrews are susceptible to EBV infection 
and exhibit characteristics similar to those of humans 
[7,16]. Using the tree shrew model, we found dramatic 
changes within the blood microenvironment with the pro
gression of EBV infection. Notably, the number of naïve 
CD4+ T cells significantly increased at 3 dpi and then 
decreased to normal levels at 28 dpi. This finding might 
result from the proliferation and differentiation of this 
subgroup of T cells due to stimulation with viral antigens 
at an early stage of infection. However, not all these changes 

reached statistical significance, possibly due to the small 
sample size and individual heterogeneity of the groups.

Increasing evidence suggests that ncRNA is widely 
involved in immune regulation during viral infection 
[17–19]. LncRNAs regulate diverse biological functions 
(e.g. cell survival and cytokine production) in innate 
immunity and are involved in adaptive immunity (e.g. 
polarization and function of CD4+ T cells) [20–22]. To 
analyse DElncRNAs between healthy and infectious 
conditions, we compared the subgroups separately to 
the Ctrl group and found that up- or downregulated 
DElncRNAs showed a much more dramatic shift at 3 
dpi. In addition, the PCA showed clear group segrega
tion at various time points post-infection. This finding 
implies that DElncRNAs play multiple roles during the 
different stages of EBV infection. Notably, more dis
crete 3 dpi group samples were presented in the PCA 
graph, indicating that higher lncRNA-regulated hetero
geneity and drastic changes in transcript levels may 
have amplified this heterogeneity during the initial 
stages of infection.

Next, we screened 18 highly expressed DElncRNAs 
strongly associated with changes in the proportion of

Figure 4. Dynamic miRNA changes before and after Epstein-Barr virus (EBV) infection in tree shrews. (A) Upset visualization of the 
DEmiRNA intersection size from different data sets (black points connected by a line). (B – C) DEmiRNAs among control (ctrl), 3 days 
post-infection (dpi), and 28 dpi were clustered using K-means. The heatmap in (B) presents five clusters of DE miRnas identified by 
K-means clustering, and the heatmap in (C) shows expression patterns according to clustered miRnas. K2, K3, K4, and K5, EBV-related 
clusters, were labelled red.
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Figure 5. Construction of competing endogenous RNA (ceRNA) network mediated by immune microenvironment-related lncRnas 
during Epstein-Barr virus (EBV) infection. (A) The ceRNA regulatory network was constructed using 18 lncRnas related to immune cell 
changes from figure 2E, the miRNA regulated by EBV infection identified in figure 3C (except the K1 cluster), and miRNA-targeted 
mRnas. Cytoscape was used to plot the network. (B) Boxplot showing the expression profile of three lncRnas in the ceRNA network 
shown in (A). (C) Boxplot showing the expression profiles of three miRnas in the ceRNA network shown in (A). (D) The boxplot shows 
the expression profile of target mRnas of hsa-miR-296-5p/MRPL42-AS-5. (E) Reverse transcription quantitative polymerase chain 
reaction (RT-qPCR) was used to validate the seven targeted genes expression of hsa-miR-296-5p/MRPL42-AS-5. (F) RNA fluorescence 
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immune cells through a combined analysis of correla
tion and relative expression abundance. CD4+ T cell 
subgroups and M2 macrophages were positively or 
negatively correlated with multiple DElncRNAs, indi
cating the involvement of lncRNAs in immune cell 
mobilization. Co-expressed mRNAs were extracted, 
and KEGG pathway analysis was performed to probe 
the function of these 18 DElncRNAs further. Primarily 
enriched pathways were related to programmed cell 
death, such as ferroptosis, autophagy, mitophagy, and 
endocytosis. TLR/RLR and cGAS-STING activation by 
viral infection may help induce the autophagy pathway, 
which could enhance interferon production and thus 
restrict viral replication [23]. While many in vitro stu
dies have been published on the induction of ferropto
sis and autophagy signalling pathways by EBV, little is 
known about whether this occurs in vivo [24–26]. Our 
results showed that programmed cell death-related sig
nalling pathways play an essential role in the innate 
immunity of animals by initiating the cell death process 
to defend against primary EBV infection. Moreover, the 
enrichment analysis of DEmRNAs showed similar 
results to the 18 DElncRNA co-expressed mRNAs, 
which implies a potentially crucial biological function 
for DElncRNAs involved in regulating programmed 
cell death.

