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Abstract: Recently, large-scale scRNA-seq datasets have been generated to understand the 

complex and poorly understood signaling mechanisms within microenvironment of Alzheimer’s 

Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. 

Though a set of targets have been identified, however, it remains a challenging to infer the core 

intra- and inter-multi-cell signaling communication networks using the scRNA-seq data, 

considering the complex and highly interactive background signaling network. Herein, we 

introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular 

signaling pathways and signaling communications among multi-cell types. Compared with 

existing models, the novel and unique design of PathFinder is based on the divide-and-conquer 

strategy, which divides the complex signaling networks into signaling paths, and then score and 

rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling 

communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific 

AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks 

among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference 

model and can be applied to other omics data-driven signaling network inference.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/


Introduction 

Single-cell RNA sequencing data (scRNA-seq) technologies become popular in recent years 

because of their ability to profile gene expression and analyze cell composition in the single cell 

resolution1–3. On the one hand, by profiling and annotating scRNA-seq data, researchers can 

analyze differentially expressed genes in each cell population and sub-populations to understand 

which gene is altered in certain conditions. On the other hand, scRNA-seq data also shows great 

potential in discovering intra- and inter-cellular communication. However, there are only limited 

methods for discovering active signaling pathways or intra-cellular communication using scRNA-

seq data. The existing models for doing this are mainly based on correlation, regression, and 

Bayesian analysis4, and the direct interaction signaling cascades usually were ignored in those 

methods because only a small set of genes have gene expression changes between different 

conditions5. For example, the CellPhoneDB6 can model the interactions between the ligands from 

one cell type to the receptors from another cell type. However, it cannot model the downstream 

signaling. CCCExplorer7 can discover both the ligand-receptor interaction and downstream 

signaling network by modeling differentially expressed genes. NicheNet8 takes a further step to 

integrate various interaction databases and train a predictive model to predict the interaction 

potential between the ligand and downstream targets. However, it only applies a statistical model, 

which cannot generate a clear communication path. CytoTalk9 applies the Steiner-tree to discover 

the de-novo signal transduction network from gene co-expression. However, the discovered 

signaling is based on co-expression and the physical interaction cascade is still unknown.  

In the past few years, graph neural networks (GNNs) become famous due to their great 

performance on node and graph representation and classification tasks. For instance, 

GraphSAGE10 first proposed a general framework for learning the node representation in an 

inductive way. GAT11 incorporates the attention mechanism in GNN to actively learn how to 

aggregate all the information in graphs. The DGCNN12 model proposed sortPooling to efficiently 

sort nodes and learn graph features for graph classification. GIN13 proved that the normal 
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message passing GNNs can only be at most as expressive as the 1-dimensional Wifelier-Lehman 

test (1-WL test) on learning graph structure and proposed a new GNN algorithm that is equally 

powerful as the 1-WL test. More recently, researchers have tried to generalize the transformer 

architecture14 into graph learning fields as it already shows superior power in learning both text 

and image data. Many works 15–20 show great potential for applying the transformer on the graph 

data. They either nest GNN architectures in the transformer layer, design specific attention 

mechanisms, or design novel encoding mechanisms to incorporate the graph structure into the 

transformer model. However, how to leverage GNNs to discover the intra- and inter-cell 

communication network is unknown as GNNs are typically a black-box model and it is hard to 

interpret the prediction results.  

In this work, we present a novel framework called PathFinder to discover both intra- and inter-cell 

communication networks with a novel Graph transformer-based neural network.  Given the 

scRNA-seq expression data and the condition (control/test), the PathFinder first samples a series 

of predefined paths through the prior gene-gene interaction database. Then, the PathFinder 

model takes the scRNA-seq expression data and the predefined path list as input to predict the 

condition of each cell. Through the training, the path important score will be learned to indicate 

the relative importance of each path in separating between the control and test conditions. To 

learn different types of communication like up-regulated or down-regulated networks, the novel 

regularization term is introduced to regularize the learned path scores to be close to the prior 

scores. After training. The path score will be sorted and the intra-communication network for each 

cell type will be generated by extracting the top K important paths. To generate the inter-cell 

communication network between the ligand cell and receptor cell, the intra-cell communication 

network will be collected for the receptor cell, and the ligand list will be extracted from the 

differential expressed gene list in the ligand cell. Finally, the ligands are linked to the intra-cell 

network with the ligand-receptor interaction database. The overall procedure of generating both 

intra- and inter-cell communication networks using PathFinder is shown in Figure 1. To our best 
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knowledge, this is the first method to apply deep learning and graph transformers to discover 

signaling networks in scRNA-seq data. The advantages of PathFinder are listed below: (1) The 

model is designed based on a graph transformer, which has the great ability to learn both local- 

and long-range signaling patterns from gene expression and large-scale networks. (2) it is 

capable of identifying and providing the full signaling network between cells via cellular ligand and 

receptor. (3) The proposed PathFinder is a general framework, where users have the flexibility to 

input their own defined signaling paths or gene-gene interaction network database to identify 

important signaling based on user interest. Furthermore, (4) it can separate and generate different 

types of communication networks (Differential expressed/up-regulated/down-regulated), which 

allows more precise downstream analysis. We applied the PathFinder to a mice cohort of AD 

disease. The PathFinder not only achieves great prediction results but also generates intra- and 

inter-cell communication networks that align well with the latest knowledge on the mechanism of 

AD disease.  

 

Results 

scRNA-seq data of Alzheimer's disease cohort on mice.  

