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Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would 12 
enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, 13 
publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, 14 
antigenic, or antibody sequence diversity necessary for deep learning approaches to capture 15 
molecular recognition. In part, this is because limited experimental platforms exist for assessing 16 
quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we 17 
present MAGMA-seq, an integrated technology that combines multiple antigens and multiple 18 
antibodies and determines quantitative biophysical parameters using deep sequencing. We 19 
demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human 20 
antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate 21 
the comprehensive mapping of potential antibody development pathways, sequence-binding 22 
relationships for multiple antibodies simultaneously, and identification of paratope sequence 23 
determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq 24 
enables rapid and scalable antibody engineering of multiple lead candidates because it can measure 25 
binding for mutants of many given parental antibodies in a single experiment. 26 
 27 
The success of AlphaFold21 for predicting structure from sequence has spurred intense interest in deep 28 
learning approaches for protein functional prediction. Arguably the largest open prize in protein 29 
biotechnology is learning antibody molecular recognition, as this would enable the in silico design of 30 
developable, high affinity binders against any antigenic surface. Deep learning has been utilized to advance 31 
antibody design approaches for overall structure prediction2,3, paratope and epitope identification4, affinity 32 
maturation5,6 and antibody sequence humanization7. These examples highlight the promise of deep learning 33 
approaches but also their limitations. Put simply, unbiased experimental antibody binding datasets do not 34 
exist at the scale required for extant deep learning algorithms to capture antibody molecular recognition8,9.  35 
 36 
Researchers recently assessed the scale of experimental data required for accurate prediction of antibody 37 
binding effects upon mutation9. Through simulated data, they found that a training dataset comprising 38 
hundreds of thousands of unbiased antibody-antigen binding measurements across thousands of diverse 39 
antibody-antigen complexes would be sufficient to learn the effect of mutation on binding energetics. The 40 
structure of this data – on the order of a few hundred mutational data points per antibody spread across 41 
thousands of antibodies targeting diverse antigenic surfaces - suggests a different paradigm than deep 42 
mutational scanning approaches10, which assess tens of thousands of mutations for individual proteins. 43 
Requirements for this new ‘wide mutational scanning’ paradigm include the ability to (i.) determine 44 
quantitative monovalent binding energetics, with measurement uncertainty, for multiple antibodies against 45 
different antigens and over a wide dynamic range, (ii.) recapitulate the native pairing of variable heavy and 46 
light chains which can be achieved using antigen binding fragments (Fabs), (iii.) track multiple mutations per 47 
antibody on either or both chains simultaneously, and (iv.) include internal controls for quality control and 48 
validation. This technology could also be deployed immediately for current antibody engineering 49 
applications, including the reconstruction of multiple probable antibody development pathways11, rapid 50 
affinity maturation campaigns for multiple leads simultaneously, fine specificity profiling for antibody 51 
paratopes, and antibody repertoire profiling against different immunogens. 52 
 53 
Current antibody engineering techniques exist but have not demonstrated the ability to generate the depth 54 
of data required for learning antibody molecular recognition. Antibody deep mutational scanning using 55 
various display techniques has been demonstrated for different task-specific applications but does not 56 
provide quantitative binding information. Deep mutational scanning has been used to determine 57 
quantitative changes in binding affinity for protein binders but only for a narrow dynamic range12,13. 58 
TiteSeq14 utilizes yeast surface display and next generation sequencing to ascertain quantitative affinities, 59 
but has only been demonstrated for a library from one parental antibody single chain variable fragment 60 
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(scFv)15, which can alter the paratope through the constrained folding of heavy and light chains imposed by 61 
an inserted linker16. Another high-throughput technique demonstrated for one antibody include high-62 
throughput mammalian display17. Additional demonstrations18,19 exist that have evaluated multiple 63 
antibodies and antigens simultaneously but are not high-throughput.  64 
 65 
We introduce MAGMA-seq, a technology that combines multiple antigens and multiple antibodies and 66 
determines quantitative biophysical parameters using deep sequencing to enable wide mutational scanning 67 
of antibody Fab libraries. We demonstrate the ability of MAGMA-seq to quantitatively measure binding 68 
affinities, with associated confidence intervals, for multiple antibody libraries. We validated the results of 69 
MAGMA-seq with isogenic antibody variant titrations (i.e. labeling isogenic yeast displaying Fabs at various 70 
concentrations of antigen and fitting fluorescence measurements to a binding isotherm to extract KD). We 71 
further demonstrate the utility of MAGMA-seq on a mixed pool of antibody libraries with two distinct 72 
antigens, SARS-CoV-2 spike (S1) and influenza hemagglutinin (HA), and recovered the sequence-binding 73 
profiles for six antibodies across four distinct protein surfaces. MAGMA-seq facilitates the engineering of 74 
antibodies for different applications in parallel: we demonstrate the mapping of potential antibody 75 
development pathways, antibody responses to multiple epitopes simultaneously, and identification of 76 
paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). 77 
MAGMA-seq enables rapid and scalable antibody engineering.  78 
 79 
Results 80 
The protocol for MAGMA-seq (Figure 1a) starts by generating mutagenic libraries for all antibodies of 81 
interest in a Fab format. Fab libraries are subcloned into yeast display vectors each containing a 20 nt 82 
molecular barcode; the Fab variant and barcode are paired by sequencing. The library is transformed into 83 
yeast, and yeast is grown and induced to surface display the Fabs. The yeast library is sorted at multiple 84 
labeling concentrations of antigen(s) by collecting a fixed percentage of yeast cells. After sorting, the 85 
collected yeast plasmids are extracted, and the barcode region is sequenced using short-read sequencing. 86 
The sequenced data and sorting parameters are then input into a novel computational maximum likelihood 87 
estimation (MLE) pipeline to infer most likely biophysical parameters, and associated confidence intervals, 88 
for each antibody variant. 89 
 90 

