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Abstract

The behavioral and neural effects of the endogenous release of acetylcholine following
stimulation of the Nucleus Basalis of Meynert (NB) have been recently examined (Qi et al. 2021).
Counterintuitively, NB stimulation enhanced behavioral performance while broadening neural
tuning in the prefrontal cortex (PFC). The mechanism by which a weaker mnemonic neural code
could lead to better performance remains unclear. Here, we show that increased neural
excitability in a simple continuous bump attractor model can induce broader neural tuning and
decrease bump diffusion, provided neural rates are saturated. Increased memory precision in the
model overrides memory accuracy, improving overall task performance. Moreover, we show that
bump attractor dynamics can account for the nonuniform impact of neuromodulation on
distractibility, depending on distractor distance from the target. Finally, we delve into the
conditions under which bump attractor tuning and diffusion balance in biologically plausible
heterogeneous network models. In these discrete bump attractor networks, we show that
reducing spatial correlations or enhancing excitatory transmission can improve memory
precision. Altogether, we provide a mechanistic understanding of how cholinergic
neuromodulation controls spatial working memory through perturbed attractor dynamics in PFC.

Significance statement

Acetylcholine has been thought to improve cognitive performance by sharpening neuronal
tuning in prefrontal cortex. Recent work has shown that electrical stimulation of the cholinergic
forebrain in awake-behaving monkeys induces a reduction in prefrontal neural tuning under
stimulation conditions that improve performance. To reconcile these divergent observations, we
provide network simulations showing that these derive consistently from specific conditions in
prefrontal attractor dynamics: firing rate saturation leads to increased storage precision and
reduced neural tuning upon cholinergic activation via an increase in neural excitability, a
reduction in neural correlations, and an increase in excitatory transmission. Our study integrates
previously reported data into a consistent mechanistic view of how acetylcholine controls spatial
working memory via attractor network dynamics in prefrontal cortex.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 20, 2024. ; https://doi.org/10.1101/2024.01.17.576071doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.17.576071
http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Understanding how neuromodulatory systems affect associative cortex dynamics during cognitive
function is fundamental to acquiring insights into cognitive control processes. Such understanding is also
essential for advancing hypotheses for the network mechanisms underlying neuropsychiatric disorders,
often characterized by subtle cognitive processing alterations. In this regard, working memory (WM) is of
particular relevance. For one, WM is known to be modulated by the dopaminergic, noradrenergic, and
cholinergic systems (Cools and Arnsten, 2021). Besides, it is closely associated with network activity in
the prefrontal cortex (PFC), for which computational models have successfully linked network dynamics
with behavior (Compte et al., 2000; Wimmer et al., 2014; Inagaki et al., 2019; Barbosa et al., 2020).
Furthermore, WM is affected in most neuropsychiatric disorders (Forbes et al., 2009). However, the
causal chain from cellular neuromodulation to changes in network dynamics and behavioral performance
in WM remains largely unknown, even for simple behavioral readouts, such as spatial memory precision
in delayed-response tasks (Stein et al., 2021).

A series of recent studies have investigated how the release of endogenous acetylcholine through the
stimulation of the nucleus basalis (NB) of Meynert impacts cognitive functions, including spatial and color
WM and sustained attention (Blake et al., 2017; Liu et al., 2017; Qi et al., 2021). Remarkably, they
reported that NB stimulation leads to better behavioral performance, an uncommon observation upon
interference with neuromodulatory systems. In addition, they investigated the neural correlates of
improved performance in PFC (Qi et al., 2021). Unexpectedly, they found that NB stimulation induced a
general increase in excitability and a widening of neuronal tuning curves and memory fields. A decrease
in selectivity has been observed due to cholinergic stimulation applied iontophoretically with high doses
of cholinergic agonists (Major et al., 2018; Vijayraghavan et al., 2018; Galvin et al., 2020b). However, this
effect has been assumed to correspond to the descending section of an inverted-U function,
representing a regime over which cholinergic agonists impair performance (Galvin et al., 2020a). The
effectiveness of drugs targeting other neurotransmitter systems, e.g., dopamine, is often interpreted as
increased stimulus selectivity (Williams and Goldman-Rakic, 1995). Thus, dopamine agonists are known
to “sculpt” neuronal activity and improve spatial selectivity at low doses, which is assumed to confer the
beneficial effect of dopamine in behavior (Vijayraghavan et al., 2007) as the result of more efficient
coding (Fitzpatrick et al., 1997). The concurrent improvement in performance and broadening of tuning
raises the question of how weaker memory code at the neural level can lead to better behavioral
performances. An answer to this question requires a mechanistic understanding to link PFC dynamics
with behavior consistently.

Bump attractor models (Wilson and Cowan, 1972; Amari, 1977; Compte et al., 2000) have successfully
explained complex aspects of behavior in spatial WM tasks (Wimmer et al., 2014; Barbosa et al., 2020).
In such models, a neural population represents a continuous feature by localized elevated activity (bump
attractor) self-sustained through the mnemonic delay period. Continuous bump attractor dynamics are
usually investigated in idealized settings with network homogeneity and perfectly symmetric connectivity.
However, their more plausible biological implementations must deal with inhomogeneities and
asymmetries that can significantly alter the dynamical features of the bump attractor (Renart et al., 2003;
Hansel and Mato, 2013; Seeholzer et al., 2019; Darshan and Rivkind, 2022).

Here, we first use a homogeneous, symmetric firing-rate bump attractor network model (Amari, 1977) —
which we will refer to as the continuous bump attractor model— to build a mechanistic understanding of
how increased excitability in the network can explain the effects of NB stimulation in PFC and its
behavioral outcomes in monkeys engaged in a spatial WM task (Qi et al., 2021). We show that bump
attractor models can combine broader neural tuning during the delay and improve overall performance in
the task, provided that neurons undergo firing rate saturation during the dynamics. Behavioral
improvement is due to a reduction in bump diffusion, confirmed in the experiments' behavioral data.
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Finally, we investigate how these ideal attractor-like qualities can emerge in more realistic,
heterogeneous, and asymmetric networks of spiking neurons (discrete bump attractor networks) (Hansel
and Mato, 2013). We find that heterogeneity per se does not alter our conclusions. Still, when
considering network dynamics of strongly recurrent excitatory and inhibitory populations, the cholinergic
activation in such discrete bump attractor networks must include other mechanisms than just enhanced
excitability to reproduce the experimental data, such as reduced network spatial correlations (Thiele et
al., 2012; Chen et al., 2015; Minces et al., 2017).

