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Abstract  

Extracellular signals induce changes to molecular programs that modulate multiple cellular 

phenotypes, including proliferation, motility, and differentiation status. The connection between 

dynamically adapting phenotypic states and the molecular programs that define them is not well 

understood. Here we develop data-driven models of single-cell phenotypic responses to 

extracellular stimuli by linking gene transcription levels to “morphodynamics” – changes in cell 

morphology and motility observable in time-lapse image data. We adopt a dynamics-first view of 

cell state by grouping single-cell trajectories into states with shared morphodynamic responses. 

The single-cell trajectories enable development of a first-of-its-kind computational approach to 

map live-cell dynamics to snapshot gene transcript levels, which we term MMIST, Molecular and 

Morphodynamics-Integrated Single-cell Trajectories. The key conceptual advance of MMIST is 

that cell behavior can be quantified based on dynamically defined states and that extracellular 

signals alter the overall distribution of cell states by altering rates of switching between states. We 

find a cell state landscape that is bound by epithelial and mesenchymal endpoints, with distinct 

sequences of epithelial to mesenchymal transition (EMT) and mesenchymal to epithelial transition 

(MET) intermediates. The analysis yields predictions for gene expression changes consistent with 

curated EMT gene sets and provides a prediction of thousands of RNA transcripts through 
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extracellular signal-induced EMT and MET with near-continuous time resolution. The MMIST 

framework leverages true single-cell dynamical behavior to generate molecular-level omics 

inferences and is broadly applicable to other biological domains, time-lapse imaging approaches 

and molecular snapshot data.  

 

Summary 

Epithelial cells change behavior and state in response to signals, which is necessary for the 

function of healthy tissue, while aberrant responses can drive diseases like cancer.  To decode 

and potentially steer these responses, there is a need to link live-cell behavior to molecular 

programs, but high-throughput molecular measurement is generally destructive or requires 

fixation. Here we present a novel method which connects single-cell morphology and motility 

over time to bulk molecular readouts. Our model predicts gene expression from the observation 

of label-free live-cell imaging, as a step toward understanding and ultimately controlling cell 

state change.  

 

Introduction  

 

Uncovering how cells process microenvironmental signals to activate molecular programs that 

lead to changes in cell state is critical for understanding mechanisms of both normal and disease 

physiology. Cell state is determined by molecular and cellular composition, including genome and 

chromatin structure1,2, proteomic3 and transcriptomic levels4, mitochondrial function5, and 

metabolic activity6. Cell state is intrinsically mutable7 and is influenced by various physical8–10, and 

chemical11,12 cues.  

 

Single-cell omic analyses have provided an unprecedented catalog of cell states across both 

normal and diseased tissues13,14 while spatially-resolved sequencing15 and highly multiplexed 

imaging16–18 have revealed insights into their spatial organization; however, these approaches 

lack single-cell time-ordered information, limiting the ability to draw mechanistic insights. Live-cell 

imaging, on the other hand, readily captures cellular dynamics over timescales of seconds to 

days, but is limited to a small number of molecular read-outs7,19–21. Further, analysis of live-cell 

data typically relies on single timepoint “snapshots” of cell morphology or fluorescently-labeled 

reporters22–25. To overcome these limitations, we recently developed a morphodynamical 

trajectory embedding method that leverages hidden information from time-ordered live-cell 
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trajectories, enabling improved prediction of future behavior as compared to single-snapshot-

based predictions26. 

 

It is increasingly appreciated that mechanistic understanding of both normal and diseased 

biological systems will require consideration of cell state dynamics. Several recent methods 

impose a dynamical model upon static single-cell measurements to describe gene expression 

dynamics27–29, including pseudo-time estimation30,31 and RNA velocity32,33. In contrast, here we 

develop our computational framework based upon the direct observation of single-cell dynamics 

obtained from live-cell imaging.34–37 In practice, we resolve a cell state landscape over hundreds 

of “microstates”, where transitions among microstates are described in a discrete-time Markov 

model framework38,39. Our data-driven modeling approach extends other efforts based on live-cell 

imaging and trajectory analysis40,41 by characterizing cell state changes quantitatively observed in 

live-cell imaging data, yielding distinct states that can be linked to molecular programs observed 

in companion profiling data.  

 

We explore ligand-induced cell state changes in MCF10A cells via Molecular and 

Morphodynamics-Integrated Single-cell Trajectories (MMIST), a novel computational 

methodology integrating live-cell imaging-observed dynamics and gene expression profiling. 

Broad efforts have been undertaken to map cell morphology and motility to gene expression 

states22,42–46, including generative machine learning approaches47,48. The central and novel 

element of MMIST is a mapping between morphodynamical “states” defined using live-cell 

features measured over time, and companion bulk RNAseq data. The mapping exploits a linear 

population-matching approach34–37 based upon the premise that live-cell imaging and bulk 

molecular profiling share commonly identifiable cell states with shared average transcript levels 

specific to each state. In this framework, treatment conditions induce changes in state-switching 

rates leading to differences in state populations, which are directly measured from live-cell 

imaging. Given this shared set of states across ligand-treatment conditions, state-specific 

transcription levels are readily computed in a linear algebra framework. 

 

We developed our approach by focusing on the well-characterized human mammary epithelial 

MCF10A cell line49,50,  a non-transformed cell line that recapitulates key features of epithelial 

biology, including migration51,52  and organoid formation53,54.  It is also easily manipulated in a 

variety of assays including live-cell imaging55,  knock-down50,  and chemical perturbation 56 and 

therefore is commonly used for cell biology studies. Prior studies have used MCF10A cells to 
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probe epithelial responses to growth factors and cytokines57 and to uncover molecular programs 

associated with EMT58–64.  

 

We further focus on cellular and molecular responses to Transforming Growth Factor Beta 

(TGFB) as an illustrative example and demonstrate the quantitative linkage of EMT-associated 

live-cell phenotypic responses with EMT molecular programs that we validated in an independent 

dataset65. In total, our novel data-driven modeling approach captures cell state change along 

sequences of cell state intermediates via live-cell and gene expression phenotypes and enables 

linkage of imaging and molecular data to uncover molecular correlates of distinct morphodynamic 

cell states.   

 

Results 

 

Experimental data to facilitate multimodal integration of morphodynamical and gene 

expression measurements of cell state change 

Our method is designed to infer molecular programs associated with distinct cell states by linking 

morphodynamic measurements acquired in live-cell imaging data to companion snapshot 

molecular data. We analyze a recently published LINCS MCF10A ligand perturbation dataset57 

that consists of paired live-cell imaging and bulk transcriptomic measurements of MCF10A cells 

after treatment with multiple ligands, including Epidermal Growth Factor (EGF), Transforming 

Growth Factor Beta (TGFB), and Oncostatin M (OSM), which are the focus of our analysis. We 

also leverage live-cell image data and transcriptomic measurements of MCF10A cells genetically 

engineered to express nuclear and cell cycle reporters66. 