The ability of EBV to manipulate host miRNAs to 
escape the immune system allows the infection to per
sist lifelong without being eliminated [27,28]. This is 
a dominant feature of EBV infection in the tree shrew 
model, in which miRNA expression is downregulated. 
Similar observations were made for Caprine parain
fluenza virus type 3 [29] and HIV-1 infections [30]. 
miRNA expression is linked to type I interferon stimu
lation [31,32]. We speculate that the immune escape 
mechanism in EBV infection likely involves inhibiting 
the NF-kB signalling pathway by these miRNAs, which 
can affect the interferon level. However, further studies 
are required to investigate this hypothesis.

The antiviral immune response induces a complex 
regulatory network involving diverse non-coding and 
coding RNAs. LncRNAs can be implicated in transcrip
tion regulatory processes through the ceRNA mechan
ism, which indirectly inhibits miRNAs by regulating 
their target mRNA [6]. We constructed three regulatory 
networks to explore the ceRNA regulatory mechanisms 
of EBV infection. Notably, one of these networks 

showed typical ceRNA features with a significant 
increase in the MRPL42-AS-5 expression after infec
tion, whereas hsa-miR-296-5p exhibited the opposite 
response, and the mRNA co-expressed with hsa-miR 
-296-5p showed similar trends to MRPL42-AS-5 
changes. The target genes in the ceRNA network were 
primarily associated with the cellular senescence signal
ling pathway, a cellular stress response that recruits 
immune cells [33]. Therefore, it is interesting to spec
ulate that MRPL42-AS-5 might act as an hsa-miR-296- 
5p “sponge” and compete with target mRNAs, thus 
increasing mRNA expression level, which could induce 
immune cell infiltration through the cellular senescence 
signalling pathway against EBV infection.

In conclusion, this study provides the first compre
hensive analysis of the lncRNA and miRNA profiles of 
EBV infection at the acute and chronic stages, which 
could have functional roles in remodelling the immune 
microenvironment. Importantly, our report revealed 
ceRNA networks in EBV infection that regulate EBV- 
host interactions. For example, MRPL42-AS-5 might 
act as an hsa-miR-296-5p “sponge” and compete with 
target mRNAs, thus increasing mRNA expression level, 
which could induce immune cell infiltration through 
the cellular senescence signalling pathway against EBV 
infection. Our research provides clear indications of the 
roles lncRNAs and miRNAs play in the modulation of 
host immune defence mechanisms against EBV infec
tion. These findings open avenues for developing novel 
therapeutic strategies and diagnostic tools aimed at 
combating EBV and its associated conditions. Future 
studies are recommended to focus on the characteriza
tion and functional analysis of these identified RNA 
molecules to confirm their roles and explore their ther
apeutic potential in greater depth.

Material and methods

Animal experiments and ethics statement

The experimental workflow is shown in Figure 1a. Six 
tree shrews (F1 generation, production approval num
ber: SCXK (Dian) 2020–0004, 8 ± 2 months, male and 
female, 126.3 ± 5.2 g) were acquired from the Kunming 
Institute of Zoology, Chinese Academy of Sciences. The 
protocols used in this study were approved by the 
Animal Ethics Review Committee of the Guangx

in situ hybridization (FISH) to detect miR-296-5p expression level in the first row in the figure; the red fluorescence indicates positive 
signals, and the blue fluorescence shows the nuclei. In the second row, immunofluorescence experiments were performed. Green 
fluorescence shows the CCND3 protein, and blue fluorescence shows the nuclei using immunofluorescence. The plots on the right 
side of the figure show the miR-296-5p and CCND3 scores separately, determined by counting the ratio of positive cells from five 
random regions in each section. *, p ≤ 0.05; **, p ≤ 0.01. Ctrl, control.
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i Medical University (approval number: 202005015). 
The experimental protocols strictly followed the 
“Guiding Principles for the Use and Care of 
Experimental Animals” issued by the Ministry of 
Science and Technology of China. The total number 
of animals and their suffering were minimized accord
ing to the 3 R principle.