Materials and Methods
Electrophysiology
The experimental data included here was previously reported (Qi et al., 2021). Two adult male rhesus
monkeys (Macaca mulatta) were implanted with a stimulating electrode targeting the anterior portion of
the NB (Fig. 1A). Intermittent stimulation of the NB was applied for 15 seconds at 80 pulses per second,
followed by approximately 45 seconds with no stimulation (Fig. 1C). The stimulation was applied during
the inter-trial interval of the behavioral task (below). In addition, neural recordings were obtained from
arrays of 1-4 electrodes over areas 8a and 46 of the dorsolateral PFC and were previously reported by
Qi et al. (2021).

Task
Monkeys were trained to perform a variation of the oculomotor delayed response task, where two visual
stimuli appeared in sequence (Fig. 1B). They learned to remember the location of either the first
(Remember 1st) or the second (Remember 2nd) stimulus and make an eye movement to its location
depending on the color of the fixation point (white remember 1st/blue remember 2nd). The task was
distributed in blocks. Remember 1st, blocks include retrospective distractors (monkeys had to remember
the first and ignore the second). Remember 2nd, blocks contained prospective distractors (monkeys had
to ignore the first and remember the second stimulus). Trial blocks included two null conditions in which
either the first or the second stimulus is omitted (Remember 1st/absent 2nd and Remember 2nd/absent
1st).

After a 1s fixation period, the first stimulus was presented for 0.5s. After a 1s delay (delay 1), the second
stimulus was presented for 0.5s. Monkeys had to respond with a saccade after another 1s delay (delay
2). The monkeys were rewarded with juice after reporting the correct location. Gaze deviation beyond the
fixation window led to immediate trial termination without reward.

Each stimulus was displayed at one of eight locations arranged along a circular ring (separated by 45
degrees). The angular distance between the target stimulus and the distractor could be 0, 45, 90, or 180
degrees. Additional details regarding the task structure can be found in the original article (Qi et al.,
2021).

Continuous bump attractor network
Our first model consists of a homogeneous bump attractor network of a single population of rate
neurons, similar to that proposed by (Amari, 1977).

Rate dynamics
The equations that define the evolution of the rates of the neurons in our model are:

(1)τ
𝑑𝑟

𝑖
(𝑡)

𝑑𝑡 =− 𝑟
𝑖
(𝑡) + 𝐹[𝐼

𝑖
𝑟𝑒𝑐(𝑡) + 𝐼

𝑖
𝑓𝑓(𝑡) + 𝐼

𝑖
𝑆𝑡𝑖𝑚(𝑡)]

where we fixed, .τ = 20𝑚𝑠

Except for Figure 2A-C where we consider, a threshold linear transfer function
for (2)𝐹(𝑢) = 0 𝑢 < 0
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for𝐹(𝑢) = 𝑢 𝑢≥0

we will assume that the input/output neural transfer function is a sigmoid-like function that saturates for
large input values:

(3)𝐹(𝑢) = Θ
2 ( 1 + 𝑒𝑟𝑓( 𝑢

𝑢
0

2
) )

where, , is the saturation threshold of the neural activity, and .Θ = 15𝐻𝑧 𝑢
0

= 1𝐻𝑧

Connectivity
The network consists of fully interconnected neurons. Neurons lie on a ring and present𝑁 = 1000
selectivity to stimulus locations ( for ). Neurons with similar preferred locations are moreθ

𝑖
= 2π𝑖

𝑁 𝑖∈[1, 𝑁]

strongly connected than neurons coding for distant locations.

We model this with a connectivity profile that follows a cosine shape,
(4)𝐽

𝑖𝑗
= 1

𝑁 (𝐽
0

+ 2 𝐽
1
 𝑐𝑜𝑠(θ

𝑖
− θ

𝑗
))

In the simulations, we chose: and , therefore all connections are negative.𝐽
0

=− 2. 75 𝐽
1

= 1. 1

In the case of the heterogeneous bump attractor network, we add an extra noisy term to the connections,

(5)Σ
𝑖𝑗

=
σ

ℎ𝑒𝑡𝑒𝑟

𝑁
𝑛

𝑖𝑗

where are random and independently distributed values with zero mean and unit variance.𝑛
𝑖𝑗

Recurrent inputs
The recurrent input to neuron is given by,𝑖

(6)𝐼
𝑖
(𝑡) =

𝑗=1

𝑁

∑ 𝐽
𝑖𝑗

𝑟
𝑗
(𝑡)

Feedforward input
Neurons in the network receive an external input that is a feedforward input with mean, , and temporal𝐼

0

variance, ,η
0

(7)𝐼
𝑖
𝑓𝑓(𝑡) = 𝐴

𝑎𝑡𝑡
(𝑡) 𝐼

0
+ η

0
 ξ

𝑖
(𝑡)

where we introduce an attention switch, , which turns on ( and )𝐴
𝑎𝑡𝑡

(𝑡) 𝐴
𝑎𝑡𝑡

(𝑡 > 𝑡
𝑆1

) = 1 𝐴
𝑎𝑡𝑡

(𝑡 ≤ 𝑡
𝑆1

) = 0

upon stimulus presentation that remains on for the rest of the simulation. In the simulations, we took:
and .𝐼

0
= 10𝐻𝑧 η

0
= 5. 48𝐻𝑧

Stimulus input
During stimulus presentation, neurons receive an additional tuned input,

, (8)𝐼
𝑖
𝑆𝑡𝑖𝑚(𝑡) = 𝐴

𝑆𝑡𝑖𝑚
(1 + σ

𝑆𝑡𝑖𝑚
 𝑐𝑜𝑠(θ

𝑖
− θ

𝑆𝑡𝑖𝑚
)) 𝑆𝑡𝑖𝑚 = 𝑆1, 𝑆2

where is the strength of the stimulus and is the stimulus modulation and the stimulus𝐴
𝑆𝑡𝑖𝑚

σ
𝑠𝑡𝑖𝑚

θ
𝑆𝑡𝑖𝑚

location. In the simulations, we took: .𝐴
𝑆1

= 1. 0𝐻𝑧, σ
𝑆1

= σ
𝑆2

= 1. 0

Moreover, to simulate the effect of distraction in Remember 1st trials, we assume that is drawn from𝐴
𝑆2

a truncated Gaussian distribution with mean and standard deviation , the negative values0. 05𝐻𝑧 0. 75𝐻𝑧
of are set to zero.𝐴

𝑆2
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Tasks
To reflect differences in top-down influences in the specific task blocks, we used different stimulus
parameters to simulate the Remember 1st and Remember 2nd experimental task conditions.
Specifically, the second stimulus was weaker in Remember 1st than in Remember 2nd.