 91 
 92 
Fig. 1 | MAGMA-seq is an integrated technology for antibody wide mutational scanning. (a) Protocol 93 
schematic. (b) Yeast surface titrations of 4A8 and CC12.1 Fabs against Fc-conjugated S1 in the established 94 
(light) and updated (dark) yeast surface display vectors. Cytograms from indicated data points are shown for 95 
updated yeast surface backbones. Inset describes experimentally determined KD values (n=2). (c) Antibodies 96 
assessed using updated yeast surface display vectors. Abbreviations: RBD – Receptor Binding Domain 97 
Wuhan Hu-1; NTD – N Terminal Domain Wuhan Hu-1; NA– influenza neuraminidase N2 A/Brisbane/10/2007; 98 
HA – influenza hemagglutinin A/Brisbane/02/2018 H1.  99 
 100 
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There have been several yeast display Fab plasmids described20–26; ours most closely relates to a Golden 101 
Gate compatible plasmid from Rosowski et al.20 Common to many plasmids, including Rosowski et al.20,  is 102 
the light chain and heavy chain (VH and CH1) expressed using a Gal1/Gal10 galactose-inducible 103 
bidirectional promoter (BDP). We use Golden Gate27 to assemble small shuttle vectors containing the VH, VL, 104 
and BDP, as well as regions of homology to the CH1 and light chain sequence. After mutagenesis, the Fab 105 
yeast surface display library is generated by Gibson assembly28 using the regions of homology on the 106 
shuttle vector and empty yeast surface display vector containing the barcode. Beyond these innovations, 107 
we made several useful changes to the Rosowski plasmid (Extended Data Figure 1), including (i.) 108 
constructing plasmids for both kappa and lambda light chains; (ii.) encoding a V5 C-terminal epitope tag on 109 
the light chain to assess light chain expression; and (iii.) making a conservative coding mutant in CH1 and 110 
several silent mutations on the yeast vector for compatibility with short-read sequencing. 111 
 112 
To test whether our updated plasmids interfered with Fab binding, we performed yeast surface titrations of 113 
SARS-CoV-2 antibodies 4A829 and CC12.130 against Wuhan Hu-1 S1 in the established and updated yeast 114 
surface display vectors (Figure 1b) and fit the mean fluorescence data (F) to a saturable binding isotherm: 115 
 116 

𝐹 = (𝐹!"# − 𝐹!$%)
['(]!

*"	,	['(]!
+ 𝐹!$%      (1) 117 

Here Fmax is the maximum average cell fluorescence at binding saturation, [S1]o is the ligand concentration, 118 
Fmin is the cell autofluorescence, and KD is the monovalent binding dissociation constant. The confidence 119 
intervals for KD overlapped for both antibodies (Fig 1b), suggesting that the combined changes were not 120 
deleterious for binding. For further validation, we performed additional yeast surface titrations with a 121 
representative set of antibodies encompassing diverse Complementarity-determining region (CDR) H3 122 
lengths (lengths 11-23), immunoglobulin heavy chain variable region (IGHV) gene families, and either 123 
lambda or kappa light chains (Figure 1c; Extended Data Figure 2). In all cases, interpretable binding 124 
isotherms were observed. Thus, our yeast display plasmids can measure binding for a range of human 125 
Fabs.  126 
 127 
To demonstrate the capability of MAGMA-seq to track potential development trajectories of multiple 128 
antibodies simultaneously, we selected three anti-S1 antibodies29–31 that target Wuhan Hu-1 S1 at two 129 
distinct domains, the RBD and the NTD (Figure 2a). For each of these antibodies, mutagenic libraries 130 
theoretically comprising all possible sets of mutation between the mature and inferred universal common 131 
ancestor (UCA) were constructed using combinatorial nicking mutagenesis32,33 and the libraries were pooled 132 
in approximately equimolar ratios and assembled into the yeast surface vector with a target of multiple 133 
barcodes per antibody variant (Figure 2a).  134 
 135 
Several deep mutational scanning protocols pair a barcode to an encoded protein variant using long-read 136 
sequencing10,34–37. MAGMA-seq is compatible with both long-read sequencing and short-read sequencing. 137 
For short-read sequencing, the barcode is separately paired with the VH and VL using independent Golden 138 
Gate intramolecular ligation reactions38, which places the barcode adjacent to either the CDR H3 or the 139 
CDR L3 (Figure 2b). The reaction products are separated on an agarose gel to remove concatemers and 140 
isolate the correct intramolecular ligation product (Extended Data Figure 3), and amplicons are prepared 141 
for paired end short-read sequencing. PCR-based amplicon preparation of mixed populations is known to 142 
result in chimera formation between closely related nucleic acid sequences35,39. We evaluated several 143 
different amplicon preparation protocols by assessing chimera formation between three isogenic plasmids 144 
containing distinct mutations and unique barcodes. Using this approach, we identified a protocol resulting 145 
in low amounts of overall chimera formation (Extended Data Figure 4). 146 
 147 
To evaluate the fidelity of our protocol, we sequenced 20 isogenic clones using Oxford Nanopore 148 
sequencing. The pooled, mutagenic antibody library was prepared in replicates for Illumina short-read 149 
sequencing following our optimized protocol for both VH and VL pairings. 95% (19/20; replicate 1) and 85% 150 
(17/20; replicate 2) of barcode-antibody pairing was identical between nanopore and short read sequencing 151 
(Figure 2c), and no incorrect calls were made in either replicate. In total, we paired 1059 barcodes and 152 
recovered 64/64 CC12.1 variants (100% library coverage), 48/64 COV2-2489 variants (75% library 153 
coverage) after an alternative filtering step (Extended Data Figure 5), and 56/64 4A8 variants (87.5% library 154 
coverage) with a mean of 4.8 barcodes per variant (Figure 2d).   155 
 156 
The library was transformed into yeast, passaged, and induced by galactose. We sorted the library at 10 157 
different S1 labeling concentrations by sorting yeast cells into two bins by fluorescence using the channel 158 
corresponding to binding S1 (Figure 1a, Figure 2e, Extended Data Figure S6). We sequenced and 159 
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counted the number of barcodes collected from each of the bins at every sampled concentration as well as 160 
a reference population of Fab displaying cells. The count data were aggregated with fluorescence bin limits, 161 
sorted cell counts, and predetermined parameters describing the expected fluorescence distributions, and 162 
then analyzed by a custom MLE algorithm to generate monovalent binding dissociation constants (KD) and 163 
max mean fluorescence at saturation (Fmax) estimates for each variant. Our MLE algorithm performs 164 
minimization of the difference between observed and expected sequencing counts given an underlying 165 
system of equations describing the theoretical distributions and anticipated measurement error (for full 166 
details, see Supporting Note 1). Importantly, the algorithm can quantify KD estimate uncertainty (Figure 2f). 167 
Distributions of KD estimates were observed to be consistent across barcodes of the same variant, with 168 
high overlap between confidence intervals (Figure 2g and Extended Data Figure S7). Our MLE algorithm 169 
uses two fixed global parameters relating to the estimated error rate in FACS and the fluorescence 170 
probability distribution of the expressed constructs. We evaluated the sensitivity of the output on these 171 
parameters, finding that the mean absolute error in logKD ratio ranged from 0.016 - 0.039  log10(KD/KD,wt), 172 
showing little effect overall on our parameter choices (Extended Data Figure S8). 173 
 174 