To evaluate the proposed PathFinder method, scRNA-seq data of Alzheimer's disease is 

collected from the Gene Expression Omnibus (GEO) database with accession 

number GSE16450721. The raw data is processed using the Seurat R package22 and the process 

procedure is done by following the previous study21. Specifically, we select cell samples from two 

different conditions, denoted as TAFE4_tam and TAFE4_oil. TAFE4_tam stands for mice with the 

APOE4 gene be knocked out from astrocyte cells and TAFE4_oil stands for the mice with the 

existence of APOE4. It is well known that APOE4 is one of the most significant genetic risk factors 

for late-onset AD. However, the detailed mechanisms behind the APOE4 are still unknown. By 

analyzing the difference between the signaling pattern with and without APOE4, we can get a 

deeper understanding of the effects of the APOE4 gene on brain cells. Concretely, the excitatory  
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Figure 1. (Upper) Overview of PathFinder method to discover both intra- and inter-cell communication network. The 
input scRNA expression data with both samples from the control condition and the test condition is used to construct the gene-
gene interaction network based on our large database. Next, the path sampler is used to generate all pre-defined path from the 
interaction network. Then, the PathFinder model is trained to separate the cells from two different conditions. After the training, 
the learned path score can indicate the importance of each path. Next, the top 𝑘 paths are selected to generate the intra-cell 
communication network. Finally, the Ligand-receptor database is used to link all picked ligands (like differential expressed 
ligands) from ligand cells to the receptors in the intra-cell communication network of receptor cells to construct the inter-cell 
communication network. (Lower) Model architecture of PathFinder. The PathFinder consists of three components: node 
encoder, path encoder, and graph encoder. The node encoder is a stack of 𝐿 layer of transformer with special encoding to 
encode local graph structure information of each node. The path encoder take the output from each layer of node encoder to 
learn long-range path embedding for each pre-defined path. Finally, the graph encoder aggregate information from each path 
to generate graph embedding and make final prediction. In the graph encoder, the trainable path weight will be learned to assign 
each path an importance score, which can be used to generate intra-cell communication networks. 
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neuron (Ex), microglia (Mic), and astrocyte (Ast) of the TAFE4 group are collected from the 

dataset with a total number of samples of 13604, 3874, and 734, respectively. Then, the 

PathFinder method is applied to predict the condition of each cell (oil or tam) separately for each 

cell type and generate both intra- and inter-cell communication networks between these three cell 

types. The pre-defined path list including all the shortest paths starting from receptors and all 

possible paths from the receptor to the target gene. For the shortest distance paths, we only select 

paths with a minimum length of 3 (except all receptor direct regularizations, which has a length of 

2) and a maximum length of 10. We compute the prior weight of each path based on the average 

differential expression level of all genes in the path (more details in the Method section) for the 

path score regularization. To ensure the robustness of the analysis, we only selected the top 8192 

variable genes from the original dataset as input to the model, which resulted in the final number 

of pre-selected paths being 1210. 

 

PathFinder can effectively separate cells from different conditions by selecting 

differentially expressed signaling paths. 

To evaluate the performance of the PathFinder model, the model is applied to excitatory neurons, 

astrocytes, and microglia cells separately to predict the conditions of each cell (tam/oil), denoted 

as TAFE4_ex, TAFE4_mic, and TAFE4_ast respectively. For each cell type, we repeat the 

training 5 times with each time splitting the dataset into train, validation, and test subsets randomly 

with a ratio of 0.7/0.1/0.2. We report the average performance and standard deviation on the test 

set over all 5 runs. The detailed experimental setting can be found in the Method section. The 

detailed results are shown in Table 1 and Figure 2a.  

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.13.575534doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.13.575534
http://creativecommons.org/licenses/by-nc/4.0/


 

 
Figure 2. Evaluation of the PathFinder model. (a) The detailed evaluation metrics on test dataset from all runs. 
(b) The comparison of the average differential expression level of top paths sorted by PathFinder during the training. 
The top 200 paths have higher differential expression level than others for all three cell types. (c) The learned path 
scores of PathFinder on different runs. All paths are ranked by the average score across all runs. 

b. The comparison of the average differential expression level of paths extracted by PathFinder.

c. The learned path scores of PathFinder on different runs 

a. Detailed evaluation results of PathFinder for all repeated runs.
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Table 1: Evaluation results of the PathFinder model. 
 

Accuracy Recall Precision Specificity F1 AUC 

TAFE4_ex 0.67±0.01 0.71±0.04 0.66±0.02 0.64±0.05 0.68±0.01 0.73±0.01 

TAFE4_mic 0.67±0.01 0.76±0.03 0.65±0.02 0.58±0.04 0.70±0.01 0.71±0.01 

TAFE4_ast 0.62±0.04 0.75±0.15 0.65±0.03 0.44±0.14 0.69±0.06 0.65±0.04 

 

As can be seen, the PathFinder can successfully classify the majority of cells in the test dataset 

into the correct condition. This means that after training, the model learned the most important 

difference between the two conditions from a huge gene expression profile. Such differences can 

be reflected in the important score of each path as the final prediction is made based on the 

different predefined paths. Among all results, the standard deviation of the metrics for TAFE4_ast 

is much larger than the other two cell types. We conjecture this is caused by the limited number 

of cell samples in the TAFE4_ast group, which makes the model easily overfit to the training data. 

Next, we evaluate the learned path score from each group. For each cell group, we first average 

the learned path score from 5 repeated runs to get the final path score. Next, we average the 

absolute fold-change level of all genes within each path to get an average differential expression 

level for each path. Then, we compare the top 200 selected paths from the results of PathFinder 

model to the rest of the paths. The results are shown in Figure 2b. We can see that for all three 

different cell types, the selected top 200 paths from PathFinder have much higher average 

differential expression level comparing to the rest of paths. The results indicate that PathFinder 

is effective for ranking differential expressed paths through the training. This can be attributed to 

two objective function used in the PathFinder. First, by minimizing the classification loss, the 

model are forced to increase the score for paths that are useful for separating two different 

conditions. It is intuitive that paths with higher average differential expression level are more 
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helpful for the prediction. Second, by minimizing the regularization loss, the model tends to give 

a high score for paths with high prior weight, and the prior weight is positively related to the 

average differential expression level. 

