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Abstract

We argue that information from countries who had earlier COVID-19 surges can be used to

inform another country’s current model, then generating what we call back-to-the-future

(BTF) projections. We show that these projections can be used to accurately predict future

COVID-19 surges prior to an inflection point of the daily infection curve. We show, across 12

different countries from all populated continents around the world, that our method can often

predict future surges in scenarios where the traditional approaches would always predict no

future surges. However, as expected, BTF projections cannot accurately predict a surge

due to the emergence of a new variant. To generate BTF projections, we make use of a

matching scheme for asynchronous time series combined with a response coaching SIR

model.

Introduction

“The past is prologue” (Shakespeare). “The best predictor of future behavior is past behavior”

(Twain). “The best way to predict the future is to study the past or prognosticate” (Kiyosaki).

These are all famous quotes which, when applied to important prediction or projection prob-

lems (projection being prediction into the future), suggest that a careful understanding of past

events is essential to predicting future trends.

Analyzing past estimators of prevalence is somewhat more standard [1–3]. However, fore-

casting is a more daunting task. For instance, when applied to the problem of projecting a new

surge of COVID-19 infections in India, back in mid February 2021, known forecasting strate-

gies did not work. India had seen a remarkable downturn in their daily new cases curve and all

models built at that time were projecting a continuing trend in that direction, down towards

zero daily new cases. All sorts of explanations were produced to why India escaped relatively

unscathed, including cross-protection from other regular vaccines, like the BCG TB vaccine; a

younger age distribution to the population; a warmer climate; and more homes with open win-

dow settings [4].

But by late March or early April, a significant upturn in the daily new cases curve had taken

hold and India was rapidly experiencing a second surge dramatically more ferocious than the

first. In fact, daily new cases counts would cross the 400K per day soon thereafter (reported

cases granted and likely hugely under-counted), with a lagging rise in the number of hospitali-

zations and deaths.
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So if modeling using the first surge data was not informative, was there any way to objec-

tively predict the second surge? And to make things even more challenging, can a future surge

be predicted before that surge has actually started? That is, prior to the inflection point

between the ending of a current surge and the start of a new one. We argue surprisingly that

there may be. In this paper we present a method called back-to-the-future (BTF) projections

that borrows information from so-called “matching” countries that experienced an earlier

surge. This information is used to coach projections forward in time. In fact, when applied to

India, BTF, in spite of the fact that it cannot forecast the surge of the new delta variant because

there was no previous surge to compare against, it explains very well the surge of previously

existing variants of COVID-19.

This paper is organized as follows. We begin with a short review of the basic modeling strat-

egies for pandemic data and why projections are so sensitive to the point of inflection. We

then introduce the BTF idea and algorithm for fitting. Empirical results on 12 different coun-

tries from every continent except Antarctica are presented with comparisons against the basic

modeling approaches and competitors. We finally provide some justification for the matching

and coaching used in making BTF projections.

Contrasting modeling strategies for pandemics

Compartment models

The SIR model is the simplest compartment model for describing the evolving dynamics of an

epidemic through a population. It can be described by a set of ordinary differential equations

(ODEs),

dS
dt
¼ �

bIðtÞSðtÞ
N

;

dI
dt
¼
bIðtÞSðtÞ

N
� gIðtÞ;

dR
dt
¼ gIðtÞ;

ð1Þ

where, at time t, S is the susceptible population, I is the number of infectious, R is the number

removed either by death or recovery, and N is the sum of these three:

SðtÞ þ IðtÞ þ RðtÞ ¼ N:

The parameters β and γ are the transmission and recovery rates, respectively. From Eq (1),

dS
dt
þ

dI
dt
þ

dR
dt
¼ 0:

Also from Eq (1), dividing the first equation by the third, and integrating with respect to S
and R,

SðtÞ ¼ Sð0Þe� R0ðRðtÞ� Rð0ÞÞ=N ;

where R0 is the basic reproduction number given by R0 = β/γ. At the outset of an epidemic,

when S� N, infection numbers begin to surge as R0� 1. Subsequent surges are characterized

by the ratio N/S. When R0 > N/S, infection numbers rise more rapidly, hit a peak when R0 =

N/S, and then decline as R0 < N/S.