 175 
Fig. 2 | Validation of barcode pairing and parameter estimation for MAGMA-seq. (a) Mutagenic library 176 
contains 192 variants of 4A8, COV2-2489 (NTD targeting), and CC12.1 (RBD targeting) Fabs (b) Molecular 177 
barcode in yeast display plasmid backbone allows for barcode pairing by intramolecular ligation followed by 178 
short-read sequencing (c) Barcode pairing method achieves correct variant calls confirmed by ONT 179 
sequencing (d) Barcode and variant coverage of haplotyped libraries (e) Examples of gating thresholds for 180 
FACS sorting of library for 4/10 of the sampled antigen concentrations. Top 25% bin shown in pink and 181 
next 25% bin shown in blue. (f) MLE quantifies KD uncertainty via confidence interval calculation. (g) MLE KD 182 
estimates for all barcodes haplotyped as 4A8 WT (top) with 95% confidence intervals for each barcode 183 
(blue X) and grouped barcodes (orange X) (bottom). (h) Mean absolute error for MLE KD estimates for counts 184 
collapsed by variant versus isogenic titration values (4A8 only) (i) Maximum mean fluorescence values (Fmax) 185 
for 4A8 and CC12.1 antibodies calculated via MLE in absolute terms (top; 4A8: n=70, CC12.1: n=83) and 186 
isogenic titration as a percentage normalized by the CC12.1 average (bottom; 4A8: n=8, CC12.1: n=4). P-187 
values calculated by Welch’s t-test (***: 1e-4 < p <= 1e-3, ****: p <= 1e-4). 188 
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 189 
To address whether parameter estimates from MLE are consistent with isogenic titrations, we used 190 
combinatorial nicking mutagenesis32 to prepare biological replicates for 61 separate 4A8 variants. For each 191 
variant, we performed four isogenic titrations (n=4; 2 technical replicates and 2 biological replicates of each, 192 
see Supplementary Data 2) and determined the change of free energy of binding upon mutation (ΔΔG) 193 
relative to the mature 4A8 Fab. While we observed a single outlier, likely because of low sequencing 194 
coverage (average counts per bin = 7, Figure 2h), the mean absolute error of MLE generated KDs relative to 195 
the isogenic titrations fell at or below the level of precision of the isogenic titrations for almost all variants 196 
tested (isogenic titration experimental limit = 0.21 logKD/logKD,ref, Figure 2h).  Additionally, the MLE 197 
algorithm captured the statistically significant differences in Fmax that are known to exist between 4A8 and 198 
CC12.1 Fabs from isogenic titrations (Figure 2i). Thus, MAGMA-seq can recover biophysically meaningful 199 
parameters that are consistent with isogenic titrations. 200 
 201 
We performed regression analyses on the MAGMA-seq output to gain insight into the impact of individual 202 
mutations as well as to determine epistatic effects of mutations on the overall development trajectory for 203 
the 4A8, CC12.1, and COV2-2489 antibodies. As expected, due to the high KD and low Fmax observed for 204 
COV2-2489 WT (see Figure 1c), we noticed that few barcodes from any variants of this antibody appeared 205 
in any of the sorted bins at substantial quantities and similar analysis was not completed. For 4A8 and 206 
CC12.1, we performed one-hot encoding of the programmed mutations and then analyzed each antibody 207 
separately using different regression techniques (Ordinary Least Squares (OLS), Least Absolute Shrinkage 208 
and Selection Operator (LASSO)40, and Ridge Regression41 (Supplementary Data 3). While agreement was 209 
observed amongst all regression methods, we selected the LASSO due to the parameter minimization 210 
inherent to the method.  211 
 212 
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 213 
Fig. 3 | Antibody development landscapes for 4A8 and CC12.1 are sparse. (a) Comparison of 4A8 one 214 
body and two body parameter binding affinity weights inferred from (left) isogenic titrations and (right) 215 
MAGMA-seq. Binding affinities are represented as logKD ratios relative to the mature antibody sequence. (b) 216 
Correlation between isogenic titrations and MAGMA-seq parameter weights. Blue closed circles are one-217 
body weights, and open circles are two-body weights.(c) Parameter weights for 4A8 Fmax percentage 218 
differences relative to the mature antibody. (d-e) CC12.1 MLE parameter weights for (d) logKD ratios and (e) 219 
Fmax as inferred from MAGMA-seq. (f-g) Structural complexes of SARS-CoV-2 Wuhan Hu-1 S antibodies (f) 220 
4A8 bound to NTD (PDB ID: 7C2L), and (g) CC12.1 bound to RBD (PDB ID: 6XC3). Positions mutated from 221 
the inferred UCA sequence are shown as purple (VH) or gray (VL) spheres. 222 
 223 
LASSO regression for the 4A8 isogenic clone logKD ratio titration data and a 2nd order model fit the data with 224 
MAE = 0.099 log10(KD/KD,wt). All 2nd order coefficient weights fell below 0.07  log10(KD/KD,wt) (less than 17% 225 
absolute difference in binding affinities), supporting a sparse development pathway (Figure 3a). An identical 226 
analysis performed on the 4A8 MLE dataset reproduced the same sparse pathway results (Figure 3a; MAE 227 
= 0.063  log10(KD/KD,wt)). Surprisingly, only the light chain mutation M94T had any appreciable effect on 228 
binding. The coefficient weights for the 4A8 titrations and MLE proved consistent with a correlation 229 
coefficient of 0.94 for all first order weights (Figure 3b). The correlation coefficient for all first and second 230 
order weights is lower at 0.70 due to the noise present in the titration data collection (Figure 3b). MAGMA-231 
seq also allowed us to perform regression analysis on Fmax, a proxy for the total amount of active Fab on the 232 
yeast surface. For 4A8, a 2nd order model showed Fmax is influenced by multiple mutations. I59M decreases 233 
Fmax by 10%, and K120Q improves Fmax values by 9% compared to mature 4A8 (Figure 3c). 234 
 235 
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Analogous regression for antibody CC12.1 was performed using the MLE data for ΔΔGbinding and Fmax. A 236 
second order model described the data with MAE = 0.07  log10(KD/KD,wt) and 3923 RFU for ΔΔGbinding and 237 
Fmax, respectively. Consistent with 4A8, we found a sparse mutational landscape with CC12.1 and S1 238 
where only two mutations, F27L and Y58F, are required for enhanced affinity (Figure 3d). M104L improves 239 
Fmax values by approx. 16% in the presence of F27L and Y58F (Figure 3e).  240 
 241 
4A8 binding to S1 is mediated predominantly by the VH chain with important contacts to the NTD in HCDR1 242 
and HCDR329. VL M94T is the only one of six mutations from germline that improves binding affinity. A 243 
structural hypothesis for this mutation is that it repositions the HCDR3 in a more productive conformation 244 
for NTD recognition (Figure 3f). CC12.1 uses both VH and VL to contact S RBD42 (Figure 3d). Y58F directly 245 
contacts the RBD surface for improved binding, while F27L may subtly reposition the CDR H1 for improved 246 
recognition. M104L decreases binding affinity in the context of F27L and Y58F but improves functional 247 
expression, and it may participate in subtle antibody-antigen rearrangements which could cause the minor 248 
2-body effects seen (Figure 3d, g). MAGMA-seq alone as well as in combination with known structures can 249 
aid in the structural and genetic understanding of antibody development trajectories. 250 
 251 
To determine whether MAGMA-seq can evaluate multiple antibodies sorted against multiple antigens 252 
simultaneously, we prepared a library containing mutants of eight distinct antibodies29,43–46 (1G01, 1G04, 253 
319-345, 222-1C06, CR6261, 2-7, UCA_2-17, and 4A8) containing varying light chain gene usage and CDR 254 
H3 length. 1G01 and 1G04 bind at the active site on NA influenza neuraminidase N2 A/Brisbane/10/200743. 255 
CR6261 is a bnAb binding to group I HAs45. 319-345 and 222-1C06 are nAbs which recognize the anchor 256 
epitope on H1 HA44. 2-7, UCA_2-17, and 4A8 recognize SARS-CoV-2 spike Wuhan Hu-129,46 (Figure 4a, 257 
Figure 1C). We sorted replicates of this library of 4,105 matched barcoded antibodies against 11 varying 258 
combined concentrations of HA and S1. The 11 sorts were structured such that, at all labeling 259 
concentrations, the average population had an appreciable binding signal (Extended Data Figure S9). One 260 
labeling concentration contained only HA or S1, respectively. Additionally, the library contained internal 261 
controls for evaluating the sorting error and for assessing the fidelity of affinity reconstruction. The complete 262 
dataset for all antibody variants is listed in Supplementary Data 4. As expected, none of the NA-specific 263 
1G01 or 1G04 antibody variants had inferred dissociation constants below 1 μM for either the HA or S1 264 
antigen. HA-specific and S1-specific antibodies mapped neatly to one of the two antigens using the 265 
antigen-only sort (Fig 4b). The 4A8 variants, included as internal controls, were consistent with the 266 
parameter weights from the previous sort (LogKD ratio of T94M relative to the S7T variant: 1.33). 267 
Additionally, the estimated KD values from MLE are reasonably consistent between replicate sorts. After 268 
removing variants containing stop codons and non-converged values, we observe an R2 of 0.71 and MAE of 269 
0.32  log10(KD/KD,wt) for anchor antibodies 222-1C06 and 319-345 (Fig 4c). Relative to replicate 1, replicate 2 270 
underpredicts some of the intermediate affinity antibodies. We attribute this discrepancy to the absence of 271 
the 100nM labeling bin for the second replicate. 272 
 273 
Two antibodies in the library contained mutations allowing for the reconstruction of potential development 274 
trajectories from their inferred UCA sequence. 2-7 is a Wuhan Hu-1 S1-specific nAb46. 2-7 contains five 275 
mutations from its inferred germline, all in the VL (A5G, A31G, D52E, K55N, T95S). The inferred development 276 
(Extended Data Figure S10) was superficially like the sparse development pathways observed for 4A8 and 277 
CC12.1, with four 1st order couplings predicting the dissociation constants of the potential pathway 278 
variants, as supported from LASSO regression.  279 
 280 
CR6261 is an influenza bnAb targeting the HA stem epitope originally described by Throsby et al45. It is an 281 
unusual antibody in two ways. First, its development trajectory is dissimilar to other VH1-69 anti-HA 282 
antibodies previously characterized47. Second, it confers molecular recognition only through its VH, mainly 283 
by positioning apolar residues at framework 3 (FR3) (F74, V78), in CDR H1 (F29), and in CDR H2 (F54) in a 284 
hydrophobic groove48,49 (Fig 4d). Both CDR residues are encoded in germline VH1-69 sequence in allelic 285 
human populations, but the inferred UCA sequence does not appreciably recognize the H1 HA stem 286 
epitope50. The potential first steps of its trajectory from its inferred UCA sequence have been developed by 287 
Lingwood et al.50, supporting a first committed step of some combination of H1 mutations T28P and S30R 288 
necessary for orientation of F29, and at least some subset of the framework 3 (FR3) mutations 289 
(E73D/T75A/S76G/A78V) necessary for F74 insertion (Fig 4d). We sampled 2.9% (470/16,384 possible 290 
variants) of the potential sequences between the UCA and mature CR6261. MAGMA-seq recovered a KD of 291 
12 nM for mature CR6261, consistent with isogenic titration of 9.4 nM and with previous literature reports45. 292 
LASSO regression supported a 2nd order epistatic model (Supplementary Data 3), with a total of 5 1st order 293 
and 15 2nd order weights above an absolute 0.18  log10(KD/KD,wt) energetic threshold. Consistent with the 294 
studies from Lingwood and Pappas, the strongest 1st order weights contributing to binding affinity are 295 
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T28P, S30R, and FR3 mutation A80V (Fig 4e), and the two strongest 2nd order weights are the epistatic 296 
couplings between T28P/S30R (0.65 log10(KD/KD,wt)) and S74F/A80V (0.57  log10(KD/KD,wt)). The known 297 
epistasis in the T28P/S30R mutations can be rationalized as altering the orientation of the CDR H1 loop 298 
such that F29, usually buried, largely becomes solvent exposed in the unbound structure. Consistent with 299 
this hypothesis, the surface expression of Fabs containing T28P/S30R mutations decreased by 300 
approximately 10% (Fig 4f), as expected for mutations which increase the apolar solvent accessible surface 301 
area. The other epistatic relationship observed of S74F/A78V can relate to the positioning of hydrophobic 302 
residues, where the 78V is needed to constrain the correct F74 rotamer for precise shape complementarity 303 
in the stem groove. In sum, the sparse sampling of bnAb mutants allow for the reconstruction of the 304 
development pathways that are in concordance with the existing body of structural, genetic, and 305 
immunological evidence for this antibody. Thus, MAGMA-seq can reconstruct the likely development 306 
pathways for multiple human antibodies against different antigens in the same experiment. 307 
 308 