 

Then, we evaluate the robustness and stability of the PathFinder. Concretely, we want the final 

path score distribution (ranking) learned from PathFinder to be stable and robust even if we 

slightly alter the training data. Since we randomly split the whole dataset for each repeated run, 

we can directly compare the learned score for each run to achieve our goal. Therefore, we plot 

the learned score for all paths and all runs with paths are sorted by the average score. The results 

are shown in Figure 2c. We can see for all three cell types, the learned scores are very stable 

across different runs, as paths with higher ranks always have higher scores. This means that 

even if we slightly alter the training dataset, PathFinder model can still output almost the same 

top k paths. The results successfully demonstrate the robustness of the PathFinder for extracting 

important paths and constructing intra-communication networks. 

 

Core intra-cell signaling networks associated with APOE4 genotype. 

In this section, we evaluate the intra-cell communication networks discovered by PathFinder 

model. Particularly, we want to know whether the discovered networks can reveal the recent 

discovery of APOE4-driven AD or even indicate new findings. First, for all three cell types, the 

final networks are generated by first averaging the path score learned from 5 repeated runs and 

then ranking and selecting the top 300 paths from all paths to form the final networks. The 

generated networks for all three cell types are shown in Figure 3. Next, we perform the 

enrichment analysis on all generated networks using KEGG signaling pathways and Gene 

Ontology (GO) terms. The enrichment results are shown in Figure 4a. Based on the results, we 

find several key factors that are important to the development of APOE4-driven AD. 
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Figure 3. Intra-cell communication networks discovered by PathFinder model.  
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Neuron inflammation: Numerous studies have shown that inflammation is highly activated and 

plays a key role in the progress of AD23–26. From the enrichment results, we can see that many 

inflammation-related pathways/GO terms are enriched across multiple cell types. For example, 

cytokine-mediated signaling pathway, cellular response to cytokine stimulus, inflammatory 

mediator regulation of TRP channels. This result aligns with the previous studies and further 

confirms that the existence of APOE4 in the astrocyte stimulates the inflammatory response.  

More specifically, several genes related to neuron inflammation are identified by PathFinder 

across multiple cell types. STAT1 and STAT3 are identified as hub genes connected to multiple 

targets in both the network of neurons and microglia. It has shown that STAT1 plays a key role in 

the regulation of inflammatory response and cellular death27,28. Moreover, the differential 

expression analysis (Figure 4b) reveals that STAT1 is highly differential expressed in TAFE4 

group, which further confirms the important role of STAT1.  

 

Autophagy: Besides the inflammation, the Apoptotic and Apoptotic signaling pathway are 

enriched in the neuron and the Microglia. The autophagy is a lysosome-dependent, homeostatic 

process, in which organelles and proteins are degraded and recycled into energy. Autophagy has 

been linked to Alzheimer’s disease pathogenesis through its merger with the endosomal-

lysosomal system, which has been shown to play a role in the formation of the latter amyloid-

β plaques29. One hypothesis states that irregular autophagy stimulation results in 

increased amyloid-β production30. The existence of the APOE4 may also affect the process of 

autophagy and thus cause the acclamation of the amyloid-β of the AD’s brain. Particularly, genes 

CLU and FOXO1 are identified in the intra-network of microglia.  CLU is one of the top AD 

candidate genes. Some study shows that it is a casual gene of AD-affected hippocampal 

connectivity31. Moreover, it is shown that CLU protein interacts with Aβ, reduces its aggregation, 

and protects against its toxic effects32. Many studies have shown that FOXO1 induces autophagy 



in cardiomyocytes and cancer cells. FOXO1 was also reported to be a gene encodes transcription 

factor that plays a role in autophagy modulation in neurons33. 

Lipid transportation: the regulation of lipid metabolic process and cellular response to lipid are 

enriched in the intra-communication network of all three cell types. The enriched gene included: 

NR1D1, EGR1, BRCA1. It has been proved that the APOE4 is involved in the lipid transport and 

metabolism34. The existence of the APOE4 in the astrocyte may disturb the brain lipid composition 

and thus affect the blood-brain barrier (BBB) function35.  All these results confirm the influence of 

the APOE4 in the progress of AD and the dysfunction and death of the neuron.   

JAK-STAT signaling pathway: In the intra-communication network of the astrocyte, the receptor 

signaling pathway via JAK-STAT is enriched with the corresponding gene: STAT3, SOCS3, 

HMGA2, STAT1. The JAK-STAT signaling pathway has been reported to be the inducer of 

astrocyte reactivity36. The enrichment of the pathway indicates that the existence of the APOE4 

in astrocytes can influent the function of the JAK-STAT signaling pathway and the pathway 

reversely affects the activity of the astrocyte. 

Core multi-cell inter-cell communication networks associated with APOE4 genotype. 

To further understand the complex signaling flow and mechanism behind the APOE4 and AD 

pathology, we further generate inter-cell communication networks between three different cell 

types using the PathFinder, as shown in Figure 4c. First, we can see that compared to astrocytes, 

microglia have much more interactions with neurons. This may indicate that the existence of 

APOE4 in the astrocyte may activate the functionality of microglia and then cause abnormal 

activities in the neurons.  

