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ABSTRACT
Cerebrospinal fluid (CSF) plays a crucial role in the brain’s lymphatics as it traverses the central
nervous system (CNS). Its primary function is to facilitate the outward transport of waste.
Among the various CSF outflow pathways, the route through the cribriform plate along the
olfactory nerves stands out as the most predominant. This review describes the outflow
pathway of CSF into the nasal lymphatics. Additionally, we examine existing studies to describe
mutual influences observed between the brain and extracranial regions due to this outflow
pathway. Notably, pathological conditions in the CNS often influence CSF outflow, leading to
observable changes in extracranial regions. The established connection between the brain and
the nose is significant, and our review underscores its potential relevance in monitoring CNS
ailments, including neurodegenerative diseases. Considering that aging – the most significant
risk factor for the onset of neurodegeneration – is also a principal factor in CSF turnover
alterations, we suggest a novel approach to studying neurodegenerative diseases in therapeutic
terms.
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Introduction

Cerebrospinal fluid (CSF) is a fluid that flows within the
central nervous system (CNS), and most is found in the
cranial or spinal subarachnoid space (SAS). As it circulates
within the SAS, CSF contributes to maintaining fluid
homeostasis and buoyancy within the CNS (Proulx
2021). CSF is generally secreted daily in the choroid
plexuses, and it circulates to sites of absorption. It is
then either reabsorbed through pathways connected to
the venous outflow system or drained through specific
lymphatic outflow pathways, participating in the brain
lymphatics (Sakka et al. 2011). The glymphatic system
of the brain facilitates CSF outflow to eliminate
unwanted metabolites from the CNS, including patho-
genic proteins of neuropathy (Persson et al. 2022).

One of the representative paths that CSF drains from
the brain parenchyma is through the cribriform plate,
and this path flows along the olfactory nerves. Histo-
chemistry and advanced microscopy have revealed the
structures of lymphatic vessels and their relations with
nerves in the nasal area, where lymphatics are found

either in dura mater above the cribriform plate and
under the nasal mucosa, providing a CSF drainage
route along the olfactory nerves (Furukawa et al. 2008).
As CSF exits the brain, the majority of it traverses the cri-
briform plate, and is absorbed into the lymphatics situ-
ated in the submucosa of the olfactory epithelium
(Nagra et al. 2006). With its direct connection with SAS,
nasal submucosal lymphatic vessels can drain CSF from
intracranial (Spera et al. 2023). This CSF outflow path
provides a physical connection between the nasal lym-
phatics, olfactory system, and brain. Furthermore, the
CSF flow from one space to another provides evidence
of the relationship between the brain and extracranial
regions, as shown in previous studies. The interaction
between the brain and extracranial regions mediated
by CSF is primarily associated with brain immunity.
Macromolecules and immune cells travel through the
olfactory nerve sheaths, passing through the cribriform
plate into the nasal cavity when CSF is drained from
the SAS. From there, they can reach the deep cervical
lymph nodes through the Nasal-associated lymphoid
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tissue (NALT) (Aspelund et al. 2015; Louveau et al. 2015;
Engelhardt et al. 2017). Furthermore, the exchange of
fluids bounded by the cribriform plate might not be uni-
directional, supported by the fact that intranasally
injected aqueous solutions can access the olfactory
bulb, meninges, and SAS through the same vascular
structures (Faber 1937). A more comprehensive examin-
ation of the conditions resulting from these relationships
will be addressed in the subsequent section: Connection
between the brain and extracranial region through the
CSF outflow path into the nasal lymphatics (Figure 2).
This link suggests that changes observed in the CSF
may be reflected in extracranial areas, including the
nasal lymphatics and olfactory system.