 309 
Fig. 4 | MAGMA-seq infers biophysical properties in mixed antibody, mixed antigen sorts. (a) Antigen-310 
specific antibody sub-libraries and antigens used in the sorting experiments. Non-binders 1G01 and 1G04 311 
were also included. (b) Probability of an antibody variant sorted into an antigen-specific bin when only 2000 312 
nM of S1 (Y-axis) or H1 HA (X-axis) was incubated with yeast. For HA, only the top sorting bin was included 313 
in the analysis. (c) Correlation of MLE KD estimates from sort replicates for anchor epitope targeting 314 
antibodies 222-1C06 and 319-345. (d) Structure (PDB ID: 3GBN) of CR6261 bound to H1 HA. Purple sticks 315 
are HA-contacting positions that are encoded from the inferred UCA sequence. The side chains of residues 316 
mutated in the mature antibody relative to the UCA are shown as gold sticks and lines. (e-f) LASSO 317 
regression of (e) logKD ratios and (f) Fmax percentage differences one body and two body weights for 318 
CR6261. Weights are shown relative to the mature antibody.   319 
 320 
The libraries described thus far are all retrospective analyses of antibody development trajectories, where 321 
libraries encoded chimeras of the mature and UCA sequences. To further investigate the utility of this 322 
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method, our second demonstration of MAGMA-seq included a prospective antibody development library 323 
and a few CDR targeted site-saturation mutagenesis libraries. We generated each of these antibody 324 
libraries in parallel reactions and subsequently pooled and barcoded the variants. We bottlenecked the 325 
library, which selected individual variants randomly, and assessed it with MAGMA-seq. 326 
 327 
To test whether MAGMA-seq could map prospective antibody development trajectories, the mixed library 328 
contained a subset of a larger library of the UCA sequence of the anti-S NTD 2-17 (UCA_2-17)46. This larger 329 
library theoretically contained all single nucleotide substitutions at the CDRs and framework positions. Its 330 
UCA was predicted to bind at a Kd of 2050 nM (range 400-3200 nM; 0.23  log10(KD/KD,wt) s.d.; 58 barcoded 331 
UCA sequences) and a mean Fmax = 890, consistent with measurements of the isogenic control (Fig 1C). We 332 
were able to recover 318 uniquely barcoded variants. Many of these mutants, like VH:Y91DHN or 333 
VH:C92GFY near the CDR H3, are expected to structurally destabilize the protein, resulting in non-specific 334 
binders. Still, several mutants had lower inferred dissociation constants or higher Fmax values than the UCA, 335 
including VH:I51N in CDRH2 (Kd 970 nM) and VL:N32D (Fmax 4,000) observed in the mature 2-17 sequence, 336 
VH:S75P (Kd 400 nM), and VH:A97P in CDRH3 (Kd 490 nM) (Fig 5a). Thus, MAGMA-seq can evaluate 337 
potential forward trajectories for antibodies that are consistent with genetic and structural data. 338 
 339 