When assumed purely mechanistic, numerical methods such as Euler discretization or the

Runge-Kutta approximation method [5] can be used to obtain approximate solutions of the
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ODEs with given boundary conditions. In a statistical analysis framework, a model is con-

structed with a deterministic and random component. The former is the SIR model itself. The

latter allows for a random sampling scheme, thus creating a stochastic extension of the mecha-

nistic model. Parameter estimation can be done via frequentist optimization, like least squares,

the method of moments, maximum likelihood estimation, or Bayesian approaches using Mar-

kov Chain Monte Carlo techniques. A clear advantage of the stochastic extensions is the ability

to quantify uncertainty in parameter estimation and prediction due to sampling variability. A

full account of the SIR model (and related compartment model extensions) can be found in

[6].

Time series ARIMA models

Time series models have also been exploited for modeling epidemic data trends [7, 8]. Using

new notation, we will let the daily infection counts be Yt and defined ΔdYt = (1 − L)dYt = Yt −
Yt − d, where d is the number of differences needed to make the series stationary, then the

ARIMA(p, d, q) model (Box and Jenkins 1976) has the form

AðLÞð1 � LÞdYt ¼ dþ OðLÞ�t; ð2Þ

where A(L) = 1 − α1L − . . . − αpLp,O(L) = 1 − θ1L − . . . − θqLq, p is the autoregressive order, q
the moving average order, and L is known as the backshift operator. The random variable �t is

white noise assumed to follow a normal distribution. The α1, . . ., αp are the autoregressive

parameters, and the θ1, . . ., θq are the moving average parameters, both sets to be estimated by

maximum likelihood. The order of the ARIMA(p, d, q) model is typically chosen using a

model selection criterion, like BIC [9] or AIC [10], among other methods.

Curve fitting

Curve fitting essentially amounts to deriving a functional relationship between Yt and t such

that the estimated curve matches the observed daily infection count trend as closely as possible.

This approach is generally considered less tied to underlying assumptions about features

within the population that might be driving the daily infection numbers. However, the draw-

back is that it’s not a mechanistic approach and thus may not do as well with longer term fore-

casts. Some examples include the generalized logistic model [11] and the generalized Gaussian

cdf [12], both adopted by the Institute of Heath Metrics and Evaluation (IHME). These models

have been extended to allow for incorporation of covariates that can connect different loca-

tions together (https://ihmeuw-msca.github.io/CurveFit/methods/).

Error correction model (ECM) for short term forecasts

In [13], the authors developed a method for short term COVID-19 forecasting called error cor-

rection model (ECM), that has some similarities to the method we will describe shortly. ECM

uses a lasso-based [14] approach to connect a country of interest at a point in time to other

countries that experienced an earlier surge. The idea was to adjust the short-run dynamics to a

departures from long-run relationships between the country of interest and the other countries

experiencing earlier surges. Tracking of dynamics of the other countries then permits short

term forecasting for the country of interest. The model can be expressed as

Dyt ¼ Dx0taþ gðyt� 1 � x0t� 1
bÞ þ εt; ð3Þ

where Δ, γ and β are unknown parameters and εt is a mean zero, fixed variance random noise.

Also, y corresponds to the country of interest, t is the point ahead in time after c case counts, x
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is the vector of observed case counts at time t for other countries that reached c case counts

earlier than the country of interest.

A two-step estimation algorithm was proposed by the authors: in the first step, β was esti-

mated by b̂ using the lasso; for the second step, α and γ were estimated by ordinary least

squares estimation, given the first-step value b̂.

A rolling window approach where the model is continually updated is advocated in order

to adjust to the dynamic nature of the pandemic. The authors demonstrated empirically over

14 prediction horizons that their methodology produced smaller mean absolute percentage

errors (MAPEs) than a simple quadratic trend regression approach and an integrated AR

model of order 1. They examined both the prediction of future cases and deaths. In section, we

define conditional absolute errors and show that BTF outperforms ECM for the data analyzed

in the present paper.

Surge prediction and the sensitivity to point of inflection

The focus in this paper is to predict future COVID-19 surges before an inflection point for the

surge itself—in other words, on the downward trajectory of the previous surge or in a valley

before the future surge.