 

Our computational framework, illustrated in Figure 1, leverages companion live-cell image stacks 

and bulk RNAseq as input, and utilizes statistical physics approaches to yield maps of cell states 

and their transition sequences67,68. Here we outline the major steps. (a) First, we analyze the live-

cell image data to identify cell nuclei by training a virtual nuclear reporter69 on paired phase 

contrast and nuclear reporter images, then virtually stain nuclei in the entire dataset 

(Supplementary Figure 1). We initially “featurize” individual cells to quantify cell shape and 

texture and perform local environment featurization using geometric boundaries based on the 

nuclear centers. We have validated the qualitative performance of the MMIST pipeline using 

standard cytoplasmic masks obtained using cellpose software on a subset of the data 

(Supplementary Figure 2). We track individual cells across images with Bayesian belief 
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propagation70 and compute motility as cell displacement between frames. Local alignment of cell 

motility is featurized via a neighborhood averaging approach (Supplementary Figure 3). 

Assessment of segmentation and tracking performance is provided in Supplementary Data 

Table 1. (b) Dynamical cell features are constructed based on trajectory snippets (all possible 

single-cell sub-trajectories of a particular length in a sliding window manner, e.g., frames 1-2-3, 

2-3-4, 3-4-5, …) utilizing our morphodynamical trajectory embedding methodology26. Thus, the 

features used for analysis are morphodynamical trajectory snippets, quantified as time-ordered 

lists of morphological features. (c) Morphodynamical trajectory snippets are used to build a data-

driven dynamical model of cell states. (d) Cell states observed in the image data are mapped to 

gene transcript levels using linear decomposition. This yields temporal sequences of 

morphodynamical cell state changes and their associated gene expression levels. 
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Single-cell trajectories define morphodynamical cell states 

Morphodynamical states are the foundation of our analysis, and we define these states based on 

groupings of cells with shared dynamical progression—i.e., those that cluster together based on 

a similar time progression of shape, texture, and motility features. To achieve this, we employ 

feature vectors that are a time-concatenation of image-based features26; this is termed the 

‘morphodynamical trajectory space.’  In this space, we place hundreds of “microstate” centers via 

clustering. We then count transitions among microstates to build a data-driven transition matrix 

Markov model of cell state progression38,39. Next, microstates are grouped into coarser 

Figure 1: MMIST approach to link live-cell imaging to molecular read-outs. 
a) Live-cell imaging of MCF10A cells after treatment with a panel of microenvironmental ligands. 
Nuclei are identified using a convolutional neural network, and single-cells are featurized and 
tracked through time. b) Single-cell features are concatenated along single-cell trajectories to 
construct the morphodynamical trajectory embedding. c) Dynamical models learn cell states and 
cell state change sequences in the morphodynamical landscape. d) Cell state populations are 
used as a linear decomposition of bulk gene expression measurements to predict the gene 
expression programs underlying cell state change. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.01.18.576248doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

“macrostates” using a spectral clustering procedure71,72. We refer to these macrostates as 

morphodynamic states, or simply states. The eigenfunctions of the dynamical model represent 

dynamical motifs, which we visualize using UMAP73 dimensionality reduction to facilitate 

interpretation of cell states (Figure 2a). The relationships between different microstates are 

captured by ”flow”, the average transition direction computed from the Markov model, and 

denoted by the small arrows in the UMAP. We clustered the microstates and identified 14 discrete 

morphodynamic states, each with characteristic features (Figure 2a, lower panels).  with 

representative single-cell images indicating that the formation of multicellular clusters being a 

driver of this partitioning. We examined the relationship between morphodynamic states and 

ligand treatment and found that ligands induce unique cell state changes and transition flows 

between macrostates, indicating induction of different cell state populations over time in response 

to perturbation (Figure 2b). For example, OSM drives transition flow towards state 10, consisting 

of highly motile multicellular clusters, whereas TGFB drives transition flow towards state 5, 

consisting of more isolated cells with extended lamellopodia-like cytoskeletal features. The 

complete set of ligand-dependent cell state populations are shown in Supplementary Figure 4c, 

and population distributions and transition flows are shown in Supplementary Figure 5.  

 

The derived states resolve differences in morphodynamical properties, including cell-cell contact 

fraction, local alignment of cell-cell motility, motility speed, and cell-cycle phase; with differing 

contact fraction and motility alignment organizing the major differences across the landscape 

(Figure 2c-f). We quantified these morphological properties for each cell state individually to 

highlight state-to-state differences (Figure 2g-j). We can further query the states in relation to 

one another, referenced to states 5 and 10 at the extremes of the morphodynamical cell state 

space. State 5 is characterized by mesenchymal-associated features such as lower local 

alignment of cell motility, more extended cytoskeletal features, greater cell spreading, and an 

extended G1 cell cycle duration (Figure 2j); this state population increases under TGFB 

containing treatments. In contrast, state 10 is characterized by many epithelial-associated 

features, including increased multicellular clustering and collective motility, which are increased 

after treatments that include OSM; these represent an altered epithelial phenotype that maintains 

epithelial-associated characteristics.57  Between these two states, we observe intermediate states 

with short cell cycle duration (Figure 2f,j), increased motility (Figure 2e,i), and the fewest cell-

cell contacts (Figure 2c,g). Under EGF treatment,49 cells transition between these intermediate 

states (Figure 2b). Thus, based upon morphodynamical features, the derived cell state space 

matches the well-described biological framework of epithelial and mesenchymal cell states74, 
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including extended G1 duration in the mesenchymal state75–78. Below, we discuss these 

observations in the context of EMT. 
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Figure 2: Data-driven models define morphodynamical cell states and state 

transition dynamics. 

a.) The dynamical embedding landscape is visualized via UMAP from 200 microstates 

(dots) constructed from morphodynamical trajectories (trajectory snippet length = 10H), 

and average flows from each state (gray arrows), colored and labeled by cell state 

groupings, i.e., numbered cell “states”; large black arrows are guides to the eye for 

significant macroscopic flow paths.  Lower panels show images from first and last frames 

of representative trajectory snippets (10H trajectory length) from each state with nuclear 

segmentations (red contours) and associated Voronoi segmentation (yellow contours). b.) 

Cell state flow (at t=24H) by ligand treatment. c.-f.) Cell morphology, motility, and cell 

cycle features by morphodynamical cell state.  Panels (g) and (h) show violin-plot 

distributions of single-cell values, (i) shows average behavior with uncertainty based on 

single-cell variation, and (j) shows modeled cell-cycle phase durations averaged over 

single-cell behavior. 
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Morphodynamic trajectories reveal transcriptional dynamics via state mapping across 

modalities 

Motivated by the observation that the morphodynamic cell states recapitulate aspects of EMT, we 

next sought to identify the underlying molecular programs associated with cell state transitions. 