 340 
Fig. 5 | MAGMA-seq samples the function sequence-binding landscape for neutralizing antibodies.!341 
"#$!%&'(#')!*'#+,-*&'.,/!&0!*1,!234!&0!#5*.678!549!:68;<!=1,!/#>?@,)!@.9'#'A!./!#!/B9/,*!&0!#@@!?&*,5*.#@!/.5C@,!342 
5B-@,&*.),!/B9/*.*B*.&5/!.5!9&*1!DE!#5)!DF<!4@@!/#>?@,)!?&/.*.&5/!#',!/1&(5!(.*1!34!#*&>/!/1&(5!#/!@.>,!343 
/?1,',/<!F#'C,'!-A#5!/?1,',/!,5-&),!C#.5!&0!0B5-*.&5!#5*.9&)A!G#'.#5*/<!"9$!H',G.&B/@A!/&@G,)!/*'B-*B',!&0!344 
:::683IJ!9&B5)!*&!E8!E4!"HKL!MK!;=NK$<!"-$!:::683IJ!?#'#*&?,!#5)!>B*#*.&5#@!?'&0.@,/!0&'!-,'*#.5!345 
',/.)B,/!.5!*1,!3KO!EN!#5)!PFN<!3KO/!F86FN!#5)!E86EN!#',!/1&(5!#/!@#'C,'!(.)*1!'.99&5/!*1#5!*1,!',/*!&0!346 
*1,!>#.5!-1#.5<!O,/.)B,/!(.*1!#!3L!(.*1.5!Q!R!&0!E4!#',!/1&(5!#/!-&@&',)!/*.-S/<!=1,!?#5,@!.5/,*!0&'!*1,!347 
T8II9U!>B*#*.&5!/1&(/!*1,!,@,-*'&/*#*.-!?&*,5*.#@!/B'0#-,!&0!E8!E4< 348 
 349 
We also used MAGMA-seq to infer the preliminary rules of recognition for an emerging class of influenza 350 
neutralizing antibodies. Antibodies 319-345 and 222-1C06 target a distinct anchor stem epitope of H1 HA44. 351 
Anchor bnAbs appear to be germline restricted to light chains VK3-11 or VK3-15, with heavy chains from 352 
germlines VH3-23, VH3-30/VH3-30-3, and VH3-48. All mature anchor bnAbs encode a CDR H3 of diverse 353 
amino acid sequences, with a glycine either at the beginning or end of the CDR H3 and two to four 354 
hydrophobic residues at the middle of the sequence. The cryo-EM structure of 222-1C06 bound to H1 HA 355 
shows the structural basis of recognition. The interaction at the anchor epitope is dominated by multiple 356 
hydrophobic interactions across the heavy and light chains. The germline-encoded and invariant CDR KL3 357 
‘NWPP’ motif from positions 93-95A are at the center of the binding interface. CDRH2 (Leu55) and CDRH3 358 
(Trp99, Pro100, Thr100a) all contribute hydrophobic contacts at the binding interface (Fig 5b,c).  359 
 360 
We recovered 183 and 390 single non-synonymous mutants of 222-1C06 and 319-345, respectively (1429 361 
uniquely barcoded  variants). The observed KD for mature antibodies were low nM (319-345: 16 nM; 222-362 
1C06: 27 nM) and highly reproducible between independent barcodes (319-345: 0.092  log10(KD/KD,wt) s.d., 363 
n=171; 222-1C06: 0.07  log10(KD/KD,wt) s.d., n=92). CDR loops L1, L2, and H1 make peripheral contacts at 364 
the interface. Consistent with this, only 3.8% of single mutants (2/118 and 11/161 for 222-1C06 and 319-365 
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345, respectively) at CDR L1, L2, and H1 positions disrupted binding affinity by greater than 0.7  366 
log10(KD/KD,wt) (Supporting Data 4). This contrasts with CDR H2, where 40% (20 of 51) of single and double 367 
mutants disrupted binding greater than 0.7  log10(KD/KD,wt), supporting the importance of H2 in recognition of 368 
the anchor epitope (Fig 5c). While the library under sampled CDRH3, mutations at Trp99 for 222-1C06 369 
(W99E log(KD,i/KD,WT ) 1.9) and Gly100d  for 319-345 ( G100dL/I >2.1  log10(KD/KD,wt)) were deleterious, 370 
consistent with the precise positioning of the loop needed for binding. In the KL3 ‘NWPP motif’, observed 371 
mutations at N93 seem to have little effect on binding affinity, while mutations at W94, P95, and P95a seem 372 
to drastically disrupt binding in 222-1C06 (Fig 5c). Intriguingly, mutations at these same positions in 319-373 
345 are only mildly deleterious (Fig 5c), suggesting that the antibody paratopes are positioned slightly 374 
differently against HA. 375 
 376 
To identify candidate mutants with lower binding affinities than the mature antibodies, we identified all 377 
variants with log(Kdi/Kd,wt) values falling at least two standard deviations below zero. No 319-345 mutants 378 
met this cutoff, while four 222-1C06 variants did (VH:E100bG, VH:S54G, VH:D101G, and VH:D101S; Fig 379 
5c).  E100b is adjacent to an acidic patch on HA in the structural complex (Fig 5c), and so mutation to 380 
glycine likely improves binding by eliminating this unfavorable electrostatic contact. The mechanistic basis 381 
of the D101 mutations remains unclear, as mutation likely disrupts a salt bridge with CDRH3 R94. Likewise, 382 
the effect of S54G is obscure, although we note that this mutation occurs in several 319-345 383 
clonotypes44  isolated from patients. 384 
 385 
Discussion 386 
In this paper we present MAGMA-seq, an integrated technology for quantitative wide mutational scanning 387 
of human antibody Fab libraries. We demonstrate MAGMA-seq on two pooled libraries comprising mutants 388 
of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. 389 
Analysis of MAGMA-seq outputs allows for the simultaneous mapping of retrospective and prospective 390 
potential antibody development pathways, paratope affinity maturation, and the sequence dependence on 391 
binding for broadly neutralizing antibodies. MAGMA-seq can be deployed immediately not only in these 392 
areas but for affinity maturation campaigns, specificity mapping campaigns, and for fine paratope mapping. 393 
A compelling advantage of MAGMA-seq is its ability to measure binding for mutants of many given parental 394 
antibodies in a single experiment. Since modern biotech campaigns typically use dozens of candidates in 395 
initial testing, MAGMA-seq enables the streamlining of such measurements.  396 
 397 
We used MAGMA-seq to reconstruct potential development pathways for anti-influenza (CR6261) and anti-398 
SARS-CoV-2 (4A8, CC12.1, 2-7) nAbs. We found that these development pathways can be reconstructed 399 
by considering binding contributions from only a handful of the mutations. This is supported by a body of 400 
evidence from other protein families51,52 showing the sparseness of functional protein landscapes53. We also 401 
found that these sequence-binding fitness landscapes were most consistent with one-body or at most two-402 
body interactions, consistent with recent protein engineering literature54–56. The resulting implication is that 403 
sampling of a small percentage of potential variants is sufficient for reconstruction of fitness landscapes. 404 
Indeed, for the CR6261 experiments we sampled 470 out of 16,384 possible variants and were still able to 405 
reconstruct a development trajectory supported by existing evidence. Likely many such antibody 406 
trajectories can be inferred from relatively few experiments.  407 
 408 
We also evaluated the sequence dependence of two newly described nAbs targeting the anchor epitope on 409 
influenza HA. Our broad findings established the importance of several key mutations at the antibody side 410 
of the interface, identified electrostatic complementarity as a mechanism for improving nAb recognition to 411 