It has been established that there is a CSF outflow
pathway through and an associated relationship with
the nasal lymphatics, which suggests that changes in
CSF flow in neurodegenerative disease conditions may
influence the olfactory system. Certain changes in olfac-
tory features have been observed in various neurode-
generative diseases. In various neurological diseases –
such as Alzheimer’s disease, Parkinson’s disease, mul-
tiple sclerosis, schizophrenia, and depression – decline
in olfaction ability is identified in their early stage,
prior to onset of cognitive or motor symptoms. For
instance, olfactory dysfunction has been identified in
90% of PD patients and 85% of AD patients in the
early stage (Hu et al. 2015; Dan et al. 2021). The fact
that olfactory dysfunction usually precedes other
typical symptoms of neurological diseases proposes
that the olfactory system might have a high vulner-
ability in such diseases (Kim et al. 2018). Therefore,
understanding this outflow pathway could provide
new perspectives for the diagnosis and monitoring of
neurodegenerative diseases.

CSF dynamics and outflow pathways in the
mammalian brain

In the mammalian brains, CSF is predominantly present
in the SAS surrounding the exterior of the brain and is
also found in the ventricles within the interior of the
brain. As a CSF-filled space with blood vessels and cis-
terns, the SAS is located between the arachnoid mater
and pia mater, enveloping the CNS. CSF is mainly pro-
duced in the choroid plexus in the ventricles of the
brain, and it is recycled with a cycle of approximately
26 h (Johanson et al. 2008). Newly produced CSF flows
within the SAS and the ventricles, and its flow is main-
tained by arterial pulsations and respiratory movements.
CSF serves several functions including providing buoy-
ancy, acting as a protective layer that can absorb phys-
ical shocks, facilitating the transmission of chemical

signals and removing waste materials to maintain the
CNS (Simon and Iliff 2016).

After circulating throughout the CNS, CSF is either
reabsorbed by the venous system or drained into the
lymphatics. The gradual change in intracranial pressure
(ICP) regulates transport of CSF through the arachnoid
villi route, and the CSF flow distribution into each
different drainage pathway is dependent on ICP
(Boulton et al. 1998; Vinje et al. 2020). Arachnoid granu-
lations, which are protrusions of the arachnoid mater
that extend outward in the direction of the outer mem-
brane of the dura mater, act as the main contributor to
CSF outflow by allowing CSF to move from the SAS to
the bloodstream through the dural venous sinuses.
CSF also drains from the brain via subarachnoid
sleeves, which lead to peripheral lymphatic vessels (Ras-
mussen et al. 2020).

CSF drainage maintains the ‘brain lymphatic
system’

Despite its relatively high metabolic rate, the brain lacks
a conventional lymphatic circulation. Consequently, the
brain necessitates alternative mechanisms for waste
clearance in order to maintain its immunity and elimin-
ate unwanted products (Iliff et al. 2012). The presence
of the glymphatic system and meningeal lymphatics
engages in the exchange and transport of soluble
metabolites in the brain, thus maintaining the fluid
dynamics of CNS (Yankova et al. 2021).

Glymphatic system is an analog of lymphatic system
in CNS, as it contributes to its fluid homeostasis and neu-
roinflammation (Hablitz and Nedergaard 2021). The
primary purpose of the glymphatic system is to facilitate
the extravascular transport of hydrophilic solutes that
are impermeable to brain–blood barrier (Hladky and
Barrand 2022). It enables waste clearance through the
flow of CSF within the SAS and arterial perivascular
space, as a glial cell-dependent system of perivascular
channels located within the brain. Astrocytes, equipped
with the water channel aquaporin-4 (AQP4) in their
endfeet, encircle the perivascular tunnels within the
glymphatic system and support the fluid transport
(Hablitz et al. 2020). The solutes that are targeted for
removal via the glymphatic pathway encompass mis-
folded proteins originating from neurological defects,
and these solutes ultimately traverse the meningeal lym-
phatics to reach the cervical lymphatic vessels (Louveau
et al. 2017; Li et al. 2022).