The process relies on having both morphodynamical observations and molecular measurements 

for an identical set of experimental treatments to enable their linkage. The primary assumption – 

which can be considered a hypothesis being tested – is that an observed morphodynamical state 

corresponds to the same RNA levels regardless of the ligand treatment. Consider the example of 

linking RNA levels to two distinct states (motile and non-motile), where the cell state frequencies 

are modulated by ligand treatment. If ligand A induces an increase in the motile cell state 

population as compared to ligand B and also higher RNA levels for gene X, then we infer that 

motility is linked to expression of gene X. This qualitative idea can be made exact in a simple 

linear algebra framework by decomposing each measured average transcript level as a linear 

sum over morphodynamical state populations (Supplementary Figure 4c) and gene expression 

profiles.  

 

We validated the linear population matching approach by assessing its capability to predict 

withheld gene expression levels in ligand combination conditions. The method requires the same 

number of states as training conditions (ligand treatments), so we performed a new clustering into 

10 morphodynamical cell states; specifically, we withheld the OSM+EGF, EGF+TGFB, and the 

triple combination OSM+EGF+TGFB RNA-seq data from the training set and then predicted gene-

expression profiles for these three conditions. The morphodynamical cell state populations from 

the live-cell imaging in the withheld test set treatments, combined with morphodynamical cell state 

decomposed gene expression levels from the training set, enable prediction of the RNA-seq in 

the test set, i.e., expression level for every gene with globally similar patterns of gene expression 

in measured and reconstructed sets (Figure 3a). We assessed the predictive capability of the 

model at multiple trajectory lengths by computing the Pearson correlation between measured and 

predicted differential gene expression for 13,516 genes (Supplementary Data Table 2). 

Predictions are maximized at a trajectory length of 10 hours (r > 0.7, p-value<0.001, upper-tailed 

test). The predictions out-perform >99% of null model-predictions based on randomized state 

populations (Figure 3b). 
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Performance exceeding the random null model demonstrates that the defined states exhibit 

treatment-independent association with the inferred expression levels. These findings provide 

support for the validity of our approach to link morphodynamical states observed in image data to 

companion molecular measurements. 

 

 

MMIST identifies ligand-induced EMT and MET morphodynamical cell state change 

sequences 

As an illustrative use case of MMIST, we next focused on morphological features associated with 

canonical epithelial and mesenchymal cell states. Analysis of the morphodynamical cell states 

revealed features associated with epithelial and mesenchymal states, including changes in cell-

cell motility alignment and cell clustering as described above (Figure 2c-j). These findings are 

consistent with the observation that microenvironmental signals can strongly modulate 

differentiation state of MCF10A cells—for example to form epithelial-differentiated multicellular 

acinar structures in 3D cultures79 or to promote a mesenchymal phenotype under TGFB 

treatment60,61,64,65. We used our framework to examine the relationship between these states and 

the influence of microenvironmental signals in mediating transitions between them, which builds 

on prior studies of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition 

Figure 3: Morphodynamical cell states predict global gene expression patterns. 

a.) Validation of model gene expression predictions: measured and model-reconstructed gene 

expression at 24hrs for every experimental condition, including training set (light gray) and test 

set conditions. b.) Correlation between measured and model-predicted gene expression (red 

diamonds), and null estimates using random state populations (gray violin plots). Horizontal 

lines are the mean, 5th, and 95th percentile of the null distribution.  
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(MET)27,41,60,65. To study EMT in our framework, we assigned state 1 as the most highly populated 

state at the initial trajectory time window (10 hours), while state 5 was assigned as mesenchymal 

due to its morphological features and enrichment in the TGFB condition. We set the most highly 

populated state at the initial time window as the initial state to facilitate identification of the most 

common ligand-induced state transitions ending in the mesenchymal-like state 5. For MET, we 

assign state 8 as the final state because it is enriched over time in the control EGF treatment as 

cells reach confluence (Supplementary Figure 6). 

 

We observe robust but distinct state transition sequences for the EMT and MET transitions, 

consistent with a highly driven nonequilibrium system80,81. For EMT the dominant sequence of 

states is (1,2,3,4,5) while for MET, the primary sequence is (5,6,7,8), shown in Figure 4a,b. 

Transitions back to state 1 are common in most treatments (Figure 2b and Supplementary 

Figure 5). The dominant sequences of state changes are robust across ligand treatments, though 

the probability of specific state-to-state transitions varies. For instance, OSM treatment drives 

most cells towards dense and collectively migrating epithelial-like clusters (state 10), but for the 

rare cells that do reach state 5 from state 1, the dominant sequence of states remains the same 

(Supplementary Figure 7). 

 

MMIST revealed unique expression patterns associated with each morphodynamical cell state 

(Figure 4c). We performed gene set enrichment over the Hallmark gene sets82 on the derived 

morphodynamical state gene expression profiles. The morphodynamical state-decomposed gene 

expression along the EMT state change sequence shows a transition from a proliferative program 

enriched for Hallmark Myc Targets V1 and V2, E2F targets, and G2-M transition, to a 

mesenchymal program enriched for IL4/JAK/STAT3, TNFA via NFKB, Angiogenesis, and 

Epithelial to Mesenchymal Transition (Figure 4d). This switch from a proliferative program to a 

mesenchymal gene expression program augments our observation that cell-cycle phase 

durations co-varied with mesenchymal-like features observed in the live-cell data (Figure 2j). 
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Near-continuous gene expression time evolution prediction during TGFB-driven EMT 

MMIST yields near-continuous time evolution of morphodynamical cell state populations via a 

Markov model calibrated by counting transitions between microstates extracted from single-cell 

trajectories. For example, EGF+TGFB leads to an increase in mesenchymal-like states 4, 5, and 

6, whereas these states are decreased after EGF-only treatment (Figure 5b). Model predictions 

were assessed by comparison to state population proportions measured in live-cell imaging as a 

function of time after EGF+TGFB treatment. The model recapitulates the morphodynamical state 

population trends observed in the live-cell imaging data, supporting the validity of our Markov 
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assumptions (Figure 5b), notably, decreases in the populations of cell states 7 and 8, and 

increases in states 4, 5, and 6.  

 

Our computational framework also enables a prediction of gene transcript levels at the same near-

continuous time intervals (dt=30min) as those measured in the live-cell image data. Conceptually, 

we make these predictions by first associating each morphodynamical state with a full gene 

expression profile (including all genes measured in RNAseq) and then predicting the bulk gene 

expression over time by computing the weighted sum of the gene expression profiles for states 

observed in each treatment condition (Figure 5c), where genes are ordered the same as in 

Figure 4c so that the temporal enrichment of a gene expression profile similar to state 5 is visible. 