NB stimulation
Since the release of acetylcholine in PFC is thought to result in the depolarization of excitatory pyramidal
neurons through the blockade of hyperpolarizing currents (McCormick and Prince, 1986; Delmas and
Brown, 2005; Gulledge and Stuart, 2005; Carr and Surmeier, 2007; Zhang and Séguéla, 2010), we
modeled NB stimulation as an increase of the constant external input to the excitatory neurons,

. In the simulations, we selected: . With this parametric choice, baseline firing𝐼
0

𝑂𝑁 = 𝐼
0

+ δ𝐼
0

δ𝐼
0

= 20𝐻𝑧

rate went from 4.8 Hz to 10 Hz with NB stimulation (compared with 10.9 Hz to 13.4 Hz in the
experimental data of Qi et al. 2021).

Bump Dynamics
In analyzing the simulation results of the different models, we measure changes in the network selectivity
by referring to the relative amplitude of the bump. We define it as the ratio between the first and zero
moments of the discrete Fourier transform of the rate population vector:

(9)𝐹
0
(𝑡) = 1

𝑁
𝑖=0

𝑁

∑ 𝑟
𝑖
(𝑡)

(10)𝐹
1
(𝑡) = 2

𝑁 |
𝑖=0

𝑁

∑ 𝑟
𝑖
(𝑡) 𝑒

− 2𝑖π
𝑁 |

where |.| is the modulus operator.

Moreover, we compute the center of mass of the bump as:

(11)ψ(𝑡) = 𝑎𝑟𝑐𝑡𝑎𝑛(𝐼𝑚(
𝑖=0

𝑁

∑ 𝑟
𝑖
(𝑡) 𝑒

− 2𝑖π
𝑁 )/𝑅𝑒(

𝑖=0

𝑁

∑ 𝑟
𝑖
(𝑡) 𝑒

− 2𝑖π
𝑁 ))

and we compute population tuning curves by smoothing the population rate vector, with a rolling𝑟
𝑖
(𝑡)

average over nearby neurons.

Model performance
In the attractor rate model, errors in the model can have two components:

1) Distraction and heterogeneities systematically bias the bump center endpoint affecting the
accuracy of the response. By computing the bump center endpoint deviation from S1 averaged
over trials, we can estimate this bias as

(12)𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑏𝑖𝑎𝑠 =< ψ
𝑡𝑟𝑖𝑎𝑙, (𝑆1,𝑆2)

(𝑡
𝑒𝑛𝑑

) − 𝑆1>
𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2)

In the continuous attractor model with no distraction, there are no response biases.
However, in trials with distraction (Fig 5), distraction shifts the response in a distance-dependent
manner. We define a measure for this shift in a signed manner as

(13)𝐷𝑖𝑠𝑡𝑟𝑎𝑐𝑡𝑜𝑟 𝑏𝑖𝑎𝑠 =< 𝑠𝑖𝑔𝑛(θ
𝑆1

− θ
𝑆2

) (ψ
𝑡𝑟𝑖𝑎𝑙, (𝑆1, 𝑆2)

(𝑡
𝑒𝑛𝑑

) − 𝑆1)>
𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2)
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2) The diffusion of the bump on the ring around the location of the stimulus affects the precision of
the response.

By computing the bump center endpoint deviation from its mean over trials,

(12)𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ψ
𝑡𝑟𝑖𝑎𝑙, (𝑆1, 𝑆2)

(𝑡
𝑒𝑛𝑑

) −< ψ
𝑡𝑟𝑖𝑎𝑙, (𝑆1, 𝑆2)

(𝑡
𝑒𝑛𝑑

)>
𝑡𝑟𝑖𝑎𝑙𝑠

we can define the average variance in model responses by

(13)𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =< 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛2>
𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2) 

The average standard error in responses as

(14)𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑆𝑇𝐷 = < 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛2>
𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2) 

and define the diffusivity of the random process as

(15)𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 =< 𝐸𝑛𝑑𝑝𝑜𝑖𝑛𝑡 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛2>
𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2) 

/ (𝑡
𝑒𝑛𝑑

− 𝑡
𝑆1 𝑜𝑓𝑓

 )

Note: in figure 4, we estimate response bias and STD for model responses within 30° of S1.

Quantitative and statistical analysis of saccadic errors
Response bias and variance
In the data, we decompose saccades in a similar manner. For each monkey, we compute a saccade
response bias, , as the deviation of the saccade location, , to the target stimulus averaged over∆θ

𝑖
θ

𝑖

trials with the same stimuli pair,
(16)∆θ = < θ

𝑖
− θ

𝑇𝑎𝑟𝑔𝑒𝑡
>

𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2)

We estimate the saccades response variance by computing the deviation of the saccade to the mean
saccade averaged over trials with the same stimuli pair,

(17)δθ2 =< (θ
𝑖

− < θ
𝑖
>

𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2)
)2>

𝑡𝑟𝑖𝑎𝑙𝑠, (𝑆1, 𝑆2)

Saccade bias and variance were estimated for saccades within 30° of the reported stimulus.