The function of the glymphatic system is primarily
influenced by factors such as the impact of sympath-
etic/parasympathetic innervation and the sleep-wake
cycle. Furthermore, age-related changes in the brain
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can impede meningeal lymphatic drainage, resulting in
functional impairment of the glymphatic pathway of
the brain. Glymphatic pathway dysfunction can lead to
the accumulation of toxic misfolded proteins, ultimately
culminating in prolonged inflammation (Nycz and
Mandera 2021). Any pathology that arises in the brain,
including neurodegenerative diseases, has the capacity
to disrupt the proper functioning of the glymphatic
pathway (Sun et al. 2018).

Meningeal membranes surround the CNS, consisting
of dura mater and leptomeninges – which is
consisted of arachnoid mater and pia mater, forming
the boundary of the SAS (Weller et al. 2018). Meningeal
lymphatic vessels (MLVs), which are found in certain
regions of the dura mater within the CNS, integrate the
cerebrovascular and periventricular routes (Noé and
Marchi 2019). In the olfactory system, the meningeal lym-
phatic network lies beneath the olfactory bulb, adjacent
to the cribriform plate (Hsu et al. 2021). MLVs contribute
to the fluid dynamics of the brain parenchyma by partici-
pating in the circulation of fluid within the brain and facil-
itating the exchange of soluble contents between
cerebrospinal fluid and interstitial fluid. Also, Meningeal
lymphatics are linked to the paravascular activity of CSF
and interstitial fluid (ISF), allowing them to regulate the
influx of CSF-borne immune neuromodulators into the
brain and exert consequential effects (Da Mesquita

et al. 2018a). They provide a drainage pathway for CSF
towards the peripheral blood and offer a route for the
removal of macromolecules, facilitating the elimination
of waste products in the brain (Tamura et al. 2020;
Jacob et al. 2022).

The integrity of the brain lymphatic system relies on the
uninterrupted circulation of CSF and, notably, its efficient
drainage. Consequently, the optimal functioning of CSF
drainage plays a critical role in preserving neural function
within the brain lymphatics and facilitating the removal of
CSF-borne metabolic products (Brady et al. 2020).

Predominance of the CSF outflow path
through the cribriform plate

As it exits the brain through the lymphatic pathway, CSF
can flow alongside the cranial nerves, and a substantial
portion travels through the olfactory sensory nerves
and reaches the nasal mucosa (Figure 1). During this
course, CSF traverses the cribriform plate of the skull,
exiting the brain and moving into the external environ-
ment (Liu et al. 2012).

The existence and underlying principles of an outflow
pathway that traverses the cribriform plate have been
substantiatedby various structural characteristics. Specifi-
cally, within the cribriform plate, lymphatic vessels situ-
ated near the brain have been observed to pass through

Figure 1. Sagittal view of CSF outflow through the cribriform plate. The arrow depicts CSF outflow path into nasal lymphatics. When
CSF is drained towards the nasal, the lymphatics responsible for draining CSF surround the olfactory nerves and traverse the cribriform
plate along with them. Through the connections established with nasal lymphatics and lymphatics adjacent to the cribriform plate, they
can reach the nasal submucosa lining the nasal cavity. Ultimately, they are directed to cervical lymphatics via the lymphatic network.
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it and establish connections directed towards the extra-
cranial region (Hsu et al. 2019). The adjacent region of
the arachnoid barrier exhibits a discontinuous structure
that allows for the access of bulk flow of CSF. Within this
context, the lymphatic vessels passing through the SAS
and cribriform plate form a directly connected structure
that envelops the surrounding olfactory nerves. The lym-
phatic vessels adjacent to the olfactory bulbs, which con-
stitute the olfactory system, create a functionally
continuous lymphatic network with the nasal mucosa
that extends all the way to the cervical lymph nodes
(Spera et al. 2023). Consequently, in this pathway, CSFpre-
viously residing within the SAS can pass through the for-
amina of the cribriform plate alongside the olfactory
nerves, reaching the nasal lymphatics and ultimately the
cervical lymph nodes. This route toward the nasal lym-
phatics constitutes a significant portion of the lymphatic
outflow pathway of CSF. Various studies have proven
the existence of this pathway conclusively, utilizing tech-
niques such as tracer tracking, and have clearly estab-
lished it as the major route for CSF drainage. For
instance, Johnston et al. showed that when they injected
yellowmicrofil into the CSF compartment of humans and
other mammals, and observed at least 7 h later or after
sacrifice, the microfils were predominantly distributed in
the olfactory bulbs and the SAS adjacent to the cribriform
plate (Johnston et al. 2004). Additionally, in tracer exper-
iments involving the injection of [125I] albumin into the
ventricles of rodents, a significant proportion of the
injected amountwas confirmed to be present in the olfac-
tory turbinates, confirming the same results. Particularly,
in the experiments by Bradbury and Westrop, when the
cribriform plate was blocked during injection, recovery
rate in cannulated jugular lymphatic trunk decreased in
certain rate, indicating a substantial contribution of CSF
drainage route through thecribriformplate in the connec-
tion between CNS and cervical lymphatics (Bradbury and
Westrop 1983; Nagra et al. 2006). Other previous studies
using other tracers – such as Kida et al.’s study using
Indian Ink, have also examined the predominance of the
nasal route in CSF drainage (Kida et al. 1993).