the anchor epitope, and highlighted the importance of shape complementarity for the diverse CDR H3 412 
sequences found to fit in the interface. We anticipate that MAGMA-seq will be used to enumerate the 413 
sequence determinants for entire sets of antibodies targeting key neutralizing or other important antigenic 414 
epitopes. 415 
 416 
There are some limitations with the current demonstration of this technology. First, we assess binding using 417 
yeast surface display, limiting the practical dynamic range of binding affinities to 0.5 nM - 2 μM. At high 418 
affinities, the labeling time to reach equilibrium reaches >10 hours, and at low affinities the antigen can 419 
dissociate off the yeast surface during sorting57. Many therapeutic antibodies with low picomolar 420 
monovalent binding affinities would be impracticable to assess accurately. Second, we have measured 421 
order of magnitude differences in Fmax values between different mature Fabs (see Fig 1c). Evidence 422 
suggests some correlation between functional expression on the yeast surface and stability of variants 423 
deriving from the same parental sequence6,58, but a complete understanding of what drives differential Fab 424 
expression between parental Fabs is not yet known. The low Fmax values of some antibodies can hinder 425 
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MLE performance solely due to the variant having low probability of being sorted into a bin, which was 426 
exemplified by the low counts of antibody COV2-2489 variants collected in our first demonstration. Third, 427 
the MLE algorithm uses one global parameter that cannot be measured during the experiment. Despite this 428 
limiting assumption, the inferred monovalent dissociation constants match published results where known. 429 
Fourth, no explicit removal of non-specific binders, like that seen for the anti-S NTD 2-17 sorts, were 430 
performed here. A parallel sort with polyspecificity reagent could improve discrimination of bona fide 431 
binders. Fifth, we note that, due to the implementation of FACS with yeast display, accuracy of MAGMA-432 
seq estimated binding affinities may not precisely match gold-standard in vitro measurements like SPR, 433 
where antibody/antigen interactions are more directly quantified. Additional encumbrances to the method 434 
presented include the formation of antibody sequence chimeras during intramolecular ligation that reduce 435 
the number of identified barcodes and the use of TruSeq small RNA single 6-nt index adapters that allow 436 
for more index hopping during Illumina sequencing. Technical improvements would remain compatible with 437 
the rest of the MAGMA-seq workflow. Long-read sequencing is becoming increasingly inexpensive and 438 
more accurate, and as it improves it removes the necessity of PCR amplification.  439 
 440 
We demonstrated this technology on libraries of fewer than 10,000 variants, although the functional limit on 441 
the library size is much larger. The potential complexity bottlenecks for library size are through generation of 442 
individual mutagenic libraries, Gibson assembly into barcoded yeast display plasmids, transformation into 443 
yeast, sorting in yeast, and sequencing. An additional complexity bottleneck arises through the linking VH 444 
and VL genotypes via barcodes. The major bottleneck at the current stage of development is through cell 445 
sorting. For sorting speeds of commercially available cell sorters, the protocol leads to approx. 1,000 cells 446 
collected per sorting bin (10,000 events per second x 40% Fab displaying cells per event x 25% collection 447 
of the Fab displayed cells). Since we sample at least 150-fold above the theoretical size of the library, this 448 
means that a library size of 10,000 would take 25 minutes per labeling concentration. Sorting the full suite 449 
of 10-12 labeling concentrations would then take a full working day, including start-up and shutdown. 450 
Significantly larger libraries would require multiple days of sorting or multiple cell sorters running in parallel.  451 
 452 
Outlook 453 
Massively parallel measurements of protein binding affinities can be used to train deep learning models to 454 
capture antibody molecular recognition. We have demonstrated that this MAGMA-seq technology can 455 
perform wide mutational scanning for multiple antibodies against different antigens over a wide dynamic 456 
range of binding affinities. These measurements are made in a natural human Fab background and have 457 
multiple internal controls needed for quality control and validation. The next steps are an integrated 458 
computational and experimental appraisal of the quality and quantity of data needed for such purposes. 459 
 460 
Methods 461 
 462 
Materials 463 
All media components were purchased from ThermoFisher or VWR. All enzymes were purchased from New 464 
England Biolabs unless otherwise specified. The recombinant SARS-CoV-2 Spike S1-hFc-His tagged 465 
protein used for titrations and sorting was purchased from ThermoFisher (RP-876-79). The recombinant 466 
neuraminidase (NA) for titrations was obtained through BEI Resources, NIAID, NIH: N2 Neuraminidase (NA) 467 
Protein with N-Terminal Histidine Tag from Influenza Virus, A/Brisbane/10/2007 (H3N2), Recombinant from 468 
Baculovirus, NR-43784. The ectodomain of A/Brisbane/02/2018 H1 HA with a foldon trimerization domain 469 
was expressed in HEK293T cells (ATCC) and purified using Ni-NTA affinity chromatography. Recombinant 470 
neuraminidase and recombinant hemagglutinin were biotinylated in a 20:1 molar ratio of biotin to antigen 471 
with EZ-Link NHS-Biotin (ThermoFisher, 20217) following the manufacturer’s instructions.  472 
 473 
Plasmids 474 
All plasmids were constructed using either NEBuilder HiFi DNA Assembly Master Mix (New England 475 
Biolabs) for Gibson assembly28, by Golden Gate assembly27,59, using a Q5 Site-Directed Mutagenesis Kit 476 
(New England Biolabs), or by nicking mutagenesis32,60. Synthetic DNA was ordered either as gBlocks or 477 
eBlocks (IDT). A complete list of plasmids, libraries, gene blocks, and primers are located in 478 
Supplementary Data 1.  479 
 480 
Construction of Fab libraries 481 
Fabs were diversified either by complete combinatorial mutagenesis32, site-saturation  mutagenesis61, or 482 
oligo pool nicking mutagenesis62. Complete combinatorial libraries of Fabs were prepared from mature 483 
human antibodies and their inferred universal common ancestor (UCA). UCA sequences were inferred using 484 
IgBLAST63. In total, 10 mutagenic libraries were prepared (all library details are in Supplementary Data 1). 485 
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Fab libraries were combined with barcoded yeast display plasmid(s) by Gibson assembly28 and 486 