Projections before and after an inflection point can be markedly different. To illustrate this

point, consider SIR models fit to daily case count data for the United Kingdom, as shown in

Fig 1. The red arrow on the plot indicates a point of inflection before the start of the third

surge around November, 2021. Let’s suppose this is the surge we are trying to predict. The

green curve is an SIR model fit to data prior to the inflection point that is been projected for-

ward past the inflection point in Fig 1. Notice how it’s descending to zero. Now assume we

wait some days to make the projection for the third surge. The projected curve from such an

SIR model would look like the blue curve in the figure. As expected, it is rising upwards

towards the observed peak daily count. This looks to be much more accurate. These types of

projections are of less public health planning value, since with highly contagious viruses like

the omicron variant of COVID-19, with an R0 number estimated to be near 10, it is nearly

impossible to blunt the surge after the point of inflection because one is always “running

behind” the virus. Our proposed methodology seeks to do better than the green curve based

on the same observed data.

Back to the future projections

We now restrict our attention to one particular sequence—the daily infection counts over

time. Our main interest is to project a future oncoming next surge during the downward tra-

jectory of the current surge but prior to an inflection point in the curve that might indicate the
start of a new surge. As just shown, standard approaches will have all projected curves descend-

ing down towards zero daily counts.

To improve naive projections, we exploit the very nature of a pandemic—the fact that infec-

tions are spreading asynchronously in time across different countries. Countries (Bm, m = 1,

. . ., M) that have experienced a surge earlier in time may provide useful information in making

projections forward in time for a country of interest (A). This is done by estimating an

ARIMA time series model for A for the current surge S1 (say f̂ t2S1
ðAÞ), shifting this curve back-

wards in time and overlaying its fitted curve with fitted curves from the other Bm countries pre-
vious surges (S1,m) (say f̂ t2S1;m

ðBmÞ). A determination of best country match is then made based

upon the pairwise difference in fitted curves f̂ t2S1
ðAÞ and f̂ t2S1;m

ðBmÞ.
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Once the best match (~Bm) amongst the M countries has been established, an SIR model is fit

to the observed daily infection counts forward in time for ~Bm. This data is actually observed,

which is a key fact. Relevant SIR curve parameter estimates are then passed to country A, using

A’s current initial conditions, to make not yet observed projections forward in time. This is a

type of statistical coaching. It’s useful to impose a short “washout” period to allow the current

surge to come to completion. We call this Back to the Future (BTF) projections. The steps can

be summarized in the algorithm:

Back to the Future Projection Algorithm

Suppose we want to project country A after A’s i-th surge.

1. Select candidate countries such that

a. - its i-th surge happens before A’s i-th surge,

b. - it has sufficient data for i-th surge to match with A’s i-th surge (same length interval),

Denote these candidate countries as fBkg
K
k¼1

.

2. Fit ARIMA models for the i-th surge of A and Bk.

Smooth these fits using cubic smoothing splines, with the degree of smoothing determined

by leave-one-out cross-validation.

Denote the fitted models by Â and B̂k.

3. From fBkg
K
k¼1

, select the country most similar to A by

~Bm � argminBk

n
median

h
Âsd � B̂sd

k

io
;

where Âsd; B̂sd
k be the standardization of Â; B̂k by its maximum.

4. Fit an SIR model to ~Bm after its i-th surge (a 10-day gap may be introduced to washout the

effect of the i-th surge).

5. Pass the estimated parameters b̂ð~BmÞ; ĝð
~BmÞ by the SIR model of ~Bm to the SIR model with

A’s initial conditions.

Fig 1. Sensitivity of the UK SIR model projections to the inflection point (red arrow) of daily infections curve.

https://doi.org/10.1371/journal.pone.0296964.g001
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6. Generate the projection using this new SIR model.

Sensitivity analysis

To analyze the sensitivity of the SIR model, we jitter the two parameters β and γ for a small

amount δ. In practice, we sample the parameter pair by a uniform distribution on [β − δ, β +

δ] × [γ − δ, γ + δ] (in our cases δ is chosen as 0.01). Then run the SIR model by each pair of

these parameters. We can shade the union of these individual runs.

Why coaching using a compartment model?

The mechanistic nature of the systematic component of the compartment model provides a

more parsimonious representation of country ~Bm over a longer period of time. It also allows a

clear path to incorporating country A’s specific characteristics. This helps to anchor the BTF

projections and to generate more accurate projected trends over longer windows of time,

rather than purely generating accurate short-term projections which are of limited public

health benefit.

Contrast this to coaching using an ARIMA model instead from country ~Bm. Since only

lagged effects can be modeled in the ARIMA model, country ~Bm’s shape of their next surge

(after the matching one), will not fully inform country A forecasts of interest.

