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Abstract:  

Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however mechanisms 

determining patient response remain poorly understood. Here we used machine learning to predict 

ICB response from germline and somatic biomarkers and interpreted the learned model to uncover 

putative mechanisms driving superior outcomes. Patients with higher T follicular helper infiltrates 

were robust to defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation 

uncovered different ICB responses in MHC-I versus MHC-II neoantigen reliant tumors across 

patients. Despite similar response rates, MHC-II reliant responses were associated with significantly 

longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: 

Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment 

reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a 
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potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of 

interpretable machine learning models in elucidating the biological basis of therapy responses. 

Statement of Significance 
 
Immune checkpoint blockade works only in a fraction of patients for reasons that are still not fully 
understood. Our study reveals heterogeneity in the immune responses of ICB responders that 
correlates with characteristics of the neoantigen landscape. This heterogeneity is accompanied by 
differences in the duration of clinical benefit as well as by differences as to which immune checkpoint 
gene serves as a biomarker of ICB response. These findings suggest possible new strategies for 
improving ICB responses. 
 

Highlights  
 

● We used machine learning to study ICB response across 708 patients from 8 studies 
across 3 tumor types (melanoma, RCC, and NSCLC). 

● Combining germline and somatic features improves prediction of ICB response  
● Interactions between germline and somatic features reveal mechanisms contributing to 

ICB sensitivity.  
● MHC-I vs. MHC-II reliance implicates LAG3 as a prognostic biomarker in the context of 

CD4 T cell driven responses. 
● MHC-II neoantigen reliant responses provide superior durable clinical benefit in 

response to ICB. 
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Introduction 

The development of immune checkpoint blockade (ICB) drugs has shifted the cancer treatment 

paradigm, offering unprecedented hope for patients who once faced limited therapeutic options1,2. 

The remarkable successes of ICB, leading to complete remissions in some patients with advanced 

cancers, have propelled this approach to the forefront of modern oncology3. ICB is now a standard 

treatment in some tumor types, however a substantial proportion of patients still fail to benefit and are 

needlessly subjected to side effects and costs4–6. Despite several landmark studies on biomarkers for 

immunotherapy response7–9 selection of patients who would effectively respond to immunotherapy 

remains a challenge10.  

Thus far, biomarkers have focused on measured characteristics of the tumor or the tumor 

immune microenvironment. Current FDA approved biomarkers include tumor mutation burden (TMB), 

microsatellite instability (MSI) status, and immunohistochemical staining of the tumor 

microenvironment (TME) to quantify PD-L1 positivity11. However, these predictors of response are 

imperfect and their application in clinical settings is not straightforward12. Many more sophisticated 

measures of ICB response have also been proposed, including the potential immunogenicity of 

somatic mutations in the tumor13,14, measures of immunoediting such as the ratio of 

Nonsynonymous/Synonymous mutations of the immunopeptidome15, evidence of impaired antigen 

presentation quantified from somatic copy number loss and mutation of major histocompatibility 

complex (MHC) genes16–18, and tumor clone phylogeny estimates as a proxy for intratumoral 
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heterogeneity19. Anagnostou et. al.20 successfully integrate somatic features such as these to predict 

ICB response using machine learning models with superior accuracy, suggesting non-linear 

predictive models may capture additional biological complexity. These approaches show promise to 

improve over current FDA based measures, though performance gains have generally been modest.  

More recent work has uncovered a role for germline genetic variation in influencing the 

characteristics of the tumor immune microenvironment and ICB response. Although gold standard 

whole exome sequencing (WES) methods require a matched normal tissue as a background panel 

for somatic mutation detection21, patient germline variation has largely been ignored in the 

development of predictive ICB modeling, even though germline variation has a considerable effect on 

adaptive immune traits22–24. We reasoned that while individually, common variants often have only a 

weak influence on traits, the sum of these variations could have a large impact on the tumor immune 

microenvironment (TIME) as suggested by a study where common germline variants were found to 

predict ICB responses independent of somatic biomarkers25. With the exception of some rare 

germline variants, cancer often arises from mutagenic processes independent of host germline 

genetics26.  

In this study, we developed a machine learning framework that integrates both somatic and 

germline features into a unified model that aims to maximize the identification of patients who may 

benefit from ICB therapy. We used XGBoost for the model architecture as it has shown strong 

performance on limited training data, allows for non-linear interactions among features, and is 

interpretable in that individual feature contributions to predictive performance can be quantified27-29. A 

composite model using all features demonstrated superior performance across multiple independent 

test sets relative to predictors trained on germline or somatic features alone. Analysis of the 
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composite model revealed feature interactions that contributed to model performance, the strongest 

of which occurred between MHC class-I (MHC-I) damage and a germline variant associated with 

increased T follicular helper cell infiltration. Further investigation of this interaction suggested an 

MHC-I independent mechanism of ICB response associated with the MHC class-II (MHC-II) CD4 T 

cell axis in some patients. Grouping ICB responders by response type showed more durable ICB 

responses in the MHC-II driven response axis. For the 34% of patients with RNA expression data, we 

also investigated characteristics of the tumor immune microenvironment such as checkpoint 

expression, T-cell infiltration, and tertiary lymphoid structure (TLS) signatures30–32. Overall, our results 

support the notion that nonlinear models using somatic and germline features together to predict ICB 

outcome permit us to formulate new hypotheses about biological mechanisms underlying the diversity 

of clinical responses to ICB.  

Results 

Design and evaluation of a machine learning framework to predict ICB response 

Paired tumor/normal whole exome sequencing (WES) data were obtained for eight 

independent ICB studies encompassing a range of tissue types and treatments across a total of 708 

patients33–40. Seven of these were used for machine learning, including feature selection, model 

training and independent validation (Fig. 1), and the eighth (Liu et. al.) was added later to validate the 

translational potential of biological findings. We first assembled a set of germline and somatic 

features that can be extracted from WES data and that have previously been reported to predict ICB 

response (Supplementary Table S1). Germline SNPs associated with the tumor immune 

microenvironment (TIME) and ICB response from Pagadala et. al.25 were further harmonized and 

aggregated at the gene level into numerical scores for their respective gene, here termed eQTL-
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scores (Supplementary Fig. S1, Methods). SNPs associated with immune infiltration levels were 

encoded at the single SNP level instead (Supplementary Table S1). Somatic features from several 

impactful ICB response prediction studies were generated for each cohort, including tumor mutational 

burden (TMB)41, dN/dS of the immunopeptidome (ImmunoEditing)15, damage of MHC-I alleles16,17, 

and somatic mutation of genes in the antigen presentation pathway42. Clinical features available for 

all data sets included patient age and sex43. To train models to predict ICB response, we used a two-

stage machine learning approach entailing feature selection followed by model training (Fig. 1). We 

first reduced the number of features via recursive feature selection (RFE) using the Cristescu et. al.36 

cohort before training an XGBoost44 classifier to predict ICB response as class labels (see Methods). 