The animals were randomly assigned to either the 
experimental (n = 3) or control group (n = 3). The 
control group was inoculated with 200 µl 1640 
Medium, whereas the experimental group was inocu
lated subcutaneously with 200 µl EBV suspensions 
(1 × 108 copies/ml) via the femoral vein. Blood sam
ples were collected at 3 dpi and 28 dpi for EBV 
infection, and the animals were euthanized at 28 
dpi with an overdose of sodium pentobarbital. 
Spleen samples were collected immediately after 
euthanization. Subsequently, the blood samples (1.5  
ml) were used for transcriptome sequencing. 
Residual blood samples and tissues were used for 
further laboratory experiments, including in situ 
hybridization, immunohistochemistry, and transmis
sion electron microscopy. The specific details of each 
experiment are provided in Supplemental 
Experimental Procedures.

RNA-Seq data process

Clean data were obtained by removing reads containing 
adapters, poly-N, and low-quality reads from raw data. 
The clean data was higher than 12.92 Gb. The percen
tage of bases whose base recognition accuracy reaches 
the Q30 standard (the accuracy of base recognition ≥  
99.9%) was > 94.51%. All downstream analyses were 
based on high-quality clean data.

Reads alignment and differential gene expression 
analysis

Clean data were aligned to the tree shrew TS3.0 gen
ome (http://www.treeshrewdb.org/download.html) 
using HISAT2 [34]. Uniquely mapped reads were 
used to calculate the read number and FPKM for each 
gene. The expression levels of genes were evaluated 
using FPKM. DEseq2 was used for differential gene 
expression analysis [35], which models the original 
reads and uses a scale factor to explain differences in 
library depth. Subsequently, DEseq2 estimates the gene 
dispersion and reduces these estimates to generate 
more accurate dispersion estimates to model the read 
count. Finally, the negative binomial distribution model 
was fitted using DEseq2, and the hypothesis was tested  

using the Wald or likelihood ratio tests. DEseq2 can be 
used to analyse the differential expression between two 
or more samples, and the results can be used to deter
mine whether a gene is differentially expressed by FC 
(FC ≤ 2, or ≤ 0.5) and false discovery rate (FDR, 
FDR ≤ 0.05).

Cell-type quantification

The CIBERSORT algorithm (v1.03) [11] with default 
parameters was used to estimate immune cell fractions 
using the FPKM values of each expressed gene. A total 
of 22 immune cell phenotypes were analysed in this 
study, including seven T cell types (CD8 T, naïve CD4 
T, memory CD4 resting T, memory CD4 activated T, 
T follicular helper, regulatory T cells [Tregs] and T cells 
gamma delta), naïve and memory B cells, plasma cells, 
resting and activated NK cells, monocytes, M0, M1, and 
M2 macrophages, resting and activated dendritic cells, 
resting and activated mast cells, eosinophils, and 
neutrophils.

LncRNA prediction and direction identification

We used a pipeline for lncRNA identification similar to 
that previously reported [36] to systematically analyse the 
lncRNA expression pattern, which was constructed using 
StringTie 1.3.3 software [37]. We used four software 
packages to predict the coding potentials of the lncRNAs: 
CPC [38], LGC [39], CNCI [40], and CPAT [41].

Differentially expressed miRnas

Differentially expressed miRNAs between paired 
groups were analysed using edgeR [42] in the 
R package. A significant p value and FDR were 
obtained for each miRNA based on the negative bino
mial distribution model. FCs in gene expression were 
estimated using the EdgeR statistical package. The cri
terion for DEmiR was set as |FC| > 1.5 and 
p ≤ 0.05. The potential miRNA targets were obtained 
from TargetScan (v8.0) and miRDB (http://mirdb.org/).

Co-expression analysis

We calculated Pearson’s correlation coefficients (PCCs) 
to explore the regulatory mode between lncRNAs/ 
miRNAs and mRNAs and classified their relationship 
into three classes: positively correlated, negatively cor
related, and non-correlated based on the PCCs value.
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Other statistical analyses

The pheatmap package (https://cran.r-project.org/web/ 
packages/pheatmap/index.html) in R was used to perform 
clustering based on Euclidean distance. The Student’s 
t-test was used for comparisons between the two groups.
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