Data

Killeen et al. [15] assembled the dataset under focus. COVID-19 infection volume time series

came from the Johns Hopkins University CSSE COVID-19 Tracking Project and Dashboard

(https://coronavirus.jhu.edu/data) for which data was pulled from the time range 01/22/2020

until 09/18/2021.

Performance on a selection of countries

A BTF analysis was carried out for a selection of 12 countries from all 6 populated continents

around the world. Thus the performance of our methodology was examined regardless of the

regional variation that might exist from continent to continent. In particular, the chosen coun-

tries experienced second surges during our time window of analysis and the goal was to accu-

rately forecast second surges from a lagged time point towards the end of their first surges (i.e.

before the inflection point of the daily infection curve happened, indicating the start of a

potential second surge). This would be a truly honest projection and would more clearly dem-

onstrate the utility of the BTF methodology. Usual forecasting with compartment models,

ARIMA models, or curve fitting, would all indicate the projected curves continue downwards,

given that the projections were made from a point in time on the downward trajectory of the

first surges. As a negative control, we also included Australia where no second surge was

detected during the analysis time window.

Figs 2–4 show four panels each with each panel depicting the following: i) a observed daily

infection curve; ii) BTF projected curves (solid blue curve) with sensitivity bands (darker blue

shaded); iii) standard SIR projected curved (red) with sensitivity band (red shaded); iv) stan-

dard ARIMA(p, d, q) forecast (green curve) with 95% prediction interval (green shaded) and

v) generalized logistic growth curve model with 95% bootstrap prediction intervals (purple

curve and shaded regions). The time window of each surge of interest are the blue rectangular

regions. Underneath each country’s plot is the matching table from which the coaching coun-

try’s curve was derived.
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Fig 2. Projection curves for Australia, Colombia, Germany, and India, using BFT projections. Projected blue curve

and region of projection (before inflection point) of next surge in shaded blue. Note that a 10 day washout period is

forced before projections start. Matching country ranking tables shown underneath each plot.

https://doi.org/10.1371/journal.pone.0296964.g002
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Fig 3. Projection curves and matching country ranking tables for Iran, Israel, Italy, and Japan, using BFT

projections.

https://doi.org/10.1371/journal.pone.0296964.g003
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Fig 4. Projection curves and matching country ranking tables for Singapore, South Africa, United Kingdom, and

United States, using BFT projections.

https://doi.org/10.1371/journal.pone.0296964.g004
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Making these kinds of projections is clearly a very challenging task and represent a type of

aspirational goal (see [16]). Thus, judging the accuracy of the BTF projections must be cali-

brated appropriately. For point estimate-based predictions, one can use absolute error; for

interval-based predictions, the weighted integrated score is an option [16].

Figs 5–7 show the conditional absolute errors (CAE) curves over time for BTF (blue curve)

versus using the naive SIR model (red curve), ARIMA model (green curve) and generalized

logistic growth curve (purple) projected forward from the same point in time. We define CAE

as

CAE ¼

(AE ; if the surge prediction is correct

1 ; if the surge prediction is wrong

where AE is the absolute error.

Now the plots are zoomed in with the light blue shaded rectangular regions correspond to

the time windows of the future surge of interest. Lower values of CAE indicate a better fit to

the actually observed future data. Notice that if a surge is predicted incorrectly (i.e. a surge was

not forecasted and it happened or vice versa), then the CAE is infinite.

In all 12 circumstances the BTF’s forecasts dominate naive model forecasts in terms of

CAE. For Israel, the BTF CAE curve looks worse later in the shaded time window than earlier

Fig 5. CAE estimates for Australia, Colombia, Germany, and India.

https://doi.org/10.1371/journal.pone.0296964.g005
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on; this corresponds to the projected peak for the surge being shifted too far to the right. For

Australia, no important differences were found but this country was the negative control.

CAE curves, while useful, do not convey other important information regarding surge pro-

jections. For instance, it is of particular interest whether a surge projection accurately esti-

mated peak height (within plus or minus 10 days) and/or location (within plus or minus 10

days). Table 1 breaks this down for our analysis. It indicates that for 5 countries we did indeed

achieve peak height match, and for 8 countries we achieved peak location match. Contrast this

to SIR, ARIMA and generalized logistic growth curve models which worked only for Australia,

the negative control. Finally, we also compare BTF to the ECM method finding that BTF out-

performs ECM. Although both methods borrow information from other countries, the con-

straints they impose on projections are different. The BTF makes use of SIR model which

describes epidemic from a principled way, hence impose a strong constraint on the prediction

result. The projection of BTF must satisfy the form of the solutions of SIR model, that is

smoothness, unimodal etc. In a word, BTF has two constraints: the first is imposed implicitly

by other counties when we borrow information from them, and the second is imposed by the

epidemic dynamics. On the other hand, ECM only has the first constraint. So, we argue that is

why BTF is preferred in the scenario of surge prediction.