XGBoost is a tree-based ensemble method that generates a continuous probability score, here 

scaled to range between 0-10. We combined three similar anti-PD-1/anti-PD-L1/anti-CTLA4 treated 

melanoma cohorts (Hugo et. al.34, Riaz et. al.33, and Snyder et. al.35) into a single training set, and 

evaluated the potential of the classifier to generalize by applying it separately to three heterogenous 

independent test cohorts: Van Allen (anti-CTLA4 treated melanoma)40, Rizvi (antiPD-1 treated 

NSCLC)38, and Miao (anti-PD-1 or anti-PDL139 some also with anti-CTLA4 treated RCC). We 

compared models that relied only on germline features, only on somatic features, or on a combination 

of both (referred to as the composite model). We termed the scores produced by these models the 

immune checkpoint (IC) Index. 
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Figure 1: Combining germline and somatic/clinical features into a machine lea
framework. Germline and somatic features were assembled from the literature and compute
WES data for 7 ICB studies. Prior to training ICB response predictive models, features and 
covariates were subjected to recursive feature elimination using the Cristescu study cohort36. M
predicting ICB response were then trained on the selected features using three combined studi
as the training set. Performance of the trained model was evaluated separately on 3 indepe
cohorts38–40. Models trained only on germline features, only on somatic features and the comb
were compared. Feature contributions to the trained model were further investigated to d
biological hypotheses that were reproduced in the Liu cohort37. 

After recurrent feature elimination (RFE), we retained 24 germline features to tra

germline model (Supplementary Fig. S2A), including 23 germline eQTL-scores representing 

involved in antigen processing/presentation (ERAP245, ERAP146, VAMP847), immune sig

(FCGR2B48, PDCD149, CTSS, CTSW), and DNA replication (DHFR50, TREX151) and a

associated with T-follicular helper cell infiltration52 (TFHQTL), which was strongly and consi

associated with response across all cohorts (Fig. 2A). RFE for the somatic only model selec

 

learning 
ted from 
d clinical 
. Models 
dies33–35 

ependent 
bination 

 develop 

train the 

ng genes 

signaling 

 a SNP 

nsistently 

lected 13 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 15, 2024. ; https://doi.org/10.1101/2024.01.12.575430doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.12.575430
http://creativecommons.org/licenses/by-nc-nd/4.0/


features derived from clinical and tumor genomic data (Supplementary Fig. S2B), including tumor 

mutational burden (TMB)12, clonality-aware derivatives of TMB such as Intra-tumoral Heterogeneity 

(ITH), and Fraction of TMB subclonal53,54, as well as DNA based T cell infiltration estimates55, and 

measures of immune evasion (ImmunoEditing, Immune Escape, MHC-I Damage, Antigen 

Presentation Pathway Damage)15–17,56. RFE for the composite model selected 24 features, 18 (75%) 

of which were germline eQTL-scores and 6 (25%) of which were somatic features (Supplementary 

Fig. S2C). Considered independently, only a minority of these features showed a significant 

association with ICB response, and while the direction of effects generally agreed, there was 

variability across datasets (Fig. 2A). Feature associations with ICB response were more similar 

across melanoma cohorts than other tumor types (Fig. 2B). While TMB and clonal TMB features 

passed recursive feature elimination in the somatic only model (Supplementary Fig. 3A-C), they 

were eliminated in the composite model which instead utilized Fraction of TMB subclonal and ITH–

features that are anticorrelated and correlated with TMB respectively, (Supplementary Fig. S3D-E; 

Fraction of TMB subclonal: R=-0.22, P=5.9e-08; ITH: R=0.2, P=1.6e-06). The cIC-Index produced by 

the trained model remained somewhat correlated with TMB (Supplementary Fig. S4A; R=0.2, 

P=0.0035) even though TMB was not directly incorporated as a feature. The somatic IC-Index (sIC-

Index) had an unsurprisingly high correlation with TMB (Supplementary Fig. S4B; R=0.46, P=7.5e-

13), while the germline IC-Index (gIC-Index) was completely uncorrelated with TMB (Supplementary 

Fig. S4C; R=-0.059, P=0.39). 
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Figure 2: Linear ICB response associations of features passing recursive feature selectio
Features from germline and somatic models passing secondary RFE on the Cristescu pan
cohort are shown grouped by cohort and biological impact. Coefficients quantifying association
ICB response calculated from generalized linear model analysis accounting for age and s
shown. Green coloring indicates a feature that was more associated with a positive ICB res
yellow indicates association with a negative response. Associations with P<=0.05 are marked w
X, P<=0.1 are marked with O. (B) PCA of test statistics for each cohort resulting from linear f
associations.  

After training XGBoost models on the selected features using the combined training s

compared the performance of each model on the three independent test sets.  While all three m
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could distinguish between responders and non-responders, the composite IC Index (cIC-Index) 

showed the best performance, resulting in the largest mean shift in score distributions between 

responders and non-responders (Fig. 3A), the highest Cliff’s delta between responders and non-

responders (Fig. 3B), and the highest area under the receiver operating characteristic curve (ROC 

AUC; Fig. 3C). Improvements in ROC AUC from approximately 0.7 to 0.8 were observed in the Van 

Allen40 and Rizvi38 studies, but more modest improvements were observed in Miao39, possibly due to 

the vastly different TIME landscape of renal cell carcinomas compared to melanomas57. Progression-

free survival (PFS) of the highest tertile of cIC-Index scores was significantly higher than the lowest 

tertile in Kaplan-Meier analysis (Fig. 3D, p<0.0001) and the cIC-Index was more predictive of PFS in 

a Cox proportional hazards analysis using age, sex and tumor type as covariates (see Methods), with 

a more extreme hazard ratio and more significant p-value relative to germline and somatic only 

models (Fig 3E). Compared to germline and somatic only models, the cIC-Index resulted in an 

increased positive predictive value (PPV) (Fig. 3F, P=0.0012, P=2e-04) while negative predictive 

power was not significantly different (Fig. 3G). Interestingly, gIC-Index and sIC-Index scores were 

completely uncorrelated with each other, suggesting that these sources of data capture orthogonal 

information (Fig. 3H, R=0.042, P=0.54), helping to explain the improved performance of the 

composite model. The cIC-Index also outperformed baseline ICB response predictors including TMB, 

Age, Gender, and checkpoint expression (Supplementary Fig. 4E-I) 
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Figure 3: Evaluation of germline, somatic, and composite models across testing cohor
Boxplots of testing cohorts where IC-Index scores are compared via Mann-Whitney U tests. (B)
size (Cliff’s D) between IC-Index of responders vs nonresponders of each model and cohort (C
curves of each model’s performance across testing cohorts with AUC. (D) Kaplan-Meier p
composite IC-Index score tertiles. (E) Hazard ratio of IC index for each model from a multiv
Cox PH analysis of progression-free survival across aggregated testing cohorts accounting fo
sex, and cohort. (F) Positive predictive value of each model aggregated across all cohor
Negative predictive value of each model aggregated across all cohorts. (H) Correlation of ge
IC-Index and somatic IC-Index, with somatic and germline model density plots of IC-Ind
responders vs nonresponders.  
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Impact of Tumor Immune Microenvironment on ICB Response Prediction 

Next, we compared the cIC-index to characteristics of the TIME that can be obtained from 

RNA sequencing data, which were available for (72/214) 34% of test set patients. Several such 

measures, including effector CD8+ T cell infiltrates55,58, joint B and CD4+ T cell levels potentially 

indicative of tertiary lymphoid structure (TLS) formation32,59,60, and target checkpoint expression (PD-

L1/CTLA4)61,62, have been previously correlated with ICB response. We evaluated CD8+ T cell 

infiltration levels with CIBERSORTx63, a digital cytometry tool that estimates immune cell fractions. To 

model TLS, we used the gene signature developed by Cabrita et al.59 as a proxy for TLS formation. 