In figure 3E-F, we tested how task conditions affected saccades response variance in a linear model:

δθ2 = β
0

+ β
𝑁𝐵

 𝑋
𝑁𝐵

+ β
𝑡𝑎𝑠𝑘

𝑋
𝑡𝑎𝑠𝑘

+ β
𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

+ β
𝑁𝐵/𝑡𝑎𝑠𝑘

𝑋
𝑁𝐵

 𝑋
𝑡𝑎𝑠𝑘

+ β
𝑁𝐵/𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑁𝐵

 𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

(18)+ β
𝑡𝑎𝑠𝑘/𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑡𝑎𝑠𝑘

𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

+ β
𝑁𝐵/𝑡𝑎𝑠𝑘/𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑁𝐵

 𝑋
𝑡𝑎𝑠𝑘

𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

+ ϵ

where for control or NB stimulated trial, for Remember 1st or Remember 2nd 𝑋
𝑁𝐵

= 0 𝑜𝑟 1  𝑋
𝑡𝑎𝑠𝑘

= 0 𝑜𝑟 1

trial, for each monkey, and is assumed to be a Gaussian random variable. 𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

= 0 𝑜𝑟 1 ϵ

We fitted the model's coefficients with an Ordinary Least Square scheme. We did not find significant
interactions between NB and the monkey factor, so we only included the main factor, “monkey”, in
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subsequent analyses. In the main text, we report the coefficients and p-values of the interaction between
NB stimulation and task ( ).β

𝑁𝐵/𝑡𝑎𝑠𝑘

Distraction bias
In our analysis of the effect of distraction on response accuracy (Fig 4), we tested the dependency of
distractor biases with the absolute distance between S1 and S2 with the following linear model:

𝑠𝑖𝑔𝑛(θ
𝑆1

− θ
𝑆2

) * Δθ = β
0

+ β
𝑁𝐵

 𝑋
𝑁𝐵

+ β
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

(19)+ β
𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

+ β
𝑁𝐵/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑋
𝑁𝐵

 𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

+ ϵ

where and .𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

= 0 𝑓𝑜𝑟 |θ
𝑆1

− θ
𝑆2

| = 45 𝑑𝑒𝑔   𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

= 1 𝑓𝑜𝑟 |θ
𝑆1

− θ
𝑆2

| = 90 𝑜𝑟 180 𝑑𝑒𝑔

Moreover, we tested the dependency of response variance with the distance between stimuli with the
following linear model:

(20)δθ2 = β
0

+ β
𝑁𝐵

 𝑋
𝑁𝐵

+ β
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

+ β
𝑚𝑜𝑛𝑘𝑒𝑦

𝑋
𝑚𝑜𝑛𝑘𝑒𝑦

+ β
𝑁𝐵/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑋
𝑁𝐵

 𝑋
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

+ ϵ

We fitted the coefficients of the model with an Ordinary Least Square scheme. We report in the main text
the coefficient and p-value of the interaction between NB stimulation and distance ( ).β

𝑁𝐵/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Discrete attractor spiking network
Our more realistic spiking model consists of a two-population network of strongly recurrent leaky
integrate-and-fire neurons.

Leaky integrate-and-fire neuronal dynamics
The dynamics of the membrane potential of the i-th neuron in population A, , is given by(𝑖,  𝐴)

(21)𝐶
𝑀
𝐴 𝑑𝑉

𝑖
𝐴(𝑡)

𝑑𝑡 =− 𝑔
𝐿

𝐴(𝑉
𝑖
𝐴(𝑡) − 𝑉

𝐿
𝐴) + (𝑉

𝑡ℎ
− 𝑉

𝑅
) (𝐼

𝑟𝑒𝑐

𝐴𝑖 (𝑡) + 𝐼
𝑓𝑓
𝐴𝑖 (𝑡) + 𝐼

𝑠𝑡𝑖𝑚
𝐴𝑖 (𝑡))

where is the membrane potential, the recurrent input, the feedforward input and𝑉
𝑖
𝐴(𝑡) 𝐼

𝑟𝑒𝑐
𝐴𝑖 (𝑡) 𝐼

𝑓𝑓
𝐴𝑖 (𝑡)

the stimulus input into neuron .𝐼
𝑠𝑡𝑖𝑚
𝐴𝑖 (𝑡) (𝑖,  𝐴)

Reset condition: if at time the membrane potential, , of neuron crosses the threshold,𝑡 𝑉
𝑖
𝐴 (𝑖,  𝐴)

, the neuron fires a spike, and its voltage is reset to its resting potential, .𝑉
𝑖
𝐴(𝑡−) = 𝑉

𝑡ℎ
𝐴 𝑉

𝑖
𝐴(𝑡+) = 𝑉

𝑅
𝐴

In the simulations, we chose: 𝑔
𝐿
𝐸 = 0. 05𝑚𝑆/𝑐𝑚2, 𝑔

𝐿
𝐼 = 0. 1𝑚𝑆/𝑐𝑚2, 𝐶

𝑀
𝐸 = 𝐶

𝑀
𝐼 = 1µ𝐹/𝑐𝑚2,

.𝑉
𝑡ℎ
𝐸 = 𝑉

𝑡ℎ
𝐼 =− 50𝑚𝑉, 𝑉

𝑅
𝐸 = 𝑉

𝑅
𝐼 =− 70𝑚𝑉, 𝑉

𝐿
𝐸 = 𝑉

𝐿
𝐼 = 0𝑚𝑉

Connectivity

The connectivity between population and is a random matrix with probability and 0𝐴 𝐵 𝐶
𝑖𝑗

𝐴𝐵 = 1 𝑃
𝑖𝑗

𝐴𝐵

otherwise. On average, neurons in each population receive inputs from neurons in the presynaptic𝐾
𝐵

population . varies with the difference in preferred location between the neurons (Van Vreeswijk𝐵 𝑃
𝑖𝑗

𝐴𝐵

and Sompolinsky, 2005),
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(22)𝑃
𝑖𝑗

𝐴𝐵 =
𝐾

𝐵

𝑁
𝐵

 [1 + σ
𝐴𝐵

 𝑐𝑜𝑠(θ
𝑖
𝐴 − θ

𝑗
𝐵)]

where determines the spread of the projections from population to population . Here , isσ
𝐴𝐵

𝐵 𝐴 θ
𝑖
𝐴 = 2 π 𝑖

𝑁
𝐴

the preferred location of neuron .(𝑖, 𝐴)