Under EGF+TGFB, our model predicts a continuous shift in multiple gene programs, including 

decreases in proliferation-associated programs and increases in mesenchymal-associated 

programs (Figure 5d). These changes are quantified based on average expression over the set 

of genes contained in the Hallmark gene sets82 with statistically significant enrichment in the 

morphodynamical state decomposition analysis (Figure 4d)   

 

MMIST can also be used to predict future, unmeasured shifts in cell state populations. For 

example, the model predicts large shifts in state populations between 0-48H, which we observed 

experimentally; however, it also predicts continued subtle shifts in state populations beyond the 

48H duration of the experiment (Figure 5e). We next assessed the ability of our model to predict 

unseen changes in gene expression programs. Here, we trained our model with RNA-seq data 

collected at 24H post-treatment, then used it to predict gene expression profiles at 48H based on 

the predicted morphodynamical state populations shown in Figure 5e. We assessed our 

predictions by computing the correlation between experimentally measured and predicted 

expression profiles, after normalizing to t=0H. The correlation between predicted t=48H gene 

expression profile and the withheld t=48H RNAseq data is ~0.5 (Figure 5f and Supplementary 

Figure 4). In contrast, t=24H and t=48H experimentally measured RNAseq profiles show 

correlations of ~0.25, indicating that MMIST predictions can capture molecular programs 

associated with morphodynamic state change.  

 

The transcriptional programs associated with TGFB-driven EMT have been previously 

investigated in MCF10A cells, and datasets generated through these efforts provide a useful tool 

for independent validation of our model60,61,64. To evaluate the EMT-associated signature 

extracted via our morphodynamical analysis, we compare our results to a recently published, 
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independent, time-resolved gene expression dataset of MCF10A cells treated with EGF+TGFB 

then harvested for molecular profiling at multiple timepoints including 24, 48, 72, and 96 hours 

post-treatment, (“PAMAF” data)65; this dataset lacked companion live-cell image data. We first 

assess the biological significance of the model-assigned morphodynamic states based on gene 

expression levels, finding positive correlation between PAMAF measurements and mesenchymal 

morphodynamical cell states 4 and 5 after EGF+TGFB treatment (Figure 5g). Consistent with 

this, epithelial states 6, 7, and 8 are among the least correlated. Together, these findings provide 

support for the robustness of MMIST to identify meaningful biological signals that can be validated 

in independent data sets. 
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Discussion and Conclusion 

Single-cell sequencing and spatial omics methods have provided detailed molecular profiling of 

cellular heterogeneity in single time-point snapshots15. However, there are not yet experimental 

methods that yield time-resolved molecular profiles with a similar level of detail. RNA velocity and 

other algorithms attempt to infer dynamics from fixed measurements27–32, but they lack a direct 

Figure 5: Morphodynamical model predicts EGF+TGFB-induced EMT gene expression time 
evolution. 
When predicted RNA levels of morphodynamic states are integrated with Markov model 
dynamics, an array of dynamical omics predictions can be made, shown here for the EGF+TGFB 
condition. a) Morphodynamical states, which are numbered 1-12 and color-coded (mesenchymal: 
green, epithelial: purple). Color labels for the states are consistent throughout figure. b) State 
probability time evolution, measured (grey dots) and model-derived (black lines), with y-axis limits 
set for each plot so small changes in state populations are visible. c) Prediction of gene 
expression over time at 30-minute intervals using morphodynamical state prediction and live-cell 
imaging measured state probabilities, with rows ordered identically to Figure 4c,and d) 
summarized to Hallmark gene sets. e) Model-predicted state probability time evolution over 96 
hours, trained from live-cell imaging over 48 hours. f) Correlation between measured and model-
predicted gene expression at t=48H (red diamond) based on training data from t=24H, relative to 
null models with random state probabilities (gray distribution). Also shown: correlation between 
t=24H and t=48H gene expression (black X). g) Correlation between predicted morphodynamical 
state gene signatures and PAMAF measurements out to 4 days.  
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mapping to observed single-cell dynamics. Here we have presented a step in the direction of 

linking live-cell dynamics to deep molecular profiling, capturing sequences of morphodynamical 

cell state changes mapped to comprehensive gene expression profiles. Our approach provides a 

direct map from live-cell derived single-cell dynamics to gene expression for a small number of 

morphodynamical cell states defined through assessment of perturbation responses.  

 

We utilized a paradigm of cell behavior in which individual cells transition between different 

morphodynamic states with treatment-specific dynamics and state frequencies. Thus, we employ 

a trajectory space that is common to all observed experimental treatments, where ligand 

perturbation alters the rates of cell state changes. This report demonstrates the value of this 

paradigm, as it enables mapping of complex, spatiotemporal phenotypes to gene transcript levels. 

One limitation of the present model is that it is restricted to the range of behaviors observed for a 

particular cell type (MCF10A) under the treatments examined and does not represent a 

comprehensive assessment of all possible cell states. Thus, the derived (coarse-grained) 

dynamical models are incomplete. As live-cell information increases, for instance via the 

incorporation of multiplexed live-cell reporters and deep-learning based image featurization44,45,83–

85, integration with fixed single-cell and spatial omics profiling at endpoint may require a separation 

of shared information across cell populations from unique information to each single-cell86.  

 

From a physical theoretical point of view, the transition mechanism of a dynamical process is 

defined via the set of trajectories connecting two states of interest67,87–89, for instance epithelial 

and mesenchymal cell states. The single-cell trajectory set that connects these basins contains 

the set of intermediate transition states40. Here, we have captured sequences of EMT and MET 

intermediates, consistent with the emerging view of epithelial and mesenchymal states as a 

continuum13,27. It is an open question of whether characterization of transition intermediates will 

yield insight into cell state control, which could inform the control of EMT-driven processes during 

development or disease progression, such as tumor invasion90,91. Future studies could extend our 

findings by employing inhibitor or gene knockout approaches to functionally assess EMT transition 

intermediates predicted to be critical for cell state control. 

 

Cell state biomarkers can predict sensitivity to targeted drugs92,93, and are expressed in a spatially 

organized manner in both healthy and diseased tissues94,95. Morphodynamical cell state 

definitions can expand upon known biomarker-based cell states, providing a prediction of the 

dynamical responses to biological manipulation. We expect that the linking of morphodynamics 
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to gene expression changes, in spatial context, will lead to a deeper understanding and control of 

cell state change in complex tissue and tissue-like environments. 