Somewhat surprisingly, patients split by high versus low cIC-Index (cIC-Index>=5) generally had 

similar TIME infiltration levels in all three categories (Supplementary Fig. S5A-C). In converse, the 

TIME was significantly different between true positives and false positives, where patients who were 

predicted to respond (cIC-Index>=5) failed to respond and often had an immune-cold TIME, 

characterized by lower overall levels of immune infiltrates64 (Fig. 4A). This relationship was strongest 

in the checkpoint therapy target (CTLA4 for Van Allen et. al., PD-L1 for Miao et. al., Methods) 

(P=0.0081) and TLS formation TIME categories (TLS gene signature P=0.017), with CD8+ T cells 

showing near significant association (P=0.055). These results imply that high cIC-Index patients with 

favorable germline and somatic biomarkers can nonetheless fail to respond to ICB due to a poorly 

infiltrated TIME.  

We also investigated whether an immune hot TIME could rescue patients with low somatic and 

germline potential for response. Using a Cox proportional hazards model adjusted for age, sex, and 

data set, we found that each of the TIME infiltration estimates (checkpoint target: P=0.0035, CD8 T 

cells: P=0.019, TLS formation: P=0.043) was significantly associated with improved overall survival in 

high cIC-Index patients only, whereas low IC-Index patients failed to significantly benefit from an 
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immune hot TIME (Fig. 4B). These results are mirrored in Kaplan-Meier plots of high and low cIC-

Index patients (Fig. 4C-D) stratified by level of TIME infiltration (Methods). High cIC-Index patients 

benefit from an above median TIME (P=0.0097), while low cIC-Index patients do not (P=0.852). 

These findings are consistent with previous studies indicating that immunogenic tumors respond at 

greater rates when there is high CD8+ T cell infiltration, but that high CD8+ T cell infiltration alone is 

not sufficient for high rates of ICB response36. Interestingly, while high cIC-Index scores yielded the 

strongest relationship with higher immune infiltration, we found this synergy was primarily driven by 

germline factors rather than somatic ones (Supplementary Fig. S5D-E). Our analyses suggest that 

cIC-Index scores may be useful as general estimates of immunogenicity and could be used as 

additional indicators of when a patient could benefit from ICB beyond TIME profiling. 
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Figure 4: Immune-infiltrated TIME and high cIC-Index scores are synergistic: (A) Boxplots of 
expression-based immune measures from combined test samples with RNA sequencing. IC-Index 
score distributions are compared with Mann-Whitney U tests. (B) Hazard plots of primary TIME 
biomarkers stratified by IC-Index score. (D) Kaplan-Meier curves of predicted nonresponders (IC-
Index <5) stratified by TIME biomarker score. (E) Kaplan-Meier curves of predicted responders (IC-
Index >5) stratified by TIME biomarker score. (G) Confusion matrix of IC-Index (cutoff IC-Index >5) 
and TIME Score (cutoff TIME Score above median). 

Non-linear feature interactions reveal alternative mechanisms of ICB response 

   In order to better understand how selected germline and somatic features 

contribute to model performance, we analyzed feature importance using SHAP values65, a game 

theory approach to improve the interpretation of the machine learning model. We noted differences in 

feature rankings particularly for  ERAP1, MHC-I damage, and Immunoediting, between XGBoost and 

linear models suggesting the presence of interactivity effects (Supplementary Fig. S6). Thus, we 

evaluated both individual feature contributions and pairwise interactions between features. SHAP 

analysis revealed several key feature interactions (Fig. 5A), the strongest of which was between the 

somatic MHC-I damage, i.e., the cumulative MHC-I damage from somatic mutation and loss of 

heterozygosity (see Methods), and the TFHQTL. We further examined this interaction in terms of ICB 

response rates between categories (Fig. 5B) and observed higher rates of response when the 

TFHQTL is present (P=1.7e-05 TFHQTL vs class-I MHC damage, P=0.0063 TFHQTL vs neither), even 

when the potentially negative effect of MHC-I damage is present (P=1.0, TFHQTL vs both). Because 

rates of ICB response are unaffected by MHC-I damage in patients carrying the TFHQTL (Fig. 5B), we 

hypothesized that this SNP may promote immune responses upon ICB treatment that do not rely on 

MHC-I based antigen presentation, suggesting instead a role for MHC-II driven mechanism of 

response. 
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Figure 5: Non-linear feature interaction analysis reveals differences in response mechan
(A) Shap interaction scores for the top 12 interacting feature pairs. InteractionType categories
main biological relevance of constituent features. (B) Bar plot of percent responder by inte
category for the MHC damage and TFH SNP interaction category. (C) Schematic of MHC 
response groupings. (D) Proportion of patients with MHC-I damage split by MHC response cate
and response status. (E) Allelic fraction of the TFHQTL faceted by MHC response categories an
by response status. (F) TLS signature expression split by MHC response categories and res
status. 

To further investigate this idea, we grouped tumors in the dataset according to w

somatic mutations were more prevalently presented by MHC-I or MHC-II molecules, suggesti

potential for reliance of immune responses on particular MHC pathways of neoantigen presen

First, we calculated PHBR scores66,67 (see Methods) for each nonsynonymous mutation

patients. PHBR scores are mutation-centric scores that seek to summarize whether any pe
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overlapping the mutated site will be presented by any of an individual's HLA alleles. Patients with at 

least three mutations passing PHBR thresholds for both class-I and class-II MHCs were then split into 

groups termed MHC-I reliant, MHC-II reliant, or balanced based on the ratio of these class specific 

neoantigens (Fig 5C), with reliant referring to an immune response potentially dependent on MHC-I 

vs MHC-II presented neoantigens. Among MHC-I reliant patients, unsurprisingly we noted a 

significantly higher level of MHC-I damage in nonresponders vs responders (P=0.0092, Fig. 5D) 

reflecting the notion that an MHC-I reliant response depends on the integrity of the MHC-I and 

associated antigen presentation pathway. While Balanced patients demonstrated an intermediate 

disparity in MHC-I damage between nonresponders vs responders (P=0.02), this was not the case in 

MHC-II reliant patients (P=0.74). Overall ICB response rates between these two groups were not 

significantly different (Supplementary Fig. S7A).  