In the simulations, we selected: for the number of neurons,𝑁
𝐸

= 32000,  𝑁
𝐼

= 8000,

for the average number of inputs and for the spread of the projections𝐾
𝐸

= 3200, 𝐾
𝐼

= 800

and we assume I to E slightly less tuned: (Kerlin et al., 2010; Hofer etσ
𝐸𝐸

= σ
𝐼𝐸

= σ
𝐼𝐼

= 1. 0, σ
𝐸𝐼

= 0. 9

al., 2011)

Recurrent inputs
The recurrent input to neuron from its presynaptic neurons in population B is given by(𝑖, 𝐴)

(23)𝐼
𝑟𝑒𝑐

𝐴𝑖(𝑡) =
𝑙={𝐴𝑀𝑃𝐴, 𝑁𝑀𝐷𝐴}

∑
𝐵={𝐸,𝐼}

∑
𝐽

𝐴𝐵
𝑙 𝐾

𝐸

𝐾
𝐵 𝑗=1

𝑁
𝐵

∑ 𝐶
𝑖𝑗

𝐴𝐵 𝑆
𝑗
𝐴𝐵(𝑡)

(24)𝑆
𝑗
𝐴𝐵(𝑡) =

𝑘
∑ 𝑢

𝑘
𝐵𝑗 𝑥

𝑘
𝐵𝑗 𝑓

𝐴𝐵
(𝑡 − 𝑡

𝑘
𝐵𝑗)

where is the time at which neuron has emitted its spike, the sum is over all the spikes𝑡
𝑘

𝐵𝑗 (𝑗, 𝐵) 𝑘𝑡ℎ

emitted by neuron before time .(𝑗, 𝐵) 𝑡

(25)𝑓
𝐴𝐵

(𝑡) = 1
τ

𝐴𝐵
𝑒

− 𝑡
τ

𝐴𝐵 𝐻(𝑡)

where is the synaptic time constant of the interactions between neurons in population and , isτ
𝐴𝐵

𝐵 𝐴 𝐻

the Heaviside step function.

In the model, excitatory neurons form a mixture of fast (AMPA) and slow (NMDA) synapses on other
excitatory cells and inhibitory neurons.

In the simulations, we took: ,τ
𝐸𝐸
𝐴𝑀𝑃𝐴 = τ

𝐼𝐸
𝐴𝑀𝑃𝐴 = 4𝑚𝑠, τ

𝐸𝐼
𝐴𝑀𝑃𝐴 = τ

𝐼𝐼
𝐴𝑀𝑃𝐴 = 2𝑚𝑠, τ

𝐸𝐸
𝑁𝑀𝐷𝐴 = 80𝑚𝑠, τ

𝐼𝐸
𝑁𝑀𝐷𝐴 = 40𝑚𝑠

,𝐽
𝐸𝐸
𝐴𝑀𝑃𝐴 = 4. 20 𝑚𝑆/𝑐𝑚2,  𝐽

𝐸𝐼
𝐴𝑀𝑃𝐴 =− 1. 135 𝑚𝑆/𝑐𝑚2, 𝐽

𝐼𝐸
𝐴𝑀𝑃𝐴 = 6. 25 𝑚𝑆/𝑐𝑚2, 𝐽

𝐼𝐼
𝐴𝑀𝑃𝐴 =− 1. 70 𝑚𝑆/𝑐𝑚2

and .𝐽
𝐸𝐸
𝑁𝑀𝐷𝐴 =  𝐽

𝐸𝐸
𝐴𝑀𝑃𝐴 𝐽

𝐼𝐸
𝑁𝑀𝐷𝐴 =  𝐽

𝐼𝐸
𝐴𝑀𝑃𝐴

Synaptic plasticity

is the amount of synaptic resources available at the synaptic terminals of neuron before the𝑥
𝑘

𝐵𝑗 (𝑗, 𝐵)

spike , and is the fraction of these resources used by this spike. The dynamics of these two𝑡
𝑘

𝐵𝑗 𝑢
𝑘

𝐵𝑗

variables are responsible for the short-term plasticity (STP) experienced by the synapses. We model
them as in (Hansel and Mato, 2013):

(26)𝑢
𝑘+1

𝐵𝑗 = 𝑢
𝑘

𝐵𝑗 𝑒
−

∆𝑡
𝑘

𝐵𝑗

τ
𝑓𝑎𝑐 + 𝑈(1 − 𝑢

𝑘
𝐵𝑗 𝑒

−
∆𝑡

𝑘
𝐵𝑗

τ
𝑓𝑎𝑐 )
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(27)𝑥
𝑘+1

𝐵𝑗 = 𝑥
𝑘

𝐵𝑗 (1 − 𝑢
𝑘+1

𝐵𝑗) 𝑒
−

∆𝑡
𝑘

𝐵𝑗

τ
𝑑𝑒𝑝 + 1 − 𝑒

−
∆𝑡

𝑘
𝐵𝑗

τ
𝑑𝑒𝑝

where is the interspike interval for neuron between spike and .∆𝑡
𝑘
𝐵𝑗 (𝑗, 𝐵) 𝑡

𝑘
𝑡

𝑘−1

In the simulations, we took: and .τ
𝑑𝑒𝑝

= 250𝑚𝑠 τ
𝑓𝑎𝑐

= 600𝑚𝑠

Feedforward input

At each time point, we assume that the feedforward input, , into neuron , is weakly tuned𝐼
𝑓𝑓

𝐴𝑖(𝑡) (𝑖, 𝐴)

with a random phase . This leads to the emergence of spatial correlations in the recurrent layer. We𝑈(𝑡)
model this as

(28)𝐼
𝑓𝑓

𝐴𝑖(𝑡) = 𝐾
𝐸

  [ 𝐽
𝐴0

+
𝐶

𝐴0

𝐾
𝐸

 𝑐𝑜𝑠(θ
𝑖
𝐴 − 𝑈(𝑡))]

where is the strength of the external input, at each time step, is drawn uniformly between and𝐽
𝐴0

𝑈(𝑡) 0

, and controls the strength of the feedforward correlations. In the simulations we choose:2π 𝐶
𝐴0