 

Characterization of the transition mechanism via live-cell image-based trajectories, such as we 

have presented, is not a mechanistic explanation at the molecular level. Time-ordered single-cell 

trajectories of the quantity of molecular species, such as gene transcripts, imply but do not prove 

causality. We speculate that utilizing molecularly detailed single-cell trajectory data to constrain 

mechanistic models could provide predictions of causal molecular relationships that could be 

experimentally validated. Our data-driven approach, as presented, does not yield a prediction for 

unmeasured perturbations, for instance response to different ligands or drugs. We speculate that 

mechanistic models96–99, trained using the type of detailed trajectory data at the molecular level 

we have presented here, may enable prediction of cell behavior in unseen contexts. 

 

Live-cell phenotypic response to ligand perturbation is well-described by our single-cell 

morphodynamical trajectory-based data-driven modeling approach and enabled a mapping 

between live-cell phenotype and time-dependent gene expression changes. Our models yielded 

a validated prediction of near-continuous gene expression levels during ligand-driven EMT/MET 

in MCF10A cell culture. MMIST can be applied generally to characterize cell state changes in 

fundamental biology and, potentially, in various disease settings. 

 

Methods 

MCF10A Cell Culture Companion RNAseq and live-cell imaging data used in this paper are 

described in full in Gross, et al57. In brief, MCF10A cells were cultured in growth media composed 

of DMEM/F12 (Invitrogen #11330-032), 5% horse serum (Sigma #H1138), 20 ng/ml EGF (R&D 

Systems #236-EG), 10 µg/ml insulin (Sigma #I9278), 100 ng/ml cholera toxin (Sigma #C8052), 

0.5 µg/ml hydrocortisone (Sigma #H-4001), and 1% Pen/Strep (Invitrogen #15070-063). For all 

ligand response experiments, cells were seeded in growth media in collagen-coated well plates 

and allowed to attach for 6-hours. Cells were then washed with PBS, and growth media was 

replaced with growth-factor free media lacking EGF and insulin. After an 18-hour incubation, cells 

were treated with ligands in fresh growth-factor free media. Seven ligand conditions were tested 

at concentrations determined to elicit maximal cell responses57( 10 ng/ml EGF (R&D Systems 

#236-EG), 40 ng/ml HGF (R&D Systems #294-HG), 10 ng/ml OSM (R&D Systems #8475-OM), 

20 ng/ml BMP2 (R&D Systems #355-BM) + 10 ng/ml EGF, 20 ng/ml IFNу (R&D Systems #258-

IF) + 10 ng/ml EGF, 10 ng/ml TGFβ (R&D Systems #240-B) + 10 ng/ml EGF). Cells were then 
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subjected to live-cell imaging (imaged every 30 minutes for 48 hours), followed by bulk RNAseq. 

Here these samples are specified by appending a “1” to the treatment condition (e.g. EGF1) in 

order to distinguish these treatments from the cell cycle reporter studies.  

 

Cell cycle reporter studies To assess cell-cycle responses to ligand treatments, MCF10A cells 

were genetically modified to stably express the HDHB cell-cycle reporter66 and a red nuclear 

reporter. These MCF10A cells were a gift from Gordon B. Mills and from the same aliquot as the 

LINCS MCF10A dataset described above57. The methodology used to generate the reporter cell 

line has been described previously100. Reporter cells were treated with ligand (EGF 10 ng/ml (R&D 

Systems #236-EG), OSM 10 ng/ml (R&D Systems #8475-OM), TGFB 10 ng/ml (R&D Systems 

#240-B), EGF 10 ng/ml + OSM 10 ng/ml, TGFB 10 ng/ml + EGF 10 ng/ml, OSM 10 ng/ml + TGFB 

10 ng/ml, TGFB 10 ng/ml + EGF 10 ng/ml + OSM 10 ng/ml)and then imaged every 15 minutes 

for 48 hours with an Incucyte S3 microscope (1020x1280, 1.49 𝜇𝑚/pixel). Three channels were 

collected – phase contrast, red (nuclear) and green (cell-cycle) – for four fields of view per well. 

The initial frame coincided with the addition of the ligands and fresh imaging media. 5757 

 

RNA-seq analysis Detailed description of sample preparation, processing, and alignment can be 

found in Gross et al57. For each ligand treatment, we performed a differential expression analysis 

from time 0H controls on the RNA-seq gene-level summaries with the R package DESeq2 

(1.24.0), with shrunken log2 fold change estimates calculated using the apeglm method. We 

applied a minimum expression filter such that log2(TPM)>0.5 in at least 3 measurements over 

treatments and replicates (with TPM transcripts per million), yielding 13,516 genes with measured 

differential expression from control used in our analysis. 

 

Image preprocessing Foreground (cells) and background pixel classification was performed 

using manually trained random forest classifiers using the ilastik software101. Images were z-

normalized (mean subtracted and normalized by standard deviation). In cell images, absolute 

values of these z-normalized pixel values are shown (white to black). Image stacks were 

registered translationally using the pystackreg implementation of subpixel registration102. 

 

Nuclear segmentation A convolutional neural network was trained to predict the nuclear reporter 

intensity from the matched phase contrast images for imaging data of WT MCF10A cells with no 

nuclear reporter. In the EGF, OSM, and TGFB conditions, 4 image stacks (12 total) were used to 

train the FNET 3D reporter prediction convolutional neural network CNN from the Allen Cell 
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Science Institute69, with time as the third dimension. This trained CNN was then used to predict 

nuclear reporter channel from the bright-field image over all image stacks in datasets. See 

Supplementary Figure 1 for representative nuclear reporter prediction and comparison to ground 

truth. Nuclear segmentations were generated by performing a local thresholding of the image 

within 51 pixel-sized windows at 1 standard deviation of intensity. Segmentations were filtered for 

a minimum size of 25 pixels and a maximum size of 900 pixels, see Supplementary Table 1 for 

segmentation performance. To capture features including the local environment around a single 

nucleus, the image was partitioned into Voronoi cells around each nuclear center, with 

background classified pixels removed.  

 

Cell featurization Single-cell featurization was performed on the Voronoi-partitioning of the 

image by nuclear center. Cell features are described in detail in Copperman et al.26 and repeated 

here for convenience. Morphology features were obtained as follows: segmented cells were 

extracted, and mask-centered into zero-padded equal sized arrays larger than the linear 

dimension of the biggest cell (in each treatment). Principal components of each cell were aligned, 

and then single-cell features were calculated. Zernike moments (49 features) and Haralick texture 

features (13 features) were calculated in the Mahotas103 image analysis package. The sum 

average Haralick texture feature was discarded due to normalization concerns. Rotation-invariant 

shape features (15 features) were calculated as the absolute value of the Fourier transform of the 

distance to the boundary as a function of the radial angle around cell center104, with the set of 

shape features normalized to 1. The cell environment was featurized in a related fashion.  First, 

an indicator function was assigned to the cell boundary with value 0 if the boundary was in contact 

with the background mask, and value 1 if in contact with the cell foreground mask. The absolute 

value of the Fourier transform of this indicator as a function of radial angle around cell-center then 

featurized the local cell environment (15 features), with the sum of cell environment features 

normalized to 1. Note the first component of the cell environment features is practically the fraction 

of the cell boundary in cell-cell contact. The high-dimensional cell feature space was 

dimensionally reduced using principal component analysis (PCA), retaining the largest 11 eigen-

components of the feature covariance matrix (spanning all treatments and image stacks) which 

captured >99% of the variability. 