Next we sought to understand how MHC-reliance could modify potential to benefit from the 

TFHQTL. We reasoned that the most extreme cases of MHC-II reliance would be those that also had 

defects in the MHC-I antigen presentation pathway. This group comprised 83% of MHC-II reliant 

tumors (154/171), so we focused further analyses on this aspect (see Methods). We found a 

significant difference in the frequency of the TFHQTL between responders vs nonresponders in the 

MHC-I reliant and balanced categories (P=0.0042, P=0.003, Fig. 5E), but not in the solely MHC-II 

reliant category (P=0.12). This is somewhat mirrored in the subset of patients with tumor immune 

infiltration estimates available, where TFH cell estimates were higher in MHC-I reliant responders vs 

nonresponders (P=0.03, Supplementary Fig. S7B) but not in the balanced or MHC-II reliant 

responders vs nonresponders (P=0.48, P=0.5). It is possible that MHC-I reliant responders benefit 

from an increased infiltration by TFH cells, TLS formation and associated helper effects that are 

important to maintain the function and precursor frequency of CD8 T cells68–73. Indeed, TLS have 
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been shown to enhance ICB response in melanoma59,60. Conversely, MHC-II reliant patients may 

receive less benefit from additional TFH cell infiltration because their neoantigen landscape is already 

predisposed towards the formation of TLSs. Indeed, we found that MHC-I reliant responders had 

higher TLS gene signature expression than nonresponders (P=0.036, Fig. 5F), yet this difference was 

not significant in MHC-II reliant patients (P=0.12, Fig. 5F). MHC-II reliant patients in general had a 

higher level of TLS gene signature expression than MHC-I reliant patients (P=0.0088, Fig. 5F), which 

is not altogether surprising given that TLS formation is more closely associated with the MHC-II / 

CD4+ T cell axis74–76. These initial observations point to the possibility that mechanistically divergent 

immune responses yield ICB response based on how effectively neoantigens engage each MHC 

pathway. 
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Figure 6: TIME, survival duration, and checkpoint expression impact differs by MHC reliance 
status. (A) CIBERSORTx CD4/CD8 T cell infiltration estimate ratios split by MHC Reliance category 
and response status for both discovery and validation cohorts. (B-C) Kaplan-Meier curves of overall 
survival of responders only in MHC-II reliant patients vs MHC-I reliant patients for discovery and 
validation cohorts. Schematic of MHC based response groupings. (D-E) Hazard ratios of key 
checkpoint molecule expression levels colored by MHC reliance status. Age, sex, and cohort specific 
covariates are included in multivariate analysis. (F-G) Kaplan-Meier curves of LAG3 above/below 
median expression in MHC-II reliant patients in discovery and validation cohorts. 
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 MHC reliance groupings are related with survival and mechanism of immune evasion  

We next sought to understand the clinical implications of differential MHC reliance. To validate our 

findings, we performed identical analyses on an additional independent ICB treated cohort (n=77) 

with paired transcriptomic data (Liu et. al.37) and compared to our original set of seven cohorts 

referred to as the discovery set. We first investigated effects of MHC reliance grouping on the 

composition of the tumor immune microenvironment (see Methods). Interestingly, we observed that 

CD4/CD8 T cell ratios mirrored MHC reliance in responders, with higher ratios being observed in 

MHC-II reliant tumors (Fig. 6A, P=0.0057 Discovery; P=0.025 Validation). However, no such a 

difference was found in nonresponders. We applied an identical methodology to immune-infiltrated 77 

ICB-naive, tissue matched cancer samples from TCGA (see Methods) and found a powerful 

protective effect by the CD4/CD8 ratio in TCGA MHC-II reliant patients (Supplementary Fig. S8A, 

HR=-0.76, P=0.0069), but a significantly adverse  effect of that same ratio in TCGA MHC-I reliant 

patients (Supplementary Fig. S8B, HR=0.59, P=0.0352). These data support a benefit to having 

some level of concordance between CD4/CD8+ T cell infiltration and MHC-II/MHC-I neoantigen 

ratios. To investigate differences in response dynamics between CD4+ and CD8+ T cell mediated 

responses, we compared the survival of responders MHC-II vs MHC-I reliant groups.  Despite 

nonsignificant differences in response rates, MHC-II reliant responders had a significantly longer 

overall survival in both discovery and validation cohorts (Fig. 6B-C, discovery P=0.0073; validation 

P=0.0398), consistent with reports that CD4+ T cell based immune responses are tumor autonomous 

and therefore more difficult to evade in the long term67,78,79. 

 Finally, we wanted to know if differences in MHC reliance could translate to differences in 

pathways of immune evasion. Immune checkpoints are commonly overexpressed to suppress an 
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active immune response. Currently, of the many the checkpoints identified in the TME only PD-L1 

positivity in tumor sections is approved as a biomarker of ICB response, albeit its predictive value is 

modest 61. To investigate whether differences might exist as to which checkpoints correlate with a 

beneficial anti-tumor immune response under different MHC reliance conditions, we evaluated the 

relationship between expression of individual checkpoint genes and PFS post-ICB treatment by 

univariable Cox PH analysis. We focused on checkpoint genes with antibody inhibitors undergoing 

clinical trials (PD-L1, CTLA4, LAG3, TIGIT, TIM3, IDO1, and OX40)80. When split by MHC reliance 

grouping, higher LAG3 expression was associated with benefit from immune checkpoint blockade in 

the MHC II reliant group (Supplementary Fig. S9A-D). To adjust for potentially confounding effects 

of the correlated expression of canonical81,82 immune checkpoint genes, we performed a multivariable 

analysis centered on LAG3, PD-L1, and CTLA4 (see Methods). We found that high PD-L1 expression 

was generally associated with longer survival post ICB treatment in MHC-I reliant patients (Fig. 6D-E, 

discovery P=0.026; validation P=0.062), CTLA4 expression with longer survival in balanced patients 

(Fig. 6D-E, discovery P=0.054; validation P=0.006), and LAG3 with longer survival in MHC-II reliant 

patients (Fig. 6D-E, discovery P=0.014; validation P=0.002). There was no association of checkpoint 

gene expression with MHC reliance category (Supplementary Fig. S10A-B). Among MHC-II reliant 

patients, higher expression of LAG3 was associated with significantly longer overall survival in both 

discovery and validation cohorts (Fig. 6F-G, discovery P=0.0018; validation P=0.0345). LAG3 is 

thought to play a prominent role in CD4+ T cell regulation and may be a primary marker of 

activation83,84. Our results may, therefore, reflect a key role for LAG3 as a mediator of CD4+ T cell 

based response to ICB therapy.  

Discussion 
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Immune checkpoint blockade has emerged as a potent anti-cancer therapy, however the 

fraction of patients that benefit from treatment remains disappointingly low. To improve the success of 

ICB, it is of the utmost importance to understand which factors govern the potential to respond via the 

immune system. Here we used a machine learning framework to study somatic and germline 

biomarkers of response to ICB in human cohorts. We were able to extract both feature types from 

paired tumor-normal whole exome sequencing data across eight ICB-treated human studies. 

Germline immune eQTL biomarkers, while relatively new, show promise to capture complementary 

information from somatic features, and XGBoost models trained to predict a composite IC index (cIC-

Index) using both feature types performed better at predicting ICB response across different tumor 

types. When we interrogated patients with additional available RNAseq data, we found that the 

survival benefit of an immune hot microenvironment was contingent upon having a high cIC-Index 

score, that there was no response in patients with a low cIC-Index score, and that this was driven, 

surprisingly, by germline features. This supports the notion that heritable differences in immune cell 

function determine the effectiveness of an immune response once immune cells have reached the 

tumor. Furthermore, patients with a high cIC-Index score who failed to respond often had a “cold” 

tumor immune microenvironment. This suggests that transcriptomic profiling might be useful as a 

supplemental prognostic tool of ICB response in high cIC-index patients, and that the cIC-Index score 

serves as a general proxy for clinical response to the immune invigorating effect of ICB. 