Connection between the brain and
extracranial region through the CSF outflow
path into the nasal lymphatics

The presence of a CSF outflow path through the cribri-
form plate provides a physical and tangible connection
between the brain and the nose. For instance, diseases
such as CSF rhinorrhoea, in which CSF leaks through
the nose, strongly support the existence of this physical
link. Furthermore, the drainage of CSF through the cribri-
form plate – indicating the physical communication

between the brain and the nose – allows for the possi-
bility of interconnected changes, where an event on
one side can potentially impact the other side. This
can be observed through specific cases that confirm
the presence of such interconnected changes across
the cribriform plate boundary (Mehta et al. 2022).

Changes in the nasal environment can induce altera-
tions in CSF turnover, which in turn can impact the brain.
The nasal mucosa, which is where most of the olfactory
system is located, is an organ that is directly exposed to
the external environment. Consequently, environmental
factors such as air pollutants or drugs that change in the
external environment can directly affect the olfactory
region, including the olfactory sensory neurons,
located near the nasal mucosa. There have been docu-
mented cases in which such influences have been
found to directly affect CSF flow (Figure 2). When the
olfactory epithelium is damaged by air pollutants or
through chemical ablation of olfactory sensory
neurons, substantial reduction in the outflow of CSF
through the cribriform plate can occur (Norwood et al.
2019). Furthermore, intranasal administration of drugs
has been found to affect the outflow of CSF, establishing
a link between the nasal cavity and the brain. For
instance, prostaglandin analogs applied to the nasal
mucosa through nasal inhalation have been demon-
strated to increase CSF outflow (Pedler et al. 2021).
These discoveries highlight the regulatory potential of
intranasal delivery of external substances in modulating
CSF outflow, potentially influencing lymphatic contrac-
tile activity. In addition, when delivered intranasally,,
nebulized pharmacological agents have been found to
hold promise for non-invasive regulation of CSF absorp-
tion and outflow resistance (Kim et al. 2014).

This correlation can be observed in the reverse direc-
tion, extending from the brain to the extracranial region
beyond the cribriform plate (Figure 2). It has been
demonstrated that CSF not only serves as a drainage
fluid but can also provide a route for signal transmission
within the brain, linking the intracerebral process with
the outer environment (Illes 2017). Various pieces of evi-
dence, including anatomical features, relatively high
signals detected in CSF than plasma, and correlations
between CSF levels and behaviors such as sex behavior
and CSF-GnRH level, support the presence of CSF signal-
ing (Lehman and Silver 2000). Facilitated by the CSF
outflow pathway, CSF signaling has been shown to
extend along both the brain and peripheral nerves, to
reach peripheral tissues. CSF signaling has been associ-
ated with the occurrence and progression of neurologi-
cal dysfunctions, including dysautonomia and olfactory
dysfunction (Bechter 2013). Moreover, in the context of
lumbosacral pain, substances released by mast cells

48 J. CHAE ET AL.



can be transported peripherally through the CSF outflow
pathway, potentially inducing consequences such as ret-
rograde synaptic strapping in the nerves, mediated by
CSF signaling (Bechter and Schmitz 2014).