Among all interactions, several interesting interactions appealed to the result. First, the 

MIF secreted by the astrocyte interacts with the EGFR in the neuron and follows downstream 

signaling.  The MIF is a well-known proinflammatory cytokine that promotes the production of 

other immune mediators. Increased expression of MIF can contribute to chronic 

neuroinflammation and neurodegeneration37. EGFR has been shown to be a potential target for 



treating AD-induced memory loss38,39. The increased expression level of MIF could be the 

signature of activated astrocytes and the MIF further triggers the expression of EGFR and 

following downstream network in the neuron, which contributes to neuron inflammation and 

degeneration.  

Besides MIF in astrocyte, many ligands for EGFR receptor are also identified in Microglia, 

including ICAM1, IGF1, HLA-A, CNTN2, PCDH15, FLRT2, TAC3, PTN, and PTPRC. The down-

regulation of PTPRC is reported to be contributed to the overproducing of A β and neuron loss40. 

Another interaction is the NLGN1 which is expressed in neurons interact with the NRXN1 gene in 

the astrocyte. The amyloid-β oligomers are synaptotoxins that build up in the brains of patients 

and are thought to contribute to memory impairment in AD. It has been shown that the interaction 

neurexins (Nrxs) and neuroligins (NLs) is critical for synapse structure, stability, and function41.  

The dysregulation of the interaction between Nrxs and NLs may contribute to the formation of 

amyloid-β oligomer. The EFNA5 in the neuron is up-regulated in the neuron and interacts with the 

EPHB1 and downstream STAT3 signaling in the astrocyte. This interaction is closely related to  



 

 
Figure 4. Analyses of the results. (a) KEGG and GO enrichment analysis on all discovered intra-
networks. (b) Differential expression analysis. (c) Inter-cell communication networks. All ligands are from 
DEGs of the ligand cells. Receptors are marked as blue. 

TA
FE4_

Ex

TA
FE4_

Mic

TA
FE4_

Ast

Amyotrophic lateral sclerosis
Parkinson disease
Olfactory transduction
Synaptic vesicle cycle
Huntington disease
Diabetic cardiomyopathy
Amphetamine addiction
Cholinergic synapse
Insulin secretion
Pathways of neurodegeneration
Adrenergic signaling in cardiomyocytes
Aldosterone synthesis and secretion
Long−term potentiation
Melanogenesis
Circadian entrainment
Dopaminergic synapse
MicroRNAs in cancer
Homologous recombination
Fanconi anemia pathway
B cell receptor signaling pathway
Transcriptional misregulation in cancer
Influenza A
Human immunodeficiency virus 1 infection
Leishmaniasis
Hepatitis B
GnRH signaling pathway
Thermogenesis
Axon guidance
Cell adhesion molecules
Oocyte meiosis
Glucagon signaling pathway
Apelin signaling pathway
Propanoate metabolism
Valine, leucine and isoleucine degradation
Neurotrophin signaling pathway
Kaposi sarcoma−associated herpesvirus infection
Tuberculosis
Hippo signaling pathway
Chemokine signaling pathway
Cushing syndrome
Oxidative phosphorylation
Necroptosis
Gastric acid secretion
Wnt signaling pathway
Inflammatory mediator regulation of TRP channels
Oxytocin signaling pathway
Retrograde endocannabinoid signaling

0.5

1

1.5

2

2.5

3

a. Enrichment analysis of discovered intra-cell communication networks using gene ontology and KEGG

Gene ontology KEGG

-log./ p. value

TA
FE4_

Ex

TA
FE4_

Mic

TA
FE4_

Ast

neural fold bending
regulation of amyloid−beta clearance
neuron apoptotic process
regulation of neuronal synaptic plasticity
positive regulation of amyloid−beta formation
cell activation
cellular response to lipid
apoptotic signaling pathway
positive regulation of phosphorylation
cytokine−mediated signaling pathway
immune response
protein phosphorylation
epithelial cell proliferation
regulation of transcription, DNA−templated
regulation of lipid metabolic process
protein tyrosine kinase activity
cell surface receptor signaling pathway
cellular response to cytokine stimulus
apoptotic process
response to cytokine
interleukin−27−mediated signaling pathway
positive regulation of MAP kinase activity
peptidyl−tyrosine autophosphorylation
positive regulation of Notch signaling pathway
regulation of phosphatidylinositol 3−kinase signaling
regulation of gene expression
intracellular receptor signaling pathway
positive regulation of tau−protein kinase activity
chemokine receptor activity
receptor signaling pathway via JAK−STAT
JNK cascade
positive regulation of protein kinase B signaling
sterol response element binding
Shc−EGFR complex
vascular endothelial growth factor receptor−1 signaling pathway
intracellularly ATP−gated chloride channel activity
Notch binding
autophagy
positive regulation of MAPK cascade

0

0.5

1

1.5

2

2.5

3

STX1A

CHCHD10

FGFR1

STAT1

ICAM5NFIB

BTBD9

PRKCA

PTK2B ASAP1
CRIP2

VIM
ATP6V1F

CAMK2A PPP2R2B

LRRN2

PLXND1

NDUFC1IPCEF1GNG5

CAMKK2

CAMK2G

DUSP1KIT FOS

NR1D1EPN2

SNAP25

POLR2FDCLK2

PDLIM7CBFA2T3

LMNA

SMARCA2

RYR1

REPS2

PCDH19AAK10

20

40

60

−0.1 0.0 0.1 0.2
Log(Fold Change)

−l
og

10
(P
−v

al
ue

threshold
DOWN
NO
UP

CLU

CHCHD10

STAT1

STX1A CAMK2A

VIM

NDUFC1
CCR5

SNAP25

ATP6V1F

TGFBR1
GNG5

CACNG2
MAP1B

0

10

20

30

−0.25 0.00 0.25
Log(Fold Change)