  

Motility features Cell motility was characterized in a single-cell manner, referenced both to the 

image frame and relative to neighboring cells. Single-cell displacement ∆𝑥⃗⃗ ⃗⃗   between tracked 

frames was z-normalized, and cells which could not be tracked backward for a frame had 
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unrecorded displacements and were not used in our analysis. The local motility alignment of a 

single-cell to the local neighborhood of contacting cells (sharing a Voronoi boundary) was 

measured by extracting the cosine of the angle between the single-cell and direct neighbors via 

𝑝̂1 ∙ 𝑝̂2 with 𝑝̂ = ∆𝑥⃗⃗ ⃗⃗  /|∆𝑥⃗⃗ ⃗⃗  |. Local contact inhibition of locomotion was measured via the higher-order 

vector formed by (𝑝̂1 − 𝑝̂2) ∙ 𝑟̂12 with 𝑟 12 the separation vector between cells105. Neighborhood 

averages were taken via the Voronoi partition, averaged over neighbors and weighted by the 

relative length of the boundary to each neighbor, see Supplementary Figure 3. 

 

Batch normalization The live-cell imaging data analyzed were collected from two separate 

imaging studies. Single-cell featurization can depend in subtle ways upon the imaging treatment 

and sample batch. To normalize these effects we utilized a batch normalization procedure at the 

single-cell feature level. For each morphology feature, we utilized a histogram matching 

procedure between negative control (PBS) treatments. We then fit a linear model to the 

histogram-matched distributions, and applied this linear model between sample batches, see 

Supplementary Figure 8.  

 

Cell tracking To follow single-cells through time to extract the set of single-cell trajectories for 

morphodynamical trajectory embedding, we utilized a Bayesian likelihood-based approach 

implemented in the btrack software package70 using default parameters. This Bayesian approach 

was applied for each frame over a 12 frame window, and then successful tracks over each pair 

of successive frames were extracted. See Supplementary Table 1 for manual validation of 

tracking performance. 

 

Morphodynamical trajectory embedding To maximize the single-cell information, we extended 

single-timepoint morphology and motility features over single-cell trajectories using a delay-

embedding approach, described in Copperman et al.26 In brief, single-cell features including 

motility features, but excluding cell-cycle features, were concatenated along the trajectory length 

to form morphodynamical feature trajectories. We tested multiple trajectory lengths and selected 

a trajectory length of 10 hours where the best prediction of withheld treatment combination RNA-

seq was obtained, see Supplementary Table 2. We utilized a dynamical embedding approach 

described below to cluster trajectories and visualize this space, and did not perform any further 

dimensionality reduction upon the trajectory concatenated morphological feature PCAs and 

motility feature trajectories prior to dynamical model building. 
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Data-driven dynamical Markov state model To capture dynamical properties within the 

morphodynamical space, we constructed a transition matrix Markov model within the trajectory 

embedding space. The embedded space was binned into “microbins” using k-means clustering 

with 𝑘 = 200 clusters. Results using 50, 100, 200, and 400 clusters are qualitatively similar. In 

this discrete space, a transition matrix 𝑇 between bins was estimated from the set of transition 

counts 𝐶𝑖𝑗 from microbin i to j as 𝑇𝑖𝑗 = 𝐶𝑖𝑗/𝐶𝑖 with 𝐶𝑖 = ∑ 𝐶𝑖𝑗𝑗 . This accounting was agnostic to cell 

birth and death processes, yet we observe our model well reproduces morphodynamical state 

evolution, see Figure 5b.  

 

Dynamical features To evaluate live-cell behavior via characterization of shared dynamics, we 

have applied a dynamical featurization approach via the data-driven transition matrix model. 

Using a transition matrix model constructed from all possible single-cell trajectory steps in the in 

the microbinned trajectory feature space, we construct the Hermitian extension 𝐻 =
1

2
[(𝑇 + 𝑇′) +

𝑖(𝑇 − 𝑇′)] with 𝑇′ the transpose of the transition matrix 𝑇, this approach numerically stabilizes the 

eigendecomposition and provides all real eigenvalues for unambiguous ordering of 

eigencomponents106. We retain 15 dominant eigencomponents (see Supplementary Figure 10), 

and concatenate real and imaginary parts of eigenvectors to construct a 30-dimensional 

characterization of each microbin center. To visualize the dynamical trajectory space, we apply 

UMAP dimensionality reduction of the microstate eigenvector components to 2 components. 

Average flows in the UMAP space are calculated via calculating microstate dependent average 

displacements via the transition matrix < 𝑥𝑖 >= ∑ (𝑥𝑖 − 𝑥𝑗)𝑇𝑖𝑗𝑗  and averaging over 10 nearest 

microstate neighbors for smoothness.  We note that UMAP flows were used only for visualization, 

not featurization. 

 

Morphodynamical cell states As a tool for reducing complexity and extracting biological 

meaning in the morphodynamical embedding space, we defined a set of macrostates by 

clustering together microstates using dynamical similarity. We utilize the eigencomponents of 𝐻 

(Hermitian extension of the transition matrix 𝑇, see Dynamical Embedding) and perform k-means 

in the kinetic motifs. We utilize a lower cutoff of 0.015 for the total fraction of cell trajectories 

assigned to each state; if a microstate has too few trajectories assigned, then it is combined with 

its nearest neighbor by Euclidean distance in the space of dynamical motifs. k-means clusters are 

increased until the requested number of states with minimum fraction assignment is obtained. We 

then evaluated the capability of the derived macrostates to describe the state-change dynamics 
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by evaluating the sum of timescales captured in the microstate transition matrix model, related to 

the VAMP score107. We observe a rapid increase in score increasing to 10 states and continued 

increase beyond 15 states, see Supplementary Figure 9. Note that the macrostates, like the 

features themselves, were not designed or optimized for the task of predicting RNA levels. 

 

Cell state change pathways To extract the sequences of morphodynamical cell states under 

EMT/MET, we adopted a transition path approach to calculate commitors and state change 

sequences utilizing our data-driven Markov model67. Transition matrices were constructed 

between morphodynamical cell states (macrostates), and flux analysis was carried out using the 

PyEMMA analysis package68; all pathways carrying flux between sets of initial and final states 

were evaluated to find dominant state change sequences. Committor probabilities (for reaching 

the final state before returning to the initial state) were highly dependent upon culture treatment, 

but cell state change sequences were quite robust to culture treatment, see Supplementary 

Figure 7.   