Under neuroinflammatory conditions, meningeal lym-
phatics in proximity to the cribriform plate undergo lym-
phangiogenesis, leading to the formation of lymphatic
vessels with altered phenotypes, facilitated by the upre-
gulation of immunoregulatory genes (Hsu et al. 2022).

These features suggest that the CSF outflow route
through the cribriform plate not only serves as a physical
pathway but also exhibits a reciprocal correlation, where
changes on one side can be reflected on the other side.

Age-related alterations in CSF outflow
pathways

As environmental factors that influence CSF outflow,
age-related changes can result in critical alterations in
CSF. ICP serves as a key regulator of CSF flow.
Notably, ICP is significantly influenced by the normal
aging process, and alterations in ICP can have a critical
impact on the overall turnover of CSF (Pedersen et al.
2018).

Aging induces changes in the distribution of CSF
elimination routes. In a mouse study, older mice
showed a decreased relative contribution of the nasal
route to CSF outflow compared with younger mice;
however the outflow through the spinal route did not
exhibit the same trend (Ma et al. 2017; Brady et al. 2020).

Moreover, aging is linked to impaired glymphatic func-
tion, and the alterations observed in the glymphatic-lym-
phatic clearance process have been demonstrated to
contribute to the accumulation of pathological proteins
in models of neurodegenerative diseases (Lee et al.
2020b). Consequential alterations in the aging brain,
including those that affect CSF drainage, show similarities
to changes observed in patients with neurodegenerative
disease. Age is considered the primary risk factor for the
onset of neurodegenerative diseases, emphasizing the
connection between aging and these conditions.

There are also major age-related alterations in terms
of general lymphatics, both functionally and structurally.
Lymphatic collector functions, such as contractile
pressure and pumping frequency, are noted to decrease
with age, while lymphatic permeability tends to increase
with age (Jakic et al. 2020). The loss of endothelial
glycocalyx contributes to increased permeability, and
reduced coverage of muscle cells diminishes their
contractility (Shang et al. 2019; González-Loyola and
Petrova 2021). Also, aging can cause cervical lymph
node atrophy and thickening of dorsal/ventral lymphatic
structures, thus impacting the lymphatic output of the
aged brain (Albayram et al. 2022). In MLVs specifically,
such age-related dysfunctions reduce influx and
outflux of CSF. It triggers the accumulation of metabolic
products, accelerates neuroinflammation, induces the
release of pro-inflammatory cytokines in the brain, and
consequently aggravates cognitive dysfunction (Guo
et al. 2023).

Figure 2. Interconnected changes found in brain and nasal area, bounded by the cribriform plate.
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Common features of neurodegenerative
diseases in terms of the brain lymphatic
system

Neurodegenerative diseases are characterized by a pro-
gressive decline in cognitive function following their
initial onset, highlighting the need for an objective diag-
nosis rather than clinical assessments alone. From ameta-
bolic and immunological perspective, common features
can be observed in understanding the development of
neurodegenerative diseases, such as the generation of
unwanted protein plaques and the presence of contami-
nants measured within the brain. The accumulation of
protein plaques, such as the tau neurofibrillary tangles
seen in AD, can induce inflammation, synaptic impair-
ment, and loss of neural function, resulting in thehallmark
symptomsof cognitive andbehavioral dysfunction associ-
ated with neurodegenerative diseases (Roda et al. 2022).