−l
og

10
(P
−v

al
ue

threshold
DOWN
NO
UP

b. Differential expression 
analysis result of genes in the 
discovered intra-network

Excitatory neuron

Microglia

c. Inter-cell communication networks discovered by PathFinder

CTGF
GPNMBSAA1
CCK

TAC1
VTNPTPRTSEMA3A

FGF13GRNTNF
FAT1

M
IFFN1

N
PYPT

PR
C

PT
N

TAC
3FLR

T2PCD
H15CNT
N2

HLA−
A

IGF1
ICAM1

EGFR

H
C
RTR

1
NP

FF
R1

TN
FR
SF
11
B

NR
P1

FG
FR
1

CF
TR

LEP
R

RYR1

IGF1R

Microglia to excitatory neuron

PENK
HCRT
PTPRF
EFNB2L1CAMCXCL10SAA1CXCL6CORTKNG1CNTN2PNOCAGTOXTAPOB

KLPF4GPNMB

TAC1MIFEDN3
CCL13

CTGF

TAC3

EFNB3

PTNAV
P

SE
M
A5
A

NP
B

SS
T

HL
A−
ATF

CX
CL
13

BD
NFEF
NB
1

CX
CL
12

PT
PR
C

NP
Y

CC
L2PCD

H15
EFNA

5ALCAM
IGF1

PTPRT
HMGB2

VTN
TRO

CCR5

HCRTR1

ERBB2

EPHB1

EG
FR NP

BW
R1

NP
FF
R1

CX
CR
6

ES
R2

ME
T

IG
F1
R

RY
R1

CFT
R

F11R
LEPRAR
TNFRS

F11B

excitatory neuron to microglia

L1CAM

FGF12SEMA3C

FLRT2TA
C1

HS
PG
2

MIF

EGFR

FG
FR1

NR
P1

NP
FF
R1

HCR
TR1

FLT1

Astrocyte to excitatory neuron excitatory neuron to astrocyte

PTPRF
KNG1SAA1
EFNB1

SST

L1CAMPTPRCNPY
ALCAM

PENKAGTNRXN1

CXCL12

CXCL13

EFNB2

EFNA5

TFM
IF

CCL2IG
F1

BM
P4

CX
CL

6

PT
PR

T

TG
FB
2

PN
OC

FG
F1
1

TG
FB
3

CO
RT

CX
CL
10PF
4

HM
GB
2

NP
B

AP
OB

CC
L1
3

CN
TN
2CT

GF
EFN

B3
OXT
KLGPN

MBAVPSEMA
5AFGF3

HLA−A

FGF12
CHGB

MET

CCR5

EPHB1

ERBB3
LEPR

EG
FR

NL
GN

1
TG
FB
R1

IG
F1
R

FG
FR
3

CXC
R6

ARESR2



the ephrin-B1-mediated stimulation. Analysis has shown that the ephrin-B1-mediated stimulation 

induces a protective and anti-inflammatory signature in astrocytes and can be regarded as “help-

me” signal of neurons that failed in early amyotrophic lateral sclerosis (ALS)42.  Such signals could 

also play an important role in triggering inflammation and neuron degeneration in CNS system.  

 

Conclusions and Discussions 

In this work, we propose PathFinder, which is the first deep-learning model with a graph 

transformer that can be used to extract both intra- and inter-cell communication network with 

scRNA-seq data. Through a case study using an AD scRNA-seq dataset from mice, we evaluate 

the effectiveness of PathFinder from multiple perspectives. First, the quantitative analysis confirm 

that PathFinder obtains great performance in separating cells from different conditions by 

leveraging the difference of expression patterns in the signaling paths.  Further, the learned path 

score is robust and consistent in repeat runs. We further evaluate the correctness of extracted 

networks through extensive literature searches. The resulting network aligned well with many 

recent discoveries on AD pathology, which further proved the effectiveness of the proposed 

PathFinder. Also, the current version of PathFinder has a few potential limitations to be improved 

in the future work. First, it requires many samples in training to produce reasonable results. 

Second, it relies on the pre-defined paths from the database to learn and extract meaningful 

patterns and is unable to discover new signaling flows. All these limitations are worth to further 

investigate, and we will improve the model in our future work.  

 

Methodology 

Gene-gene interaction database collection and processing  

To construct the gene-gene interaction database, the raw interaction data was collected from 

NicheNet software.8 The raw interaction data were divided into three types: ligand-receptor 

network, signaling network, and gene-regulation network. The original network contains 12019 



interactions/1430 genes, 12780 interactions/8278 genes, and 11231 interactions/8450 genes, 

respectively. To construct the intra- and inter-network database, the data was further processed 

by the following steps. 

First, ligands and receptors were collected by gathering the source and target of the ligand-

receptor network. There are a total of 688 ligands and 857 receptors. Then, interactions in the 

ligand-receptor network were divided into two types. If one interaction exists in both directions in 

the database, we labeled it as bidirectional. Otherwise, we labeled it as directional. After 

processing, there are 11880 directional interactions and 139 bidirectional interactions.  

The gene-regulation network was processed as follows. First, 1639 transcriptional factors (TFs) 

were collected from51. For convenience, TFs that exist in either ligand or receptor list were 

removed. Finally, 1632 TFs were collected. Next, three different types of regulation were collected 

in the gene-regulation interaction network, which are ligand regulation, receptor regulation, and 

TF regulation. To label each interaction into one of three types, all the interactions in the network 

were removed if the source gene was not in either ligand, receptor, or TF list. Then, the 

interactions were labeled based on the type of source (e.g. if the source of interaction is a receptor, 

we label it as receptor regulation). After processing, there are 1329 ligand-regulation interactions, 

272 receptor-regulation interactions, and 6706 TF-regulation interactions.  