To gain further insight as to how various biomarkers relate to ICB response potential, we used 

state-of-the-art techniques for interpreting machine learning models, and studied important features 

and feature interactions that drove model predictions. Surprisingly, the strongest interaction involved 

an interplay between a SNP associated with increased T-follicular helper cell infiltration (TFHQTL) and 

MHC-I damage. Specifically, we observed a beneficial effect of the TFHQTL on rates of response, 
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independent of the deleterious effect of MHC-I damage. T follicular helper (TFH) cells are the 

specialized subset of CD4+ T cells that help B cells produce antibodies in germinal centers (GC)76.  

TFH cells are normally located in secondary lymphoid organs at close distance with B cells85. 

However, there is increasing evidence that TFH cells are part of tertiary lymphoid structures (TLS), 

intra-tumor organized clusters of immune cells including B and T cells and dendritic cells (DCs) 

mimicking germinal centers in secondary lymphoid organs76,86. TLS are an increasingly common 

finding in cancer, and are linked with better prognosis87,88; increased infiltration by TFH cells and TLS 

formation are a source of helper factors beneficial to both CD8+ and CD4+ T cells.  Indeed, the 

number of TLS distinguishes ICB responders from non-responders32,60.  

MHC-I damage on cancer cells inherently hampers the cytotoxic function of CD8+ T cells, 

yielding low response rates. Surprisingly, we found that response rates were rescued when patients 

had both the TFHQTL and MHC-I damage, suggesting that rescue mechanisms of ICB response may 

be shifted towards MHC-II mediated immunity (MHC-II reliance). Using individual level information 

about the ratio of neoantigens with binding affinity for MHC-I and MHC-II, we were able to allocate 

patients to either a MHC-I or MHC-II reliant group. That these groupings may initiate and sustain 

differential immune mechanisms in response to ICB is strengthened by the observation that MHC-II 

reliance promotes higher infiltration of CD4 T cells and more durable clinical responses to ICB, 

potentially reflecting a direct effect on long-term memory CD4+ T cell responses. In contrast, MHC-I 

reliant responses, which are centered on CD8+ T cells, are possibly more transient in the absence of 

CD4 T cell help69.  

When we examined the association of pre-treatment checkpoint gene expression levels with 

ICB response, which was predominantly anti-PD1/anti-PD-L1 treatment in the cohorts studied, we 
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found that PD-L1 expression was associated with better ICB response in MHC-I reliant patients but 

not in MHC-II reliant patients while the reverse was true for LAG3. In patients where immune evasion 

is mediated by over-expression of PD-1/PD-L1, anti-PD1/anti-PD-L1 therapies can be remarkably 

effective89. LAG3 on the other hand has MHC-II as its major ligand84 and it is widely regarded as a 

negative regulator of CD4+ T cell activation90. Higher expression of LAG3 could therefore indicate an 

effective ongoing MHC-II reliant anti-tumor response pre-ICB treatment. In our analysis, LAG3+ 

patients had better survival in the MHC-II reliant group, suggesting that MHC-II driven immunity can 

support an effective response to anti-PD1/anti-PD-L1, and that this could potentially be further 

amplified by an anti-LAG3 therapy. However, the lack of association of PD-L1 expression with 

response in the MHC-II reliant group seems to suggest a mechanism independent of alleviating PD-

L1 based repression of CD8 T cells. A similar phenomenon has been observed in microsatellite 

instable colorectal cancers with B2M loss that paradoxically remain among the best responders to 

anti-PD1/anti-PD-L1 therapy91. It is intriguing to think that anti-PD1/anti-PD-L1 can be beneficial even 

if PD-L1 is not highly expressed or the class-I antigen presentation machinery is not functional. 

Recent data show that LAG3 also associates with the T cell receptor (TCR)-CD3 complex in both 

CD4+ and CD8+ T cells in the absence of binding to MHC-II, causing the dissociation of the tyrosine 

kinase Lck from the CD4 or CD8 co-receptors and loss of co-receptor-TCR signaling during T cell 

activation92. Our finding that LAG3 facilitates the CD4 T cell response during ICB treatment could be 

explained by the fact that both LAG3 and ICB target the proximal signaling of the T-cell receptor93, 

even though  the reasons this creates an advantage in MHC-II reliant patients remains unclear. 

Perhaps this reflects the fact that the adult peripheral repertoire is richer in CD4+ than in CD8+ T 

cells. This bias may also explain the observation that cancer patients vaccinated with neoantigens 

have a propensity to generate CD4 T cell responses94.  
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  The other implication is that the utility of each of these checkpoint genes as biomarkers of 

ICB response may be highly context dependent. PD-L1 expression was not associated with ICB 

response in MHC-II reliant patients responding via a CD4+ T cell axis of adaptive immunity. This 

could explain in part why PD-L1 positivity is a surprisingly poor general predictor of response rates95. 

Future efforts to refine biomarkers of ICB response could attempt to leverage widely available 

germline information as well as understand the context of a patient’s MHC reliance status.  

Our study was subject to some limitations. Publicly available ICB treated cohorts with DNA 

sequencing data remain relatively limited and RNA data is even more so. Larger feature selection and 

training cohorts could further improve model performance. Future studies could incorporate additional 

biomarkers, for example genotypes associated with adverse immune events, such as rs16906115 

affecting IL796, that could lead to early stopping of therapy, or copy number alterations affecting key 

immune loci97,98. We also limited our features to those extractable from paired tumor-normal WES as 

tumor DNA to mirror what is more commonly available in real world settings.  While the germline 

derived features in the composite model are straightforward to compute once bioinformatic 

infrastructure is in place, the variety and complexity of the somatic features may be more challenging 

to implement in the clinic. MHC Reliance groupings were based solely on single nucleotide variants. 

Future versions of our PHBR pipeline will include support for frameshift and stoploss variants, which 

may be more impactful in an immunogenicity context. Most ICB response classification approaches 

eliminate difficult to classify Stable Disease (SD) patients from their studies—despite the fact that 

these patients benefit from increased survival from ICB treatment. We chose to include these patients 

as responders to maximize potential clinical benefit, at the cost of increasing the complexity of our 

classification task. Finally, while our classifier–which was trained on melanoma patients–showed 
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some ability to generalize to other tumor types, especially non-small cell lung cancer, it may ultimately 

be essential to train and study tumor-type specific models.  

Conclusion 

Investigation of the factors that determine ICB response in cancer patients is providing key 

insights into mechanisms that drive superior response. This study provides further evidence that CD4 

T cell responses engaged by MHC-II antigen presentation are a critical component of superior 

immune responses, and points to an alignment of checkpoint-based evasion with the particular 

immune cell types dominating the response. This sets the stage for future strategies to optimize 

selection of checkpoint therapies from characteristics of the patient tumor and immune system. 