We also found an interesting result regarding India’s projected surge. The second surge cor-

responded to the emergence of the delta variant of COVID, which produced a peak height of

Fig 6. CAE estimates for Iran, Israel, Italy, and Japan.

https://doi.org/10.1371/journal.pone.0296964.g006
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over 400K daily infections. Our projected estimate was only around 50K. However, it has also

been estimated that at surge peak, fully 90% of the daily infection counts were attributable to

the delta variant (https://clingen.igib.res.in/covid19genomes/). This means that 10% came

from other existing variants found in other countries. Hence our projected peak approximates

this number very accurately. We do not expect to project a peak for a new variant accurately

using BTF, since the method, as currently formulated, cannot accommodate new variants.

Fig 7. CAE estimates for Singapore, South Africa, United Kingdom, and the United States.

https://doi.org/10.1371/journal.pone.0296964.g007

Table 1. Countries where BTF projections matched surge peak height and location.

Peak Height Match Peak Location Match

Israel Germany

Australia Australia

India* India

Singapore Singapore

UK UK

Japan

South Africa

US

Note: The * for India

under the peak height match column indicates the match is under a particular caveat described in the text.

https://doi.org/10.1371/journal.pone.0296964.t001
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Justification for the matching

One of the features of a pandemic is that surges and recessions happen asynchronously across

different countries. We are relying on the fact that finding a best matched country by time-

shifting to create overlayed earlier surges will in fact provide useful information to coach future

surge projections of interest. Thus it is necessary to say something regarding the optimality of

this type of matching.

The correlation between asynchronous time series has been examined in what is termed

lead-lag relationships between different financial markets [17]. For example, a link has been

established between index futures and the cash market where the futures market tends to lead

the cash market (see for instance [18]). The analysis of information flows between markets on

short varying time intervals is an active area of research. In [17], the authors developed a

method for estimating correlations from irregularly spaced transactions data.

For two stationary ARIMA processes, we can test for the presence of cross-correlation func-

tions between the two asynchronous series. However, this approach is sensitive to the choice

of lag length and cannot tell the directionality of causality, only the presence or absence of it.

In addition, the statistic lacks power, as compared to regression-based tests discussed next.

One more clear way forward is to conduct a direct test for Granger causality [19], by

regressing each variable on lagged values of itself and the other. This can be written as

Yt ¼ Z0 þ
XmaxðS1Þ� t

j¼1

ZjYt� j þ
XmaxðS1;mÞ� t0

k¼1

kkZt0 � k þ �t;

where �t is white noise and t0 = t − lm, with lm the lag between S1 and S1,m. Then the Granger

causality between the two asynchronous time series can be assessed by testing whether the κk =

0 or not, using an F-test based on comparing nested residual sum of squares.

Alternative strategy for matching using data enriched ARIMA models with

lasso penalization

Assume the daily infection counts for country A in the currently ending surge are in time

period S1. Assume a candidate country’s (Bm) daily infection counts during a previous surge

earlier than country A’s currently ending surge are in time period S2.

Assume for A, that Yt follows the ARIMA(p, d, q) model Eq (2) with t 2 S1; and country Bm

also follows Eq (2), with t 2 S2, but with autoregressive parameters (α1 + ωm,1), . . ., (αp + ωm,p)

and moving average parameters (θ1 + νm,1), . . ., (θq + νm,q) (assuming p, d and q are the same

for both).

Then the two can be pooled via shrinkage and weighting as in [20] as the solution to the

penalized joint log likelihood,

lðAÞ þ lðBmÞ � t1PðomÞ � t2PðnmÞ;

for penalty functions P(ωm) and P(νm) and shrinkage parameters τ1 and τ2. Setting P(ωm) = ||

ωm||1 and P(νm) = ||νk||1 corresponds to joint lasso shrinkage [14]. The shrinkage parameters

can be estimated as part of the penalized maximum likelihood estimation process.