bottlenecked. Five μg of plasmid DNA was transformed into chemically competent Saccharomyces 487 
cerevisiae (EBY100, ATCC MYA-4941) and stored as yeast glycerol stocks in -80 °C according to Medina-488 
Cucurella & Whitehead64. 489 
 490 
Barcode-variant pairing 491 
Barcodes were paired with VH and VL variants through Oxford nanopore sequencing or by short-read 492 
sequencing of amplicons prepared by intramolecular ligation of barcode in proximity to the CDR3 of either 493 
the VH or VL using Golden Gate27. Oxford nanopore sequencing (Plasmidsaurus) was performed on 494 
individual plasmids. Short-read amplicons were sequenced on an Illumina MiSeq with 2x250 paired end 495 
reads (Rush University Sequencing Core). For intramolecular ligation, two replicates were performed 496 
independently.   497 
 498 
Yeast Cell Surface Titrations 499 
To determine the binding affinity of individual variants, isogenic titrations were performed according to 500 
Chao et al.65. 4A8 variants were made by the method of combinatorial nicking mutagenesis32. Each variant 501 
was tested in duplicate on two separate days (n=4 total replicates) and compared with a titration of mature 502 
4A8 Fab to determine ΔΔGbinding, the free energy of binding upon mutation. The isogenic titrations reported 503 
in Figure 1 were reported in at least duplicate (n≥2).   504 
 505 
Sorting of Fab libraries 506 
For sorting the mixed 4A8/COV2-2489/CC12.1 library, 1e7 (ten million) yeast library cells from glycerol 507 
stocks were shaken at 230 rpm and grown in 250mL flasks at 30 °C overnight in 50 mL SDCAA + PenStrep 508 
and kanamycin. The next day, the 1e7 yeast cells were induced in SGDCAA + PenStrep and kanamycin at 509 
20 °C for 48 hours in a total reaction volume of 50 mL. On the morning of sorting the cells were 510 
concentrated to an OD600 = 5 in ice-cold PBSF. Ten million library cells were then labeled with different 511 
amounts of S1-hFc-His at the following concentrations in nM: 0, 1, 2.5, 5, 10, 50, 100, 250, 500, 1000, 2000 512 
for 30 minutes at room temperature. After the binding reactions were finished cells were spun down, 513 
washed with 1mL of ice-cold PBSF, and then labeled with 6.25 μL anti-V5-AlexaFluor488 and 25 μL Goat 514 
anti-hFc-PE (ThermoFisher, 12-4998-82) for 30 minutes covered on ice. After fluorophore labeling, the cells 515 
were pelleted and washed with 1 mL of ice-cold PBSF, and pellets were left covered on ice until loading 516 
onto Sony SH800 cell sorter, at which time each pellet was resuspended in 5 mL of ice-cold PBSF. Cells 517 
were first gated for yeast cells and single cells (drawn according to Banach et al.66 to avoid collection of 518 
clumped yeast of irregular large yeast aggregates), and then a gate for positive Fab expression was drawn 519 
and 200,000 cells were collected as the library reference population (Extended Data Figure 6). Sorting bins 520 
for the Top 25% and Next 25% of binding based on PE signal were gated from the display positive 521 
population and 200,000 cells were collected in each bin (Extended Data Figure 6). Sorted cells were 522 
recovered in 1 mL of SDCAA plus antibiotics overnight at 30 °C, at which time another 1 mL of SDCAA was 523 
added. Cells were grown until they reached an OD600 greater than 2. Cell stocks were made for each sorted 524 
population at 1 mL of OD600 = 1 in yeast storage buffer (20% w/v glycerol, 20 mM HEPES-NaOH, 200 mM 525 
NaCl, pH = 7.5).  526 
 527 
For sorting the S1/HA library, 1e7 (ten million) yeast library cells from glycerol stocks were shaken at 230 528 
rpm and grown in 250mL flasks at 30 °C overnight in 50 mL SDCAA + PenStrep and kanamycin. The next 529 
day, the 1e7 yeast cells were induced in SGDCAA + PenStrep and kanamycin at 20 °C for 48 hours in a 530 
total reaction volume of 50 mL. On the morning of sorting the cells were concentrated to an OD600 = 5 in ice-531 
cold PBSF. Ten million library cells were then labeled with different amounts of S1-hFc-His and biotinylated 532 
HA for 30 minutes at room temperature. The 11 labeling concentrations spanned from 2.5 nM – 2000 nM 533 
and included mixes of both S1-hFc-His and biotinylated HA. After the binding reactions were finished cells 534 
were spun down, washed with 1mL of ice-cold PBSF, and then labeled with 6.25 μL anti-V5-AlexaFluor488, 535 
25 μL Goat anti-hFc-PE (ThermoFisher, 12-4998-82), and 25 μL SAPE (ThermoFisher, S866) for 30 minutes 536 
covered on ice. After fluorophore labeling, the cells were pelleted and washed with 1 mL of ice-cold PBSF, 537 
and pellets were left covered on ice until loading onto Sony SH800 cell sorter. Each pellet was resuspended 538 
in 5 mL of ice-cold PBSF and loaded on to the cell sorter. Cells were first gated for yeast cells and single 539 
cells, and then a gate for positive Fab expression was drawn and 1,000,000 cells were collected per bin for 540 
the first replicate and 750,000 cells per bin were collected for the second replicate. Sorted cells were 541 
recovered in 5 mL of SDCAA plus antibiotics for at least 30 hours at 30 °C and cell stocks were made for 542 
each sorted population in yeast storage buffer. Yeast biological replicates were performed. The plasmid 543 
encoded master library was prepared once and separately transformed into yeast; these libraries were 544 
sorted on separate days. 545 
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 546 
Amplicon Preparation and Deep Sequencing 547 
Plasmid DNA from each collected population was prepared according to Medina-Cucurella & Whitehead64 548 
using Zymoprep Yeast Plasmid Miniprep kits in either individual Eppendorf tubes (D2004) or 96-well plate 549 
format (D2007) and plasmid DNA was eluted in 30 μL nuclease free water. 15 μL of eluted plasmid DNA was 550 
further purified with exonuclease I and lambda exonuclease. The barcode region of the purified DNA was 551 
amplified using 25 PCR cycles with Illumina TruSeq small RNA primers following Kowalsky et al ‘Method 552 
B’67. Amplicons were sequenced on either an Illumina MiSeq (4A8/CC12.1/COV2-2489 sort) or 553 
NovaSeq6000 (S1/HA sorts) by Rush University with single end reads.  554 
 555 
Parameter Estimation 556 
A complete description of the mathematics behind parameter estimation is detailed in Supporting Note 1 557 
and a description of the computational pipeline is described in the Extended Materials and Methods. 558 
Custom Python software was used to estimate variant-specific monovalent binding dissociation constants 559 
(Kd,i) and mean maximum fluorescence at saturation (Fmax,i) fit by equation (1). These values were inferred 560 
using maximum likelihood estimation of the following expression for the log likelihood 𝐿𝐿#(𝐾$,# , 𝐹&'(,#):  561 
 562 