Methods 

ICB Data Sets 

Raw FASTQ files were obtained using SRA toolkit v2.9.6-1-ubuntu64 for the following immune 

checkpoint trials: Hugo et al. 2016 (SRA accession: SRP090294, SRP067938; Cancer: melanoma), 

Van Allen et al. (SRA accession: SRP011540, Cancer: melanoma), Miao et al. (SRA accession: 

SRP128156, Cancer: clear cell renal carcinoma), Riaz et al. (SRA accession: SRP095809, 

SRP094781; Cancer: melanoma), Rizvi et al. (SRA accession: SRP064805, Cancer: non-small cell 

lung cancer), Snyder et al. (SRA accession: SRP072934, Cancer: melanoma), Liu et. al. (SRA 

accession: Cancer: melanoma), and Cristescu et. al. (SRA accession: PRJNA449580, Cancer: 

Melanoma, HSNCC, Urothelial). Only pre-treatment samples were utilized in this study. Across 

cohorts, a total of 708 ICB treated patients were evaluated in this study. 
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Data processing 

FASTQ files were processed via an identical bioinformatics pipeline. DNA: Genomic reads were 

aligned to UCSC hg19 coordinates using BWA v0.7.17-r1188. Reads were sorted by SAMTOOLS 

v0.1.19, marked for duplicates with Picard Tools v2.12.3 and recalibrated with GATK v3.8-1-0. 

Germline variants were called from sorted BAM files using DeepVariant v0.10.0-gpu. Somatic 

variants were obtained through the following additional steps. Aligned tumor/normal BAM files were 

submitted to standard Mutect2 somatic variant calling using GATK-4.1.3.0. First, BAM file formats 

were standardized using GATK-4.1.3.0 AddorReplaceReadGroups, then GATK-4.1.3.0 Mutect2 was 

used to call somatic variants using default settings (including the presence of a matched normal), the 

gnomAD v3.1 raw sites background SNP panel, and the Twist Exome Target bed file to limit variant 

calling to exonic regions. Potential somatic variants were filtered using GATK-4.1.3.0 

FilterMutectCalls and only mutations with a filter flag of “PASS” were kept for subsequent analysis. 

Somatic mutations were further filtered to retain only those with a DNA allelic fraction > 5%. The 

resulting VCF files were annotated by VEP using cache version 102_GRCh37 and default settings. 

RNA: Where available, RNA FASTQ/BAM files were downloaded for 33 RCC and 240 melanoma 

patients. BAM files were converted to FASTQ using bam2fq. Unpaired reads were removed using 

fastq pair. Paired reads were aligned with STAR v2.4.1d to GRCh37 reference alignment. RSEM 

v1.2.21 was used for transcript quantification. Raw transcript counts were corrected for cohort specific 

batch effects using ComBat before being transformed into TPM values.  

Feature construction 

Germline features 
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A set of 1084 tumor immune microenvironment (TIME) associated SNPs were sourced from 

Pagadala et. al25. These SNPs were demonstrated to have significant associations with immune 

related functions in TCGA, and were successfully used to develop an earlier germline ICB response 

prediction model. Next we filtered for SNPs present with a MAF > 0.05 in all studies, leaving 598 

SNPs to run METAL99 analysis with ICB response in the three training cohorts. METAL analysis 

calculates a single P-value for each SNP across the three training cohorts (Hugo et. al., Riaz et. al., 

and Snyder et. al.) and indicates the direction of effect for each cohort. SNPs with an FDR < 0.25 and 

showing full agreement of direction of impact were included, resulting in 229 SNPs with a nominal 

ICB association. TCGA and discovery genotype processing was performed in Pagadala et. al. and is 

described in detail in their methods. For this study, we obtained pre-processed genotype matrices for 

each of the cohorts examined. 

Somatic features 

Tumor mutational burden:  Tumor mutational burden (TMB) was defined as the sum of all 

nonsynonymous somatic coding mutations in each patient’s VCF file, including “protein coding”, 

“frameshift variant”, and “stop lost” mutations. To adjust for cohort specific effects, TMB was 

transformed by the intra-cohort z-score before being included in the machine learning model. A 

similar convention is described in Vokes et. al100.   

Immune Escape: A comprehensive list of immune escape related genes was obtained from Zapata 

et. al15. Somatic mutations with VEP impact annotations of “MODERATE” or “HIGH” were tallied from 

per patient VCF files. The final Immune Escape mutation counts were divided by each patient’s total 

TMB to generate a score reflecting disproportionate immune evasion—otherwise the score is highly 

correlated with TMB.   
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Antigen Presentation Pathway: A list of key antigen presentation pathway related genes was obtained 

from MSigDB M1062, Reactome Antigen Presentation Folding Assembly and Peptide Loading of 

Class-I MHC. All HLA genes were removed from this list as they are accounted for with better 

accuracy by HLA specific tools and summarized in other features. Somatic mutations with an impact 

of “MODERATE” or “HIGH” were tallied from per patient VCF files. The resulting scores were divided 

by each patient’s total TMB to generate a score reflecting disproportionate damage to the antigen 

presentation pathway. 

IntraTumoral Heterogeneity and Fraction of TMB Subclonal: IntraTumoralHeterogeneity and Fraction 

of TMB Subclonal both rely on accurate subclonal estimates, which are derived as follows. First, copy 

number calling was performed using CNVkit v0.9.10. A background panel of normals was constructed 

for each cohort separately using CNVkit reference to protect against batch effects. CNVkit batch was 

used to call copy number changes with each respective cohort’s matched background panel. We next 

used PureCN v2.6.4 (run via singularity image) with CNVkit derived .cnr and .seg files, and Mutect2 

derived filtered VCF files to generate purity and ploidy metrics to be used in subsequent subclone 

estimation. PureCN was run with default settings, repeat regions censored, and a random seed set to 

123. Next, PyClone-VI v0.13.1 was run on mutation specific integer copy number estimates derived 

from CNVkit call (https://cnvkit.readthedocs.io/en/stable/heterogeneity.html) to estimate clonal 

structure of the tumor. IntraTumoral Heterogeneity (ITH) was defined as the total number of 

subclones with at least 5 mutations (total range 0-11 subclones). Fraction of TMB Subclonal was 

calculated by taking the total number of mutations belonging to small subclones (<5 mutations per 

subclone) and dividing by the total number of mutations for each tumor. This generates an inverse 

estimate of clonal heterogeneity from ITH.  
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ImmunoEditing: ImmunoEditing evaluates the ratio of nonsynonymous to synonymous mutations 

(dN/dS) in a tumor as a measure of selection101. Immune dN/dS was adapted  by Zapata et. al.15 in 

their toolkit SOPRANO (https://github.com/luisgls/SOPRANO) to calculate the ImmunoEditing score 

for each patient using an hg19 reference and default settings. Essentially, this score derives from 

calculating dN/dS across all regions of the proteome predicted to bind the set of patient-specific MHC 

alleles (i.e. displayed for immune surveillance) and ranges from 0 to ~5 with a score above 1 

indicating a higher amount of nonsynonymous mutations to synonymous ones. 

Class-I MHC Damage: Class-I MHC Damage was defined as the union of POLYSOLVER16 and 

LOHHLA17 results. First, Class-I HLA alleles were genotyped via POLYSOLVER (See PHBR pipeline 

methods). Next, LOHHLA (https://github.com/mskcc/lohhla), originally published in McGranahan et 

al., is used to identify copy number losses of HLA alleles. Copy number and purity data is provided to 

the program and summary statistics about HLA copy number losses are generated. A given HLA 

allele was marked as lost if the Pval_unique of its loss was <=0.05. POLYSOLVER mutation calling 

(Shukla et. al.) was used to generate somatic mutation calls of each HLA allele. If an HLA allele was 

flagged by either of these tools, it was marked as damaged. Alleles were only counted as damaged 

once even if flagged by both tools. Both programs were provided identical HLA genotypes on a per 

patient basis. 