, , when not mentioned otherwise.𝐽
𝐸0

= 1. 95 𝑚𝑆/𝑐𝑚2, 𝐽
𝐼0

= 1. 675 𝑚𝑆/𝑐𝑚2 𝐶
𝐸0

= 0. 016 𝐶
𝐼0

= 0. 0134

Since correlations in the recurrent input are quite small in strongly recurrent networks (Darshan et al.,
2018), most of the correlations in the net input to a neuron come from the feedforward contribution:

(29)β
𝑓𝑓
𝐴 (Δ) =< ∆𝐼

𝑓𝑓
𝐴𝑖 (θ

𝑖
+ Δ) Δ𝐼

𝑓𝑓
𝐴𝑖 (θ

𝑖
) >

𝑖
= 𝐶

𝐴0
2 𝑐𝑜𝑠(2Δ)

where , is a location on the ring.∆ ∈  [0,  2 π]

Stimulus Input
During stimulus presentation, the excitatory population receives an additional tuned input,

for (30)𝐼
𝑠𝑡𝑖𝑚

𝐸𝑖(𝑡) = 𝐾
𝐸

 𝐴
𝑠𝑡𝑖𝑚

 [ 1 + σ
𝑠𝑡𝑖𝑚

 𝑐𝑜𝑠(θ
𝑖
𝐸 − θ

𝑠𝑡𝑖𝑚
)] 𝑡 ∈ [𝑡

𝑠𝑡𝑖𝑚 𝑂𝑁
,  𝑡

𝑠𝑡𝑖𝑚 𝑂𝐹𝐹
]

otherwise.0

where is the location of the stimulus, is the strength of the stimulus and is the footprint ofθ
𝑠𝑡𝑖𝑚

𝐴
𝑠𝑡𝑖𝑚

 σ
𝑠𝑡𝑖𝑚

the stimulus. The inhibitory population receives no stimulus.

In the simulation, we took and .𝐴
𝑠𝑡𝑖𝑚

= 0. 1 𝑚𝑆/𝑐𝑚2  σ
𝑠𝑡𝑖𝑚

= 1

Bump Dynamics and model responses
We compute bump amplitude, center, diffusitivity and endpoint deviations in the same way we did for the
rate model.

NB stimulation
We model NB stimulation’s main effect as an increase of the mean feedforward input to the excitatory

neurons, . In Figure 7, we also consider the cases where, in addition to an increase in𝐽
𝐸0

𝑂𝑁 = 𝐽
𝐸0

+ δ𝐽
𝐸0

feedforward input: 1) excitatory synaptic strength, increase; 2) inhibitory presynaptic𝐽
𝐴𝐸

 ,  ∀ 𝐴 ∈ 𝐸, 𝐼

strength, decrease; 3) the modulation of the spatial feedforward correlations to the E𝐽
𝐴𝐼

 ,  ∀ 𝐴 ∈ 𝐸, 𝐼

neurons, decreases.𝐶
𝐸0
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Results

Figure 1. A rate model to reconcile cholinergic modulation of behavior and neural tuning in an
ODR task. A. Visuospatial WM task with distraction (Qi et al., 2021). B. Performance of the monkeys in control and
NB-stimulated trials. Performance was measured as percent of trials with responses within 7º visual angle of the
target stimulus. C. Prefrontal neuron location selectivity in the delay period (adapted from Qi et al., 2021). Blue:
control trials. Orange: NB-Stimulated trials. Dots: data. Lines: fits. D. Network scheme. The network consists of a

population of 1000 rate units with tuned connections. E. Activity vs. neurons vs. time, left: NB OFF ( )𝐼
0

𝑂𝐹𝐹 = 10𝐻𝑧

condition, right: NB ON condition ( , simulates increased excitability induced by NB stimulation).𝐼
𝑂

𝑂𝑁 = 𝐼
0

𝑂𝐹𝐹 + 20𝐻𝑧

After 1s in baseline activity, neurons receive a tuned stimulus, S1, and a nonspecific attention signal is switched on.
The activity becomes structured into a bump. The bump is only slightly perturbed by a second weak stimulus, S2,
so the bump maintains a location around S1. Triangles show the locations of the stimuli.

Homogenous, continuous attractor models
We used numerical simulations to investigate the network mechanisms underlying the reported
cholinergic neuromodulation of prefrontal activity in a visuospatial WM task (Qi et al., 2021). In this task
(Fig 1A), monkeys were trained to saccade to the location of one of two sequentially presented visual
cues following a delay period. In alternating blocks of trials, the color of the fixation dot signaled to the
monkey whether a reward would be given for an accurate saccade to the remembered location of the
first target S1 (Remember 1st trial) or the second target S2 (Remember 2nd trial). Here, we used a
computational approach to reconcile evidence collected during the distractor condition (Remember 1st,
Qi et al., 2021). Monkeys showed a general increase in performance in this task following NB
stimulation, except for trials when S2 appeared close to S1, where NB stimulation impaired performance
(Fig 1B). This general increase in performance by NB stimulation was mirrored at the neural level by
erosion of PFC neural tuning to the stimulus (Fig 1C). We developed a simple continuous bump attractor
rate model to understand the conditions for this modulation of neuronal tuning by NB stimulation (Fig 1D)
(Amari, 1977; Ben-Yishai et al., 1997; Itskov et al., 2011). In the model, following the presentation of a
location-tuned stimulus (S1, S2), the network maintains information about the stimulus' spatial location
through a localized and persistent increase in activity (Fig 1E) (Wilson and Cowan, 1972; Compte et al.,
2000). We model distraction with a second stimulus weaker than the first on average but varies strongly
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from trial to trial (see Material and Methods), which simulates variable attentional filtering mechanisms
occurring in upstream areas. In the model, the network goes from an unstructured low-activity state to a
selective high-activity state after stimulus presentation. This is because the network has different stable
attractors before and after stimulus presentation, which is achieved by an untuned attentional input to all
neurons (marked as “Attention” in Fig 1E) (Itskov et al., 2011). In addition, we modeled NB stimulation
(Fig 1E, right panel) as a non-specific increase in the excitability of the excitatory neurons in the circuit
through slight up-regulation of feedforward inputs to the network.