 

Cell-cycle reporter analysis and dynamical modeling To capture cell-cycle dynamics from the 

HDHB reporter images, we adopted a similar data-driven modeling approach as we took in 

defining the morphodynamical cell states. Reporter levels in the nuclear and cytoplasmic 

compartments were extracted, and the ratio of these reporter levels was used as a self-

normalizing readout of cell-cycle state, where exclusion of HDHB from the nucleus is known to 

correlate with G2 cell-cycle state, with maximal nuclear correlation occurring abruptly at mitosis 

and decreasing gradually from G1 to S, and with minimal nuclear signal at G2100. To divide 

reporter ratio values into cell-cycle stages, we utilized our Markov state modeling and dynamical 

embedding procedure, first building a microbin model with 50 bins evenly spaced throughout the 

range of reporter ratio values, then dividing these into 4 macrostates via k-means clustering in 

dynamical motifs, see Supplementary Figure 10. We then calculated mean first passage times 

using PyEMMA between cell-cycle stages as a readout of cell-cycle stage lifetimes in each of the 

morphodynamical cell states. 

Bulk RNAseq reconstruction To capture the biological drivers of morphodynamical cell state 

changes, we mapped our morphodynamical cell states (defined above) to RNA-seq-based gene 

expression profiles. We adopted a linear decomposition approach based on the single assumption 

that the identical set of morphodynamic states occurs in all experimental conditions so that each 

state exhibits the same average gene profile in all conditions. In this framework, if cells in 

treatment A are subdivided into a set of states 𝑠 with known state populations 𝑝𝑠
𝐴 such that 
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∑ 𝑝𝑠
𝐴 = 1𝑠 , and the state and treatment dependent average gene levels are known, a bulk 

measurement of the 𝑖th gene can be reconstructed exactly as < 𝑔𝑖
𝐴 >= ∑ 𝑝𝑠

𝐴𝑔𝑖
𝑠,𝐴

𝑠 , where 𝑔𝑖
𝑠,𝐴 is 

the average expression level for gene i in state s under experimental condition A. We approximate 

this exact expression by making the assumption that cells in state 𝑠 under each treatment have 

identical average gene expression, i.e., that 𝑔𝑖
𝑠,𝐴 = 𝑔𝑖

𝑠 regardless of A, for every 𝑠. The utility of 

this approximation can be evaluated via our results, and is equivalent to letting the states form a 

non-negative matrix factorization of the bulk expression. Under this assumption, we have a linear 

system of equations connecting state populations and state gene expression levels {< 𝑔𝑖
𝐴 >=

∑ 𝑝𝑠
𝐴𝑔𝑖

𝑠,𝑠 < 𝑔𝑖
𝐵 >= ∑ 𝑝𝑠

𝐵𝑔𝑖
𝑠,𝑠 … . }, one equation for each treatment A,B,C,… based on treatment-

specific cell state populations 𝑝𝑠
𝐴, 𝑝𝑠

𝐵, … directly measured via live-cell imaging and 

morphodynamical analysis, and with paired bulk RNA-seq measurements < 𝑔𝑖
𝐴 >. If there are as 

many measurements as states, this linear equation can be inverted for the gene expression 

profiles in each state, 𝑔𝑖
𝑠. If there are less states than treatments and the solution is over-

determined, we obtain the solution over all possible combinations of treatments and average over 

the results. In practice, true solution of the linear system would yield negative gene levels, so we 

do a least squares minimization with the constraint of positive gene levels. We use fold-changes 

rather than absolute gene levels to preserve the batch and replicate normalization, this 

normalization does not affect the system of equations as it enters on both sides of the equality. 

To validate our state decomposition of measured bulk RNA-seq pipeline, we split our data into 

training sets and validation sets. State gene expression levels are trained from the training set 

gene levels only, and gene expression for withheld test set conditions are then predicted via the 

measured morphodynamical cell state populations. Null model predictions are constructed from 

random state populations combined with previously estimated state-specific gene levels (from 

true populations) as a measure of how unique the measured state populations are at predicting 

the test set gene expression. 

 

Gene set enrichment To interpret morphodynamical cell state gene expression profiles, we 

performed gene set enrichment analysis via the pyGSEA package108. We utilized the preranked 

algorithm, sorting genes via the predicted gene expression levels in each morphodynamical cell 

state. We ran gene set enrichment using the Hallmark gene sets82, which broadly capture well-

studied biological processes and cell signaling activity. 
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Supplementary Data Tables and Figures 

 

Supplementary Figure 1: Virtual nuclear staining and nuclear center-based segmentation 
a) Paired nuclear reporter (red) and z-normalized phase contrast (+ red - blue) training data input, 
and reconstructed nuclear reporter output b) Nuclear reporter prediction from out of sample phase 
contrast images (OSM condition). c) Examples of nuclear segmentations (red) and associated 
Voronoi boundaries (yellow) overlaid upon phase contrast images (z-normalized absolute 
value,gray) 
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Supplementary Data Table 1. Segmentation and tracking manual validation. 100 cells per 
treatment were randomly selected, and evaluated manually to assess segmentation and tracking 
via the true positive rate (TPR—segmentations or tracks manually validated to be accurate, 
divided by the total number of cells assessed). Cell identification was assessed by comparing 
manual counts in a frame at the final timepoint to those obtained from virtually stained nuclear 
masks.. Segmentation performance from dataset 1 (e.g. EGF1, HGF1) is decreased because for 
these data the cells did not express a nuclear reporter, and the nucleus was detected via the 
virtual staining approach only. Tracking performance is decreased as well, due to the decreased 
segmentation performance and increased time between frames (30 minutes as compared to 15 
minutes).  
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ligand PBS1 EGF1 HGF1 OSM1 IFNG+