Then the best matching country would be,

~Bm ¼ argminkðk ôk k1 þ k n̂k k1Þ: ð4Þ
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Connection to response coaching

For country A, let’s assume that S1 defines the time period of the first surge, and S2 the time

period for the second surge. Let Yt be the set of responses for country of interest A, Ztm be the

corresponding set of responses for country ~Bm, and S1,m and S2,m define the time periods for

~Bm’s first and second surge. Note that S1 > S1,m and S2 > S2,m by definition.

Then let fd2
ðYt j t 2 S2Þ be the fit for A in S2, indexed by parameter vector δ2; and fd2;m

ðZtm j

t 2 S2;mÞ be the fit for ~Bm in that country’s S2,m indexed by parameter vector δ2,m. Also let h(t)
be a function that maps from S2,m to S2. These fits can be estimated using an SIR model.

Remember that the interval corresponding to S2,m is lagged with respect to the interval corre-

sponding to S2.

Inspired by the response coaching idea of Tibshirani R and Hinton G. [21], we can write

fd2;m
ðYt;Ztmjt 2 S2Þ ¼ fd2;m

ðYtjt 2 S2Þfd2;m
ðZtmjh� 1ðtÞ 2 S2;mÞ;

where δ2,m is a coaching parameter vector specific to S2,m and shared with A during its S2.

Thus the prediction of Yt for t 2 S2 can be coached by country ~Bm via the shared parameter

vector δ2,m and estimated by

f̂ ðYtjt 2 S2Þ ¼ fd̂2;m
ðYtjt 2 S2Þ;

where d̂2;m is estimated from the fit of ~Bm in t 2 S2,m and using the population characteristics of
A during S2.

The fact that S1 and S1,m are not the same, and that S2 and S2,m are not the same, but that we

are expecting ~Bm to be informative regarding S2 implies a periodic property of the pandemic

across matched countries in time. That is, ~Bm represents a country that experienced a very sim-

ilar first surge and thus there is information to be gleaned about predicting Y by learning from

~Bm’s experience during their (earlier) second surge.

Discussion

Making surge projections before the next surge begins is frankly necessary, given the highly

infectious nature of many of the COVID-19 variants. Waiting until after an inflection point

will simply mean that one is always playing catch up against the virus.

Our methodology attempts to do exactly this by employing a matching scheme to other

candidate countries and then appealing to Granger causality in order to borrow from that

matched country’s observed ensuing daily case counts. As we have discussed, once matching

has occurred, the BTF projections themselves use a form of response coaching which can

reduce variance over a non-coached model [21].

It should be emphasized that BTF projections cannot work well when a new variant

emerges for the first time and it is the driver of a new surge. There is simply no hope to borrow

strength from other countries. This is the reason our projections for India were not accurate

due to the first-time emergence of the COVID-19 delta variant in early 2021. However, in the

case of India, as explained in the performance assessment section of this paper, once the model

was adjusted for the cases not pertaining to the delta variant, our projection did very well.

So how can one know whether the BTF technology could be of use in a prospective sense?

One answer may lie in the recent work of Schioler H et al. [22], who developed a probabilistic

model based on a hidden Markov model for infection spread and an approximation of a two

stage sampling scheme to infer the probability of extinction of a current variant. Should this
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probability be low, then BTF may be useful in projecting future surges. Additional research is

needed to adapt the methodology to allow for the possible emergence of new variants.

The CDC in the US released a community levels classification scheme designed to guide

public health decision making regarding prevention strategies. It combines metrics about hos-

pital admissions, bed usage due to COVID-19 cases and whether the new case rate in the last

seven days has exceeded 200 per 100,000 people. The emphasis on early detection is clear, and

that is why the CDC included syndromic surveillance in their metrics. Wastewater surveillance

holds promise but because that surveillance does not provide broad coverage, it was not

included in the list of metrics. To validate their choice for early warning indicators, the CDC

assessed performance against community transmission indicators in predicting outcomes

three weeks later and found that their early warning metrics produced higher predictive accu-

racy (as measured by area under the ROC curve) than the community level transmissions

([23]).

Taken in this context, the strength our methodology is the ability to make surge projections

with good accuracy even further backwards in time. This could prove an important tool to

accompany other early warning indicators. The weakness in application may arise from the

fact that a suitably good country (or other region) match may not be found or that as explained

above, a new variant emergency cannot be predicted.
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