As described in the preceding section, aging has a
direct impact on glymphatic and lymphatic functions,
impairing the functionality of brain lymphatics. The
accumulation of proteins in neurodegenerative diseases
is closely associated with the maintenance of the brain
lymphatics, which is responsible for removing soluble con-
taminants within the brain. Therefore, changes or disrup-
tions in CSF drainage leading to impaired glymphatic/
lymphatic function, have been observed to be correlated
with the accumulation of specific pathological proteins
known to be associated with neurodegenerative diseases.
As the glymphatic system is responsible for the clearance
of parenchymal metabolic wastes, it has been considered
to be mainly involved in the pathogenesis of proteinopa-
thiesofneurodegenerativediseases suchasADorPD (Buc-
cellato et al. 2022). PET study with taupathy tracer has
shown that there is CSF clearance abnormality in lateral
ventricle and superior nasal turbinate of AD patients,
implying that decrease in ventricular CSF clearance is
related with increased Amyloid beta (Aβ) deposition of
AD (de Leon et al. 2017). Moreover, in experiment done
on AD model transgenic mouse, functional disruption of
MLVs induced deposition of Aβ and accelerated parench-
ymal Aβ accumulation, consistent with meningeal pathol-
ogy in humanAD. This indicates thatmeningeal lymphatic
dysfunction might also be one of the major aggravating
factors in AD pathology (Da Mesquita et al. 2018b).

New perspectives for monitoring
neurodegenerative diseases based on the
CSF drainage route into the nasal lymphatics

Since CSF is encompasses the metabolic-pathological
profile of the CNS, monitoring of CSF has emerged as
a primary tool for identifying biomarkers essential

diagnosing of neurological symptoms, including neuro-
degenerative diseases (Anoop et al. 2010). Key findings
of CSF outflow relations in various pathological con-
ditions of CNS are summarized in Table 1.

To maintain homeostasis in the brain, the glymphatic
system exists to remove parenchymal waste through CSF
drainage into the lymphatic system. The main route for
CSF lymphatic drainage is the path connecting the brain
and the nose. Previous studies have visually confirmed
this pathway and demonstrated several correlations
between the brain and nasal regions that have either
been observed or are speculated to occur through this
route. This suggests a strong possibility that events in
the brain, such as the onset of neurodegenerative dis-
eases, can be reflected through this pathway. Indeed,
the influence of the glymphatic pathway has been evi-
denced by the detection of CSF-related markers in extra-
cranial sources for certain neurological disorders. For
instance, though the use of established biomarkers for
AD, changes have been observed in plasma, leading to
the establishment of blood test technology (Lee et al.
2020a). In addition, beta-amyloid oligomers, which are
prominentmarkers of AD, havebeendetected in nasal dis-
charge, indicating their potential utility as markers of
disease progression (Yoo et al. 2020).

Moreover, in some neurodegenerative diseases,
abnormalities related to olfaction, such as early loss of
olfactory function, have been observed, indicating a cor-
relation between the onset of the disease and the olfac-
tory system. Therefore, metabolic changes in brain
might be reflected in the olfactory system via the CSF
outflow path into the nasal lymphatics. This can provide
a new perspective for the diagnosis and monitoring of
neurodegenerative diseases. Previous studies have con-
ducted an Alzheimer’s disease biomarker study using
nasal discharge, establishing a validated protocol for
the collection and processing of nasal samples. Samples
obtained from the nasal roof adjacent to the olfactory
bulb, subjected to proper sonication and centrifugation,
have been identified as a source for assessing the patho-
logical state of neurodegenerative diseases like Alzhei-
mer’s disease through analytical approaches such as
proteomics (Kim et al. 2019; Yoo et al. 2020).

Concluding remarks

We have reviewed the overall process of CSF circula-
tion within the brain and its route of drainage into
extracranial lymphatics and particularly focused on
the pathway through the cribriform plate. During this
exploration, we have described how the existence of
this route has been documented and interpreted in
previous literature, highlighting the interconnected
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changes between the brain and areas beyond the cri-
briform plate. Furthermore, we have discussed the
potential implications of these findings for the diagno-
sis and monitoring of neurodegenerative diseases.

CSF circulates within the CNS and contributes to the
glymphatic system of brain lymphatics by draining con-
taminants outward into the extracranial lymphatics. The
CSF outflow path through the cribriform plate is one of
the major pathways of CSF drainage. As it passes
through the cribriform plate, CSF follows the olfactory
nerves and exits into the nasal mucosa, eventually reach-
ing the nasal lymphatics. From there, it can travel through
the lymphatic network and ultimately reach the cervical
lymph vessels.