EGF1 

BMP2+

EGF1 

EGF+ 

TGFB1 

count/manual 79% 94% 74% 90% 99% 102% 113% 

seg TPR 80% 62% 74% 86% 68% 78% 75% 

% seg error 11% 25% 11% 4% 24% 16% 9% 

%ambiguous seg 9% 10% 14% 10% 8% 6% 16% 

% tracked 78% 52% 78% 69% 55% 66% 49% 

tracking TPR 94% 94% 99% 88% 91% 95% 96% 

% tracking error 4% 6% 1% 7% 5% 5% 4% 

%ambiguous 

tracks 

2% 0% 0% 5% 4% 0% 0% 

ligand PBS EGF OSM TGFB TGFB 

+EGF 

OSM 

+EGF 

TGFB 

+OSM 

TGFB 

+OSM 

+EGF 

count/manual 99% 99% 98% 96% 99% 98% 96%   99% 

seg TPR 92% 97% 97% 95% 96% 96% 95%   95% 

% seg error 1% 1% 1% 1% 2% 2% 0%   1% 

%ambiguous 

seg 

7% 2% 2% 4% 2% 2% 5%   4% 

% tracked 97% 91% 93% 92% 95% 93% 88%   90% 

tracking TPR 100% 100% 98% 100% 99% 99% 100%   100% 

% tracking 

error 

0% 0% 2% 0% 0% 0% 0%   0% 

%ambiguous 

tracks 

0% 0% 0% 0% 1% 1% 0%   0% 
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Supplementary Figure 2: MMIST pipeline applied to a data subset with cytoplasmic 
masks 
Cytoplasmic masks were obtained using the cellpose109 software and a subset of the data (only 
imaging data from the cell-cycle reporter studies. a)-c) Representative images overlaid with 
cytoplasmic masks from three conditions. Identical tracking and featurization was performed, 
and the MMIST pipeline was applied to predict RNA-seq at 24 hrs. Predictions were validated 
via leave-one out cross-validation. d) Model prediction correlation to with-held RNA-seq data 
from three conditions (red diamonds) and null model (gray violin plots) with the 5th percentile, 
mean, and 95th percentile of the null distribution indicated (black lines). 
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Supplementary Data Table 2. Test set gene expression validation with trajectory length. 

 
 
 
 

test  
treatment 

traj 
length 
(hrs) 

pred. 
to 
exp. 
corr 

diff. 
from 
null 
𝝆 − 𝝆null 

upreg 

true 

pos. 

rate 

downreg 

true pos. 

rate 

OSM+EGF 0 .26 -0.38 .51 .80 

EGF+TGFB 0 .76 0.09 .63 .89 

OSM+EGF+TGFB 0 .77 0.04 .77 .95 

OSM+EGF 1 .51 0.02 .55 .99 

EGF+TGFB 1 .76 0.22 .68 .93 

OSM+EGF+TGFB 1 .75 0.14 .77 .93 

OSM+EGF 4 .50 -0.22 .51 .98 

EGF+TGFB 4 .74 0.05 .68 .80 

OSM+EGF+TGFB 4 .73 -0.04 .77 .96 

OSM+EGF 8 .55 -0.15 .52 .99 

EGF+TGFB 8 .69 0 .68 .87 

OSM+EGF+TGFB 8 .66 -0.08 .77 .94 

OSM+EGF 10 .70 0.21 .72 .81 

EGF+TGFB 10 .81 0.27 .72 .84 

OSM+EGF+TGFB 10 .77 0.12 .85 .81 

OSM+EGF 12 .71 0.2 .70 .77 

EGF+TGFB 12 .74 0.14 .69 .85 

OSM+EGF+TGFB 12 .64 0.01 .80 .80 

OSM+EGF 16 .66 -0.03 .65 .92 

EGF+TGFB 16 .79 0.15 .70 .85 

OSM+EGF+TGFB 16 .79 0.09 .80 .88 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.01.18.576248doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 38 

 
 

Supplementary Figure 3: Single-cell and neighborhood motility feature 
Single-cell featurization of motility for the labeled cell in the upper right (nuclei in color and 
Voronoi segmentation in yellow) taken as the magnitude of the displacement from previous frame. 
The single-cell motility in the context of its local neighborhood taken as the neighbor-weighted 
average of the 3 boundary cells (upper right, lower left, lower right). 
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Supplementary Figure 4: Bulk RNAseq decomposition and time dependence 
a) PCA1/2 projection of the RNAseq differential expression, showing sorting by ligand treatment and 
timepoint. b) Correlation between training set reconstruction and real experimental differential 
expression. c) Morphodynamical state populations at t=24, 48 hrs d) Test set prediction of RNAseq 
at 48 hours using t=24 hrs trained morphodynamical state gene expression profiles and measured 
live-cell state populations at t=48hrs.  
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Supplementary Figure 5: Ligand-dependent populations and cell state flows 
Cumulative populations in the UMAP embedding space (blue to red), and state-state 
transition flows at t=24hrs, in each ligand treatment. 
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Supplementary Figure 6: EMT/MET initial and final state probabilities 
Live-cell imaging inferred initial and final EMT/MET state populations as a function of time. 
EMT initial state 1 depopulates over time (rightmost plots), while EMT final state 5 increases 
over time in EGF+TGFB (lower middle), while MET final state 8 increases over time in EGF 
conditions (upper right). 
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Supplementary 
Figure 7: EMT/MET 
morphodynamical 
cell state change 
sequences by 
ligand treatment 
Possible EMT cell 
state change 
sequences (initial 
state 1, final state 5) 
left, and MET cell 
state change 
sequences (initial 
state 5, final state 8) 
on the right (black 
arrows, thickness 
proportional to 
transition flux), with 
final state 
commitment 
probability (blue to 
red) calculated from 
the 200 k-means 
state centers and 
averaged over the 
UMAP surface. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2024. ; https://doi.org/10.1101/2024.01.18.576248doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.18.576248
http://creativecommons.org/licenses/by-nc-nd/4.0/


 43 

 

 
 
 

Supplementary Figure 8: Feature batch normalization 
Scatterplots of the first two PCA components for imaging experiments 1 (black) and 2 (red), 
in overlapping treatments, analyzed in this work. Each dot is a cell before (left) and after 
(right) applying our batch normalization procedure. 
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Supplementary Figure 9: Dynamical clustering of morphodynamical trajectories 

(a) Eigenvalues of the Hermitian extension 𝐻 =
1

2
[(𝑇 + 𝑇′) + 𝑖(𝑇 − 𝑇′)]  with 𝑇 the transition matrix. 

(b) 2D UMAP of the eigenvectors of 𝐻 (each point is a microstate of the transition matrix) colored 
by absolute value and Euler angle of the complex value. (c) State clustering dynamical information 
quantified by the sum of the timescales from the eigenvalues of 𝑇. The sum of timescales 
increases rapidly towards 15 states and begins to saturate. (d) K-means clustering into 14 states. 
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Supplementary Figure 10: Dynamical clustering of cell-cycle states 

(a) Eigenvalues of the Hermitian extension 𝐻 =
1

2
[(𝑇 + 𝑇′) + 𝑖(𝑇 − 𝑇′)]  with 𝑇 the transition matrix 

from dividing log2 of the cell-cycle reporter levels into 51 microstates. (b) Eigenvectors of 𝐻 (each 
point is a microstate of the transition matrix) colored by Euler angle of the complex value. (c) State 
clustering dynamical information quantified by the sum of the timescales from the eigenvalues of 𝑇. 
The sum of timescales increases rapidly towards 4 states and begins to saturate. (d) K-means 
clustering into 4 states. 
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