Finally, the signaling network was processed as follows. First, all the interactions were removed 

if they existed in either the ligand-receptor or the gene-regulation network. Then, the interactions 

were divided into receptor-TF, receptor-signaling, signaling-TF, and signaling-signaling further. 

To be more specific, if the source of interaction is in receptor list and target of interaction is in TF 

list, the interaction was labeled as receptor-TF. If the source of interaction is in receptor list and 

target is not in TF list, the interaction was labeled as receptor-signaling. If the source of interaction 

is not in receptor list and target of interaction in TF list, the interaction was labeled as signaling-

TF. If neither the source nor target of interaction are in the TF and receptor list, the interaction 

was labeled as signaling-signaling. The interactions cannot be classified into one of above group 



will be removed for connivence. Finally, there are 31 receptor-TF interactions, 524 receptor-

signaling interactions, 975 signaling-TF interactions, and 9745 signaling-signaling interactions.  

Notations 

A gene graph is denoted as 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of gene nodes with |𝑉| = 𝑛, 𝐸 is the 

set of edges and 𝐸 ⊆ 𝑉	 × 𝑉 . The node feature set is denoted by 𝑋 = [𝑥!, 𝑥", … , 𝑥#]$ ∈ 𝑅#×& , 

where 𝑥' ∈ 𝑅& is the feature vector of the node 𝑢. The graph structure is defined by an adjacency 

matrix 𝐴 ∈ [0,1]#×#, where 𝐴'( = 1indicate there is an edge from the node 𝑢 to node 𝑣 and 𝐴'( =

0 otherwise. Further, a set of paths sampled from graph is denoted as 𝑃 = {𝑝!, 𝑝", … , 𝑝)}, where 

𝑝* is the 𝑚-th path, which is a list to store the nodes of the path in order. Paths can have different 

lengths, and we denote the length of path 𝑚 be 𝑙*. 

Preliminary of transformer and Graphormer 

The transformer is a powerful architecture in the deep learning field. It consists of multiple 

transformer layers. Each transformer layer has two parts: a multi-head self-attention and a point-

wise feed-forward network (FFN) with residual connection applied between each part. Let 𝐻+,! ∈

𝑅#×-!"# be the embedding of nodes in layer 𝑙 − 1, and 𝐻'+,! is the embedding of the node 𝑢 in 

layer 𝑙 − 1, the computation of multi-head self-attention is : 

𝑄+,/ = 𝐻+,!𝑊0
+,/ , 𝐾+ = 𝐻+,!𝑊1

+,/ , 𝑉+ = 𝐻+,!𝑊2
+,/ ,		 

ℎ𝑒𝑎𝑑/ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛K𝑄+,/ , 𝐾+,/ , 𝑉+,/L = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 P
𝑄+,/𝐾+,/$

Q𝑑3
R𝑉+,/ , 

𝑂+ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑!, … , ℎ𝑒𝑎𝑑-)𝑊4
+ , 

where 𝑊0
+,/ , 𝑊1

+,/ , 𝑊2
+,/ ∈ 𝑅-!"#×&$ , and 𝑊4

+ ∈ 𝑅-&$×-!"#  are all trainable weight matrix, ℎ is the 

number of heads, 𝑂+ ∈ 𝑅#	×-!"#  is the output from the multi-head self-attention in layer 𝑙. For 

simplicity, we let ℎ × 𝑑3 = ℎ6*7 . The output 𝑂+  will then be fed into a point-wise feed-forward 

network. The computation of the point-wise feed-forward network is: 

𝐹𝐹𝑁(𝑥) = 𝑅𝑒𝐿𝑢K𝑥𝑊!
+ + 𝑏!+L𝑊"

+ + 𝑏"+ , 



where 𝑊!
+ ∈ 𝑅-!"#×-!"# , 𝑊"

+ ∈ 𝑅-!"#×-!"# , 𝑏!+ ∈ 𝑅"-!"# , and 𝑏"+ ∈ 𝑅-!"#  are all trainable weight 

matrix and bias. Notice that here we slightly modify the hidden size of the feed-forward network 

of the original model. 

However, the vanilla transformer cannot be used directly on the graph structure data as it lacks 

critical part for encoding the topological information into model. To deal with this issue, 

Graphormer proposed several novel encodings into the model. Specifically, they introduced 

centrality encoding, spatial encoding and edge encoding. The centrality encoding is used to 

embed the graph centrality information into the model. Given the input data 𝑋, the computation of 

centrality encoding is: 

𝐻8 = 𝑋 + 𝑍,{𝑑𝑒𝑔,(𝐺)} + 𝑍9{𝑑𝑒𝑔9(𝐺)}, 

where the 𝑍,, 𝑍9  are all trainable embedding vectors and 𝑑𝑒𝑔,(𝐺) ,𝑑𝑒𝑔9(𝐺): 𝐺 → 𝑅#  are the 

function to compute the in-degree and out-degree of each node in the graph 𝐺. The spatial and 

edge encoding is used to encode the graph structure into the model. With the spatial and edge 

encoding, the self-attention is revised as: 

ℎ𝑒𝑎𝑑/ = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 P
𝑄+,/𝐾+,/$

Q𝑑3
+ 𝑏/{ϕ(𝐺)} + 𝑐/R𝑉+,/ , 

where 𝑏/  is trainable embedding vectors to encode the spatial information at head 𝑖  and 

𝜙(𝐺): 𝐺 → 𝑅#×#	is the function to compute the shortest path length between each two nodes. If 

two nodes are not connected, a special value will be used. 𝑐/ ∈ 𝑅#×# is the edge embedding and 

𝑐'(/ = !
:
∑ 𝑥6#𝑤#/

$:
#;! , where 𝑥6# is the edge feature of the 𝑛-th edge in the shortest path between 

node 𝑢 and node 𝑣 and the 𝑤#/  is trainable weight vector of 𝑛-th edge of head 𝑖. Note that both 

the spatial and edge encoding are unique across different layers. 