𝐿𝐿$(𝐾-,$ , 𝐹!"#,$) = 	−∑/0 (1)*+234-56)*+
7)*+

)8     (2) 563 
Here, pijk is the probability of capturing variant i in bin j at labeling concentration k and is determined from 564 
observables from the deep sequencing experiment according to the following equation:  565 
 566 

𝑝$/0 = ∅

,)*+
∑) ,)*+

,),
∑) ,),

       (3) 567 

∅ is the total fraction of cells collected in the sorting bin relative to the reference sample, rijk is the number of 568 
observed read counts for variant i in bin j at labeling concentration k, rir is the number of observed read 569 
counts for variant i in the reference population, and the summations represent the sum of observed read 570 
counts over all barcodes.  571 
 572 
𝑀𝑜𝑑𝑒𝑙#./ is the model probability of the variant i sorting in bin j at labeling concentration k and is defined as:  573 
 574 
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Here, 𝐹3./	𝑎𝑛𝑑	𝐹34./	are the gating boundaries in the selected bin j, and 𝜎 is the standard deviation of the 576 
log normal distribution and set to 1.02 for all variants. Different parameter values in equation (1) change the 577 
variant-specific mean fluorescence 𝐹#/ at each labeling concentration used in the experiment.  578 
 579 
The parameter 𝜎#./	representing the uncertainty in the probability of sorting is defined as:  580 
 581 

𝜎$/0 = 9(𝜎$/0,5#;<$%=$>)8 + 𝑝$/08(
(
<)*+

+ (
<),
)      (5) 582 

For sorts reported in Figure 2, 𝜎#./,5(67#89#:	𝑤𝑎𝑠	𝑠𝑒𝑡	𝑡𝑜	0.02. For the sorts reported in Figure 4, this value was 583 
measured using the average probabilities of the non binding mutants of antibodies 1G01 and 1G04.  584 
 585 
Supervised Learning 586 
Programmed mutations for reverse trajectory libraries were one-hot encoded using the custom python 587 
notebook One-hot-encode.ipynb. Ordinary Least Squares (OLS), Least Absolute Shrinkage and Selection 588 
Operator (LASSO), and Ridge Regression analyses were performed on the one-hot encoded variants for 589 
log(KD,i/KD,WT) (4A8 titrations and MLE) and Fmax (MLE) regularization using custom python jupyter-590 
notebooks OLS.ipynb, LASSO.ipynb, and Ridge.ipynb. Coefficient weights and error values for each 591 
regression technique and model order are detailed in Supplementary Data 3. 592 
 593 
Sequences of anchor mAbs used in this study are from Guthmiller et al.44 Clonal analyses were performed 594 
using VGenes (https://wilsonimmunologylab.github.io/VGenes/) using sequences from Guthmiller et al. 595 
 596 
 597 
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Reporting Summary. Further information on research design is available in the Nature Research Reporting 598 
Summary linked to this article. 599 
 600 
Data availability 601 
Processed deep sequencing data is available on sequencing read archive (SRA Deposition #s to be added 602 
upon publication). The plasmids for constructing compatible workflow Fabs pBDP, pMMP_kappa, 603 
pMMP_lambda, pYSD_kappa_mRFP, and pYSD_lambda_mRFP,  as well as positive control plasmids 604 
p4A8_S7T_BC and p4A8_M59I_T94M_BC, are freely available from AddGene; numbers to be added upon 605 
publication. 606 
 607 
Code availability  608 
All custom scripts and code are freely available on GitHub (https://github.com/WhiteheadGroup/MAGMA-609 
seq). 610 
 611 
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