Machine learning framework 

Overview 

We built XGBoost classifiers for three predictive tasks: ICB response prediction from germline, 

somatic and combined features respectively. Models were fit in 2 stages: feature selection, followed 

by model training and evaluation. First, we conducted Recursive feature elimination (RFE) on an 
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initial array of features using the Cristescu et. al. cohort, then trained classifiers to predict ICB 

response using Hugo et. al. (34), Riaz et. al. (61) and Snyder et. al. (64) melanoma cohorts. The 

trained model was then evaluated on 3 test cohorts: Vanallen et. al. (110), Miao et. al. (70) and Rizvi 

et. al. (34). Biological implication validation was conducted with the Liu et. al. (122) cohort.  

Recursive Feature Elimination (RFE) 

Recursive feature elimination was performed on three feature sets: 229 germline SNPs only, 16 

somatic variables only, and both sets combined. The recursive feature elimination model was trained 

on Cristescu melanoma (89) and tested on Cristescu HNSCC (107) and Cristescu urothelial (17) 

samples to ensure this step prioritized broadly useful biological features to use in the model training 

step. The model used for RFE was an XGBoost Random Forest Classifier (python package version 

1.6.2) with 20 total estimators and a maximum depth of 8. We used a nonlinear model for feature 

selection to allow for feature interactions even during the feature selection stage. All possible feature 

combinations and total model sizes were tested and the mean squared error (MSE) of each was 

recorded. The model with the lowest MSE was selected, and the features included in that particular 

model were used for training in stage two. For the 229 germline SNPs, a model with a combination of 

54 SNPs yielded the lowest MSE in the RFE cohorts. These 54 SNPs were collapsed into continuous 

gene level eQTL-scores by measuring the direction of their effect on gene expression in TCGA and 

orienting alleles such that all SNPs affected gene expression in the same direction (Fig. S1). This 

resulted in 23 simplified, gene-level continuous scores reflecting the total magnitude of expected 

change in gene expression (Supplementary Fig. S1A). For the composite model, RFE was 

performed on the set of features prioritized by the initial RFE performed for each data type separately.  

ICB Response Classifier Training 
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We trained three different classifiers to predict ICB response, one using only germline features, one 

using only somatic features and one on the combined feature set (the composite model).  Using 

features passing RFE analysis, XGBoost Random Forest Classifiers were trained on Riaz et. al, Hugo 

et. al., and Snyder et. al. data sets with 1200 total estimators and a maximum depth of 8. The 

performance of these models was then evaluated separately on the Vanallen et. al., Rizvi et. al., and 

Miao et. al. datasets. Aside from feature curation, this process was identical for all models.  and a 

standard random seed was set for all models to ensure reproducibility. For each patient, the XGBoost 

Random Forest Classifier returns a class prediction probability ranging from 0 to 1, which we refer to 

as the IC-Index. For visualization purposes, we used sklearn MinMaxScaler to scale these values 

from 0-10. This process preserves the distribution of scores and therefore does not affect statistical 

comparisons. For each model and cohort, IC-Index scores were compared between responders and 

nonresponders using Mann-Whitney U tests. Receiver Operating Characteristic (ROC) plots were 

constructed using the scaled continuous IC-index results where the outcome label was the response 

phenotype, and the area under the curve (AUC) was used to summarize overall performance. Test 

datasets were then pooled for survival analysis via multivariable Cox Proportional Hazards analysis, 

where the association of IC-Index with progression-free survival was measured alongside covariates 

of age, sex, and tumor type, using the R packages “survival” and “survminer”102,103. Kaplan-Meier 

curves were constructed using tertile splits of IC-Index scores and P-values of pairwise comparisons 

between tertiles were computed with log-rank tests. Finally, positive and negative predictive values 

(PPV and NVP) were computed and compared between each model type using the “DTComPair” 

package104. State of the art ICB response prediction projects from Litchfield et. al., Chowell et. al., 

and Auslander et. al.105–107 have demonstrated remarkable accuracy in validation sets when RECIST 

stable disease (SD) category patients are included as nonresponders or excluded entirely. These SD 
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patients are particularly difficult to classify due to their ambiguous TIME and somatic biomarker 

landscape, but still benefit from increased overall survival108 and were counted as responders in 

predictive modeling tasks.  

Evaluation of the tumor immune microenvironment with digital cytometry 

 The composition of immune infiltrates in the tumor immune microenvironment (TIME) was 

evaluated by digital cytometry via CIBERSORTx using the LM22 signature matrix with batch 

correction. The T Cell Infiltration score was constructed from the CIBERSORTx CD8 T Cells score. 

The general TIME score used in Kaplan-Meier plotting was calculated as the linear combination of 

Therapeutic Target, T Cell Response, and TLS Formation. CIBERSORTx T follicular helper cell 

estimates were reused for MHC Reliance analyses to corroborate the effect of the TFHQTL. The 

tertiary lymphoid structure gene expression signature was generated from a set of TLS related genes 

reported by Cabrita et al and Sautès-Fridman et. al. (CCL19, CCL21, CXCL13, CCR7, CXCR5, SELL, 

LAMP3, CETP, RBP5, AICDA, BCL6, CCR6, CD79B) using the method put forth in Cabrita et. al. 

where mean gene expression of key genes upregulated in TLS was calculated. CD4 and CD8 T cell 

infiltration estimates were calculated using CIBERSORTx, where the CD4/CD8 ratio was defined 

using “T cells CD4 memory.activated” + “T cells follicular helper” infiltration divided by “T cells CD8” 

infiltration categories. Only patients in the top two tertiles of CD8 T cell infiltration were included in 

direct CD4/CD8 ratio comparison analysis to remove patients with zero or very low levels of immune 

infiltrates.  

SHAP feature importance and feature interactions 
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 Feature importance and interaction within non-linear models were calculated using the SHAP 

machine learning interpretability suite (https://shap.readthedocs.io/en/latest/). SHAP, which stands for 

SHapley Additive exPlanations, is a unified approach to explain the output of any machine learning model. It is 

based on cooperative game theory and the concept of Shapley values. SHAP values assign each feature an 

importance value for a particular prediction in the context of a specific model. These values allow for nonlinear 

interactions between features to be accounted for on a per-patient basis, and also allow us to rank pairwise 

feature interaction by magnitude. Each model was run through the standard SHAP python pipeline and the 

feature importances were recorded (Supplementary Fig. S3). For the composite model, feature interaction 

analysis was performed as well using the shap_interaction_values function. 