This physical connection, bounded by the cribriform
plate, allows for reciprocal influences between the two
distinct systems: the CNS and olfactory system located
in the nasal region. Changes in the nasal environment,
such as variations in external factors including air pol-
lution or the introduction of intranasally administered
drugs, can impact CSF turnover, ultimately influencing
the metabolic state of the brain. Conversely, changes in
the brain can be transmitted to the external environment,
leading to direct alterations in the extracranial areas.

As the CSF outflow route is directed towards lymphatic
vessels, many neurological conditions cause changes in
CSF physiology, and these resultant changes provide
potential therapeutic avenues for brain disorders, includ-
ing hydrocephalus and neurodegenerative diseases. CSF
outflowplays a pivotal role in purging harmful substances
from theCNS, thus contributing to immune surveillance in
the brain. The significance of the function of CSF outflow
carries profound pathological implications, underscoring
its potential as a basis for therapeutic strategies for CNS
diseases.

Certain correlations have been confirmed through
this link between the brain and nasal area that CSF

flows through. The evidence from previous studies
suggests changes in the external environment affect
the olfactory system and can be reflected in the CSF.
Conversely, changes in CSF might be reflected in the
extracranial nasal lymphatics and olfactory system.

Representing a significant risk factor in the pro-
gression of neurodegenerative diseases, aging is a
major factor that induces critical changes in CSF turn-
over. CSF turnover alterations caused by aging or neu-
rodegenerative diseases have already been well
demonstrated. It can be inferred that changes in extra-
cranial areas, including the olfactory system, may also
be influenced by CSF outflow changes, as observed
in the onset of neurodegenerative diseases. Olfactory
dysfunction is one of the early symptoms in several
neurodegenerative diseases and also suggests patho-
logical relationships with the olfactory region in
these conditions. Previous research has already
demonstrated that, given the existence of a drainage
route from the brain to the nasal mucosa, nasal
exudate samples potentially serve as a new source of
biomarkers for CNS diseases (García-Cabo et al. 2020).
Therefore, considering this pathological link between
the brain and nasal area provided by certain outflow
paths of CSF might suggest a novel, non-invasive
tool for the diagnosis and monitoring of neurodegen-
erative diseases.
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Table 1. CSF outflow relations in pathological conditions of CNS.
Pathological
conditions in CNS CSF outflow relations Details Reference

CSF abnormality Outflow deficit. CSF outflow deficit engage in the pathogenesis of
hydrocephalus

(Krishnamurthy and Li 2014; Sokołowski et al.
2018)

Tumor development Outflow deficit.
Outflow alteration.

CSF outflow decrease in brain tumor development. (Ma et al. 2019; Jiang et al. 2022)

Mental disorder Outflow alteration. Major schizophrenia features induced by CSF signaling (Bechter 2013)
Strokes Outflow alteration.

Composition
alteration.

Abnormal CSF flow inducing pathological changes.
Change in iron concentration differentiates hemorrhage
and ischemic strokes

(García-Cabo et al. 2020; Fang et al. 2022)

Neurodegenerative
symptoms

Outflow alteration.
Composition
alteration.

Glymphatic malfunction in proteinopathy of late-onset
neurodegenerative diseases like Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease or motor
neuron diseases like multiple sclerosis.

(Ethell 2014; Bezerra et al. 2018; Visanji et al.
2018; Kwon et al. 2019; Guo et al. 2020;
Verghese et al. 2022; Liu et al. 2023)

Neurological disorders Outflow alteration.
Composition
alteration.

Microparticles and exosomes secreted into CSF in
lumbosacral pain, Glymphatic alterations, and hemolytic
accumulation occurs in traumatic brain injury

(Bechter and Schmitz 2014; Hansen et al. 2017;
Rasmussen et al. 2018)
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