Figure 2. Rate saturation accounts for the broadening tuning following NB stimulation. A. Non-saturating I/O
function. B. Relative bump amplitude (i.e., the ratio of Fourier modes F1/F0 of the population rate vector, see
methods) vs. the strength of the feedforward (FF) input. Tuning sharpens with stronger FF inputs. C. Population
tuning curve for NB ON and NB OFF conditions (matching colors in B). D. Saturating I/O function (saturation occurs
at ). E. Relative bump amplitude vs. FF input. Tuning broadens with stronger FF input values. F. Population15𝐻𝑧
tuning curve for NB ON and NB OFF conditions (matching colors in E).

Figure 2 depicts the relationship between the feedforward input and the network’s tuning in the bump
state for two neuronal input/output (I/O) functions. When the neuronal I/O function is non-saturating (Fig
2A), the network's tuning increases monotonically with the input (Fig 2B). Figure 2C plots the population
tuning curves for two values of the feedforward input. As the input increases, neurons at the center of the
bump increase activity, inhibiting neurons on the edge and sharpening tuning. This appears qualitatively
inconsistent with the observation that NB stimulation (modeled here by an increase in feedforward input)
results in broader PFC tuning (Qi et al., 2021). However, tuning becomes nonmonotonic in the
feedforward input when the neuronal I/O function saturates (Fig 2D). It decreases with the external drive
for sufficiently large inputs (Fig 2E). Figure 2F plots the network's population tuning curves for two
simulated conditions: NB OFF and NB ON. NB ON differs from NB OFF by an increase in the strength of
the feedforward input that simulates the cholinergic activation. As the neurons at the center of the bump
reach saturation, neurons on the edges increase their activity, and the tuning broadens. Therefore, the
saturated continuous bump attractor model can display population responses qualitatively similar to the
neural responses observed in PFC following NB stimulation (Qi et al., 2021).

To better understand the network mechanisms underlying the balance between enhanced cognitive
function and reduced tuning under neuromodulation, we analyzed the behavior generated by our model
in repeated network simulations. Specifically, we investigated how changes in network excitability,
modeled through changes in the strength of the feedforward input, affected network performance. In the
bump attractor model, errors can arise from the diffusion of the bump's center. This can occur due to
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stochastic fluctuations in the net inputs into the neurons that change randomly and might shift the bump's
center of mass. We assessed the relationship between feedforward input strength and the diffusion of
the bump's location from 1000 simulations with different stochastic noise realizations (Fig 3A). In the
bump attractor model with saturation, we found that the diffusivity of the bump decreases in an
intermediate range of feedforward inputs (Fig 3B). Figure 3C shows the distributions of bump centers
around the presented targets at the end of the simulated trials. The bump center distribution narrows for
larger feedforward inputs, indicating more precise storage of the target’s location and better network
performance. These findings are consistent with the general improvement in behavioral performance
following NB stimulation (Qi et al., 2021). This shows how, in a bump attractor model of this spatial WM
task, reduced neural tuning (Fig 2F) can be associated with improved performance (Fig 3C), provided
neurons have saturating responses. Increased performance is explained by a reduction of bump
diffusion upon network depolarization. For low feedforward inputs, neuronal responses are not
saturating, and the increase in network performance occurs parallel to neural tuning enhancement (Fig.
3B).

Figure 3. A diffusion process underlies NB stimulation-induced improved performance. A. Bump center vs.
time for 50 network initializations (for a cue presented at 0 degrees). The bump center follows a random walk. B.
Diffusivity vs. FF input. Diffusion decreases for strong enough FF inputs. Shaded area: bootstrapped 95%
confidence intervals. Grey line, relative bump amplitude (see Materials and Methods). C. Distributions of bump
centers endpoint location for two different values of the FF input (for 1000 initial conditions). Lines are kernel
density estimates. D. Two sources of errors in the experimental data: response bias and response variance. E-F.
Distributions of saccades (i.e., mean corrected saccadic endpoint, see Materials and Methods) in Remember 1st
and Remember 2nd trials in the data. NB stimulation leads to a sharper distribution of endpoints (see regression
analysis, Materials and Methods). Line are Gaussian fits. Blue: control. Orange: NB stimulated trial.

This insight from the computational model led us to examine whether the improvement in the behavioral
performance of the monkeys after NB stimulation (Qi et al., 2021) could be attributed to a reduction in
diffusive errors, i.e., an increase in memory precision. To test this hypothesis, we analyzed saccadic
endpoint distributions in control and NB-stimulated trials in the behavioral data of (Qi et al., 2021). In the
dataset, responses exhibit two distinct sources of errors (Fig 3D). The first, the “response bias,” is a
characteristic offset between the mean response to a fixed target stimulus and this target, and it
quantifies the memory accuracy. The second, the “response variance,” measures memory precision
computed as the dispersion of the reported locations around the mean response. The continuous bump
attractor model predicted that this response variance should be reduced following NB stimulation. Figure
3E-F shows the distribution of response variance in control and NB-stimulated trials, i.e., saccadic
endpoints corrected from response biases. Remarkably, we found that the distribution of these corrected
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reported locations was significantly sharper in NB-stimulated than in control trials for both Remember 1st
and Remember 2nd trials (corrected saccades: standard deviations and for6. 09 ± 0. 27° 5. 0 ± 0. 23°

control and NB stimulation in Remember 1st, Levene’s test , ;𝐹 = 44. 75 𝑝 = 2. 68 10−11 7. 31 ± 0. 35°

and for Remember 2nd, Levene’s test , , errors are 95%5. 49 ± 0. 28° 𝐹 = 68. 18 𝑝 = 2. 38 10−16

confidence intervals; regression analysis of squared corrected saccade: , ,β
𝑁𝐵

=− 12. 2 𝑑𝑒𝑔2 𝑝 = 0. 0005

, , see Materials and Methods). This suggests that a reduction inβ
𝑁𝐵/𝑇𝑎𝑠𝑘

=− 12. 4  𝑑𝑒𝑔2 𝑝 = 0. 014

diffusive errors could explain the observed improvement in task performance. Our model explains the
counterintuitive performance enhancement seen in the behavioral data: reduced neuronal selectivity can
still be associated with improved performance if a reduced bump diffusion characterizes network
dynamics during the delay period. Our simulations show this is a reasonable condition in bump attractor
network models (Fig 2F and 3C).