PHBR score pipeline 

 Originally developed by Marty et. al.66,67, the Patient Harmonic-mean Best Rank (PHBR) score 

is a measure of how well a given neoantigen is presented by the major histocompatibility complex 

(MHC) based on computationally derived binding affinities between all possible peptides harboring 

the mutation and a patient's set of HLA alleles. A detailed description can be found in the original 

publication66. For each patient, all single nucleotide variant mutations were given an MHC-I PHBR 

score and an MHC-II PHBR score representing presentation by class-I and class-II respectively. A 

neoantigen was considered to be well presented by MHC-I with a PHBR score <=2, and well 

presented by MHC-II with a PHBR score <=10109. Class-I HLA alleles were called using 

POLYSOLVER16 (v1.0.0) with default parameters, and Class-II HLA alleles were called using HLA-

HD110 (v1.4.0) with default parameters. 

MHC reliance stratification 
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 Patients were stratified by the ratio of the total number of neoantigens well presented by class-

II MHC divided by the total number of neoantigens well presented by class-I MHC. A patient was only 

considered for analysis if they had at least three mutations well presented by both MHC-I and MHC-II. 

Neoantigens that were both well presented by both MHC-I and MHC-II were not considered in this 

ratio. These ratios were divided into tertiles and defined as follows: the lowest tertile was MHC-I 

reliant, the middle tertile was balanced, and the highest tertile was MHC-II reliant. To select for 

patients with MHC-II based immune responses, MHC-II reliant patients with no evidence of MHC-I 

damage or loss of heterozygosity were excluded. 

TCGA immune infiltration analysis 

 Tissue types matching those from our analysis (melanoma, renal cell carcinoma, non-small cell 

lung carcinoma, head and neck squamous cell carcinoma, and urothelial/bladder cancer) were pulled 

from TCGA (LUAD, KIRC, SKCM, HNSC, BLCA, KICH, KIRP, LUSC). Stage II-IV cancers were 

analyzed to better match our ICB cohorts. Poorly infiltrated tumors were dropped from the analysis to 

ensure that cancers analyzed from TCGA were at least somewhat infiltrated by lymphocytes. To 

achieve this, we calculated the ImmunoScore77, for all patients, and the bottom tertile (most poorly 

infiltrated) patients were dropped from the analysis. CD4/CD8 T cell ratios were calculated in an 

identical manner as the ICB cohorts. Similarly, MHC Reliance groupings were generated identically 

as in ICB discovery and reliance cohorts. 

Multivariable checkpoint analysis 

 Five FDA unapproved immune checkpoint genes with ongoing clinical trials were investigated 

for an association with a particular MHC Reliance group: LAG3, TIM3, TIGIT, OX40, and IDO1. 
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Univariable analysis revealed significant associations with LAG3 in both discovery and validation 

cohorts, which was subjected to further multivariable analysis accounting for PDL1 and CTLA4 

expression. A median expression cutoff was used to create binary high and low expressing groups for 

each of the checkpoint genes. Age, sex, and tumor type were accounted for during multivariable 

analysis, as well as prior CTLA4 treatment in the validation cohort, due to a large proportion of 

patients in Liu et. al. having received such treatment. Kaplan-Meier curves were generated using 

these same binary cutoffs and P-values were calculated using the log-rank test.  

Data Availability 

This study relied entirely on published datasets. All datasets were obtained via dbGaP or SRA at the 
following accessions: Rizvi et. al. phs000980.v1.p1; Riaz et. al. SRP095809; Miao et. al. 
phs001493.v2.p1; Van Allen et. al. phs000452.v2.p1; Hugo et. al. SRP067938 and SRP090294; Snyder et. 
al. SRP072934; Cristescu et. al. PRJNA449580; Liu et. al. phs000452.v3.p1 

 

Code Availability 

Code to reproduce models, analyses and figures can be found at the following Github repository: 
https://github.com/cartercompbio/MHC_reliance 
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SUPPLEMENTARY FIGURES 

 

Fig S1. A. eQTL-score schematic. SNPs alleles are oriented so that they are all in alignment in terms 
of direction of effects on gene expression. Number of alleles affecting gene expression are then 
summed into a continuous score B. Pearson correlation of Gene level eQTL-scores in TCGA and 
Discovery cohorts. P<=0.05 is indicated by an X. 
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Fig S2. A-C. Recursive feature elimination analysis. Mean squared error for each model is shown for 
a range of total number of features included in a given model. Optimal model size is indicated by a 
dashed red line. D-E. Pearson correlation matrices of features respective to germline and somatic 
models. 
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Fig S3. A-C. SHAP derived nonlinear feature importance beeswarm plots of germline, somat
composite models. D-E. Correlation of immunogenicity features with TMB. F-G. Coefficie
features from linear regression-based germline and somatic models 
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Fig S4. A-C. Pearson correlation of three different IC-Index scores with TMB. D. Purity vs 
across all patients, colored by response with pearson correlation shown. E-G. ROC plots com
the performance of composite IC-Index to TMB and clinical predictors of ICB response. H-I
comparing the performance of composite IC-Index to transcriptomic predictors of ICB respo
Histogram of composite IC-Index across patients, colored by ICB response status. 
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Fig S5. (A-C). Measures of TIME infiltrates stratified by high vs low composite IC-Index scores. T-
tests were used to compare means between groups.  (D-E) Confusion matrices of somatic and 
germline IC-Indices (cutoff >=5) vs TIME score (cutoff=median). 
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Fig S6. Difference in feature importance rankings of composite model features in linear (left) versus 
nonlinear (right) models.  
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Fig S7. A. Response rates by reliance groupings across discovery patients. Chi squared tests were 
performed between groups. B. TFH cell infiltration estimates stratified by MHC-reliance grouping and 
ICB response. Mann-Whitney U tests were used to compare means between groups. C. Waterfall plot 
of ratio of well-presented MHC-II to MHC-I neoantigens across discovery patients. D. MHC-I 
presentation pathway damage as a proportion of total number of mutations split by MHC Reliance 
grouping. T-tests were used to compare groups. E. Proportion of patients with any damage to MHC-I 
antigen presentation pathway split by MHC Reliance grouping. Chi squared tests were performed 
between groups. 
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Fig S8. A. MHC-I reliant patients in TCGA with melanoma, non-small cell lung cancer or renal cell 
carcinoma stratified by CD4/CD8 T Cell infiltration ratio. B. MHC-II reliant patients in TCGA with 
melanoma, non-small cell lung cancer or renal cell carcinoma stratified by CD4/CD8 T Cell infiltration 
ratio. P Values generated via log-rank test 
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Fig S9. A. Univariate analysis of potential checkpoint inhibitors in the discovery samples. B. 
Proportion of patients responding in each MHC reliance group when discovery samples are 
partitioned according to low versus high expression of 7 different checkpoint genes. C. Univariate 
analysis of potential checkpoint inhibitors in the validation samples. D. Proportion of patients 
responding in each MHC reliance group when validation samples are partitioned according to low 
versus high expression of 7 different checkpoint genes 
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Fig S10. A. Checkpoint expression and neoantigen levels by MHC Reliance category in discovery 
samples. B. Checkpoint expression and neoantigen levels by MHC Reliance category in validation 
samples. C. Pearson correlation between various checkpoint genes across discovery samples. D. 
Pearson correlation between various checkpoint genes across validation samples.  
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Fig S11. A-B. Heatmap of CIBERSORTx derived immune infiltration estimates for discovery (A
validation (B) samples split by response and MHC Reliance category. Mann-Whitney U tests
performed between responders and nonresponders of each MHC Reliance category. P va
<=0.05 are marked with an asterisk.  
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