Architecture of the PathFinder 

The PathFinder model consists of three components. Namely, the node encoder, path encoder, 

and graph encoder. The overall architecture of the PathFinder model is shown in Figure 1-lower. 



The architecture of the node encoder is similar to the Graphormer, which stacks 𝐿 transformer 

layer with centrality encoding, spatial encoding and edge encoding. The input to the PathFinder 

is the expression value of each gene in a cell sample. However, we made several modifications 

to the original architectures. First, the hidden size in the point-wise feed forward network is all 

ℎ6*7 in both two layers for simplicity. Second, the edge encoding in the PathFinder is modified. 

In the original Graphormer, the edge encoding is computed by all the edges in the shortest path 

between two nodes, which can capture long-range information in the graph. However, the 

localized feature in the graph will be smoothed in such a manner. Instead, the PathFinder want 

the node embedding learned from the node encoder to focus on the localized information in the 

graph. Therefore, the direct edge encoding is proposed. The direct edge encoding is computed 

by: 

𝑐'(/ = 𝑥'(𝑤/$ 

Where 𝑥'( is the edge feature of the edge between node 𝑢 and node 𝑣. If there isn't an edge 

between two nodes, the direct edge encoding is set to a special vector for simplicity. By doing 

this, the node encoder is good at learning node embedding with localized information. Finally, the 

spatial encoding is also revised in the PathFinder. Since here the graph structure is identical for 

all samples and the node order invariant is automatically held, we can learn a specific spatial 

encoding for each pair of two nodes. Therefore, we design the node index encoding in the 

PathFinder. The node index encoding is not computed from the length of the shortest path 

between each pair of nodes but is directly learned for each pair of two genes. Namely, for each 

pair of two genes, a unique encoding is learned for each head in each layer of the node encoder.  

Next, the path encoder is responsible for learning gene signaling path embedding. Given the node 

embedding in the graph and the pre-defined path list of the graph. The details of the pre-defined 

path list are illustrated below. Suppose there are 𝑝 unique paths in the path list 𝑃, where the 

length of the 𝑚-th path is 𝑙* and the total number of nodes in the path list is 𝑘 (count repeated 



nodes in different paths). Denote the node embedding output from the layer 𝑙 as 𝐻+, we first learn 

a path-specific embedding through: 

𝑈+ = 𝑠𝑐𝑎𝑡𝑡𝑒𝑟K𝐻+L𝑊'+ + 𝑏'+ , 

where 𝑊'+ ∈ 𝑅-!"#×' and 𝑏'+ ∈ 𝑅' are all trainable weight matrix, 𝑠𝑐𝑎𝑡𝑡𝑒𝑟 is a function to reorder 

and scatter the node in the graph into the order of the pre-defined path list. 𝑈+ ∈ 𝑅3×' is the 

learned path-specific embedding. Then, the positional encoding and edge encoding are 

introduced to encode additional information for all paths. Let 𝑈g+ be the result embedding after the 

special encodings. We have: 

𝑈g*,/+ = 𝑈*,/+ +	𝑝/+ +	𝑒/,/9!+ ,	 

 

Where 𝑈g*,/+  and 𝑈*,/+  are the embedding of 𝑖 -th node in the 𝑚 -th path, 𝑝/+  is the learnable 

positional encoding vector and its value only depends on the position 𝑖, 𝑒/,/9!+  is the learnable edge 

encoding to encode the edge type between 𝑖-th node and 𝑖 + 1-th node. Next, the score of each 

node within the path is computed by: 

𝑆+ = 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑆𝑜𝑓𝑡𝑀𝑎𝑥K𝑡𝑎𝑛ℎK𝑈g+𝑊<!
+ + 𝑏<!+ L𝑊<"

+ + 𝑏<"+ L, 

where the 𝑊<!
+ ∈ 𝑅'×= , 𝑏<!+ ∈ 𝑅= , 𝑊<"

+ ∈ 𝑅=×= , and 𝑏<"+ ∈ 𝑅=  are all trainable parameters. 

𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑆𝑜𝑓𝑡𝑚𝑎𝑥 is the softmax function working on each path and each dimension. The 𝑆+ ∈ 𝑅3×= 

is the final 𝑟 set important score for each node in each path. We let the 𝑟 × 𝑢 = ℎ6*7 for simplicity. 

After we obtain the 𝑆+, the path embedding is computed by: 

𝑃+ = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 h𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑆𝑢𝑚K𝑆+ ∗ 𝑈g+Lj 

The ∗ is the point-wise product working on each set of important scores. That is, for each set of 

important score, we do a point-wise product of that set of score and 𝑈+, which result in total 𝑟 sets. 

The 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑆𝑢𝑚 function is the summation on each path. The 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 is the function to flatten the 

embedding of all sets. The 𝑃+ ∈ 𝑅)×-!"# is the final path embedding in the layer 𝑙. 



In the original Graphormer, the graph embedding is learned by introducing a special node and 

letting it connect to all the nodes in the graph. After forwarding, the embedding of that special 

node is regarded as the graph embedding for the graph-level task. In PathFinder, we want to learn 

the graph embedding from the path embedding. Meanwhile, we want to extract the important 

paths from the model after we train the model given the graph-level task. To simultaneously 

achieve both two goals, the graph encoder is proposed. The graph encoder consists of two parts, 

the first part is a trainable path weight and the sigmoid function to assign each path with different 

scores. The second part is the jumping knowledge network to combine the graph embedding in 

each layer and compute the final embedding. 