Figure 4. Distraction effect on response variance is distance dependent. A. Distraction by S2 shifts model
responses (Distraction Bias). B. Distraction bias vs. absolute distance between S1 and S2. C. Response standard
deviation (STD), computed as the square root of the response variance, vs. absolute distance between S1 and S2.
Blue: NB OFF condition ( ). Orange: NB ON condition ( ). D. Distractor shifts responses in the𝐼

0
= 10𝐻𝑧 𝐼

0
= 30𝐻𝑧

task. E. Distraction bias vs. absolute distance between S1 and S2 in Remember 1st trials in the data. F. Same but
for response STD. Error bars 95% bootstrapped confidence interval. Orange dots are shifted on the x-axis for
visibility.

Next, we investigated if our model could explain how performance modulation by NB stimulation
depended on how far S2 was presented from S1 (Fig. 1B; Qi et al., 2021). In our network simulations, we
tested the effect of distractor proximity on bump dynamics (Fig 4A-C). Distractors have been reported to
attract memory bumps toward their locations (Herwig et al., 2010; Almeida et al., 2015; Lorenc et al.,
2018). We found a similar attractive effect in the simulations. Still, these distractor biases did not differ in
NB OFF and NB OFF trials (Fig 4B). Moreover, we found that distraction also affected bump diffusion. In
particular, nearby distractors ( ) increased response variance compared to far distractors ( ,± 45° ± 90

degrees). This was particularly accentuated in NB ON trials (Fig 4C). This pattern was also± 180
reflected in the saccadic responses of monkeys. Firstly, distractors biased the distribution of saccadic
errors in control and NB-stimulated trials similarly (Fig 4E, regression analysis, , p=0.357, β

𝑁𝐵
=− 0. 54°

see Materials and Methods). Secondly, close distractors ( ) increased response variance similarly± 45°
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for NB-stimulated and control trials, with comparable bias in both conditions (Fig 4F, regression analysis,

, , see Materials and Methods). Finally, response variance was significantlyβ
𝑁𝐵

=− 2. 66 𝑑𝑒𝑔2 𝑝 = 0. 723

lower in NB-stimulated trials than in control trials for far distractors ( 90, 180 degrees, Fig 4F,± ±

regression analysis, , , see Materials and Methods). This suggestsβ
𝑁𝐵/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

=− 23. 10 𝑑𝑒𝑔2 𝑝 = 0. 011

that a specific reduction in bump diffusion in distant distractor conditions underlies improved task
performance following NB stimulation.

Figure 5. Heterogeneities impair bump diffusion. A. Diffusivity vs. heterogeneity strength (averaged over 8 cues
and 25 initial conditions per cue and 100 network realizations). B. Bump center vs. time in the homogeneous (left
panel) and heterogeneous (right panel) bump attractor network (for 8 cues and 10 initial conditions per cue for one
network realization). C. Diffusivity (averaged over 8 cues and 250 initial conditions per cue, blue) and bump
amplitude (black) vs. FF input in the heterogeneous network model (averaged over 8 cues and 125 initial conditions
per cue and one network realization, , see Materials and Methods). D. Population tuning curve for NBσ

ℎ𝑒𝑡𝑒𝑟
= 0. 25

ON and NB OFF (matching colors in C). E. Bump endpoint deviation (i.e., mean corrected endpoint) for NB ON and
NB OFF. Lines: kernel density estimates. Error bands 95% confidence intervals.

Inhomogeneous attractor models
Having shown that the findings of (Qi et al., 2021) are compatible with a simple continuous attractor
network model formulation, we wondered about the generality of our results in more realistic network
realizations. There are theoretical arguments to expect possible differences. It has been shown that
bump diffusivity in an attractor network depends directly on the noise magnitude and the spatial
correlations of the inputs and inversely on bump strength (Kilpatrick and Ermentrout, 2013; Krishnan et
al., 2018). In the continuous bump attractor network model with neural saturation, NB stimulation
modeled as an increase in cellular excitability does not significantly affect the magnitude of noisy
fluctuations because recurrent currents in all-to-all, homogeneous networks contribute little noise
compared with external inputs. Thus, the primary effect of depolarization in this network is increased
bump size, which promotes inertia against diffusion (Kilpatrick and Ermentrout, 2013; Krishnan et al.,
2018). However, increased excitability in more realistic network implementations where neurons are
connected inhomogeneously to their neighbors may result in changes in the properties of noisy inputs or
in distortions of the attractor landscape (Tsodyks and Sejnowski, 1995; Zhang, 1996; Seung et al., 2000;
Renart et al., 2003; Itskov et al., 2011; Kilpatrick and Ermentrout, 2013; Kilpatrick et al., 2013), and
induce qualitatively different memory diffusion properties.

Indeed, Figure 5 shows how structural heterogeneities impact the diffusion of the bump. Diffusivity
decreases markedly with heterogeneity in the network connectivity (Fig 5A) (Kilpatrick and Ermentrout,
2013; Kilpatrick et al., 2013). Figure 5B left (resp. right) plots the time course of the bump’s center for
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different network initializations of the homogeneous (resp. heterogeneous) bump attractor network.
Strong heterogeneities modify the diffusion properties of the bump. This is because, in the presence of
heterogeneity, the network undergoes symmetry breaking: the attractor goes from continuous to discrete
with only a few stable fixed-point locations (Fig 5B right) (Zhang, 1996). At the fixed point, the bump
diffuses weakly in a small basin of attraction instead of being free to diffuse on the entire ring attractor.
Nevertheless, even in the presence of strong heterogeneity, tuning and diffusivity of the bump are
nonmonotonic, with changes with the feedforward input (Fig 5C-E) qualitatively similar to the
homogeneous attractor model, albeit much weaker for the case of diffusivity.

Figure 6: Enhanced excitability weakens network tuning but weakly impacts bump diffusion in spiking
attractor networks. A. Network scheme. Spiking EI network with tuned connections (ring model) and facilitating
E-to-E synapses. Neurons receive a weakly tuned FF input with a random phase at each time step to induce spatial
correlations. B. Local average firing rate vs. time vs. preferred