In PathFinder, the graph embedding is learned by integrating all the path embedding from each 

layer, which requires an important score for each path. Normally, the score is computed based 

on one sample. However, such a score is not robust and may vary a lot even given a minor 

variation of the path embedding44,45. To avoid the issue and learn a robust important score across 

the whole dataset, the trainable path score 𝑀 ∈ 𝑅) is introduced. 𝑀 is identical to all samples and 

layers and learned through back propagation. The path important score is computed by: 

𝐼 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑀), 

where 𝐼 ∈ 𝑅)  is the important score for each path. Next, the graph embedding of layer 𝑙  is 

computed by: 

𝑔+ = 𝐼𝑃+ , 

where 𝑔> is the graph embedding of layer 𝑙. The final step of the graph encoder is to integrate the 

graph embedding of each layer and learn a final embedding. Here we utilize the idea of 

JumpingKnowledge network46 and compute the final graph embedding by: 

𝐺 = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔K𝐶𝑜𝑛𝑐𝑎𝑡(𝑔!, 𝑔", … , 𝑔?)L, 

where 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑖𝑛𝑔  is the max pooling function and 𝐺 ∈ 𝑅-!"#  is the final graph embedding 

learned by the PathFinder. Finally, the graph embedding is used to classify the cell sample into 



the corresponding condition (control/test). The prediction is a typical binary prediction compute 

by: 

𝑝 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐺𝑊)), 

Where 𝑊) ∈ 𝑅-!"#	×	" is the trainable projection matrix and 𝑝 is the predicted distribution.  

Training and Regularization of the PathFinder 

To train the PathFinder model, the negative log likelihood (NLL) loss is applied. Let the 𝑝/@ be the 

predicted probability of the true condition of cell 𝑖, then the NLL loss is computed by: 

ℒ@+A<< =m−log	(𝑝/@)
:

/;!

 

Where the 𝑁 is the number of cells in the dataset. Meanwhile, to regularize the training of model 

and learn biological meaningful paths from the model, the regularization term is introduced to the 

path score 𝑀. Intuitively, the path that have higher total fold change should have higher path score. 

Further, we designed three different regularization terms to generate different important paths by 

introduce the prior path score. Specifically, these three regularizations are up-regulated path, 

down-regulated path, and differential expressed path regularization. Let the 𝑓𝑐/* be the log fold 

change of gene 𝑗 in path 𝑚, then the prior path score is computed by: 

𝑆')* = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑎𝑛(m𝑓𝑐B*

B

)) 

𝑆&CD#* = 	𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑎𝑛(m−𝑓𝑐/*

B

)) 

𝑆&6E* = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑚𝑒𝑎𝑛(m|𝑓𝑐/*|
B

)) 

Where the 𝑆')* , 𝑆&CD#* , and 𝑆&6E*  are the prior path score for up-regulated, down-regulated and 

differential expressed regularization respectively, 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 is the min-max normalization 

across all paths. Suppose we use the up-regulated prior score, the regularization loss is computed 

by: 



ℒ=6E = 𝐷1?(𝐼||𝑆')* ) 

The final loss is: 

ℒ = ℒ@+A<< + 𝛽ℒ=6E 

Where 𝛽 is the weight of the regularization term.  

Predefined path list 

To train the PathFinder, the path list needs to be defined before the training. Given the collected 

gene-gene interaction database, we designed several choices to generate a predefined path list. 

The first choice is the shortest path. For this choice, the shortest path between each pair of genes 

in the dataset will be computed and collected given the gene-gene interaction network. The 

second choice is to generate all the possible paths that start from the receptor and end in the 

target, which can also be done using the gene-gene interaction database. To constrain the path, 

the minimum length of the path is set to be 3 unless the path is a receptor regulation interaction. 

The maximum length of the path is set to be 10.  

Experimental details 

We conduct experiments to validate the effectiveness of PathFinder on TAFE_ex, TAFE_mic, and 

TAFE_ast cell sample datasets. For each dataset, we randomly split datasets into 

train/validation/test sets with a ratio of 0.7/0.1/0.2. We train the model using the train set and 

validate the performance of the model using the validation set. Finally, we save the model that 

achieves the best performance on the validation set and report the performance of the saved 

model on the test set. We use the Area Under the Curve (AUC) as the performance metric for 

selecting the best model. We repeat experiments on each dataset five times (with each time a 

different random split on the dataset) and report the mean results and the standard deviation. The 

model and training hyperparameters are described as follows: we set the number of layers as 6, 

the hidden size ℎ6*7 as 128, the number of head, and the number of scores set 𝑟 as 8. For each 



experiment, we set the number of training epochs as 30, the learning rate as 0.0005, the dropout 

rate as 0.1, the regularization weight 𝛽 as 0.1 for TAFE_ex and TAFE_mic, and 1.0 for TAFE_ast.  

 

Generation of the intra- and inter-cell communication network 

After the PathFinder model is trained, the generation of an intra-cell communication network is 

straightforward.  Concretely, we first average the path weight learned from 5 repeated 

experiments to get the final path weights. Next, the top 𝐾 paths are extracted and combined to 

generate the intra-cell communication network. The generation of the inter-cell communication 

network is as follows. Let the cell that provides ligands be the ligand cell and the cell providing 

receptors be the receptor cell. The intra-cell communication network is first generated. Then, the 

ligands of the ligand cell and receptors of the receptor cell will be extracted from the intra-network 

respectively. Then, the ligand-receptor pairs are selected given the ligand-receptor database. 

Finally, the kept pairs will be linked and the inter-network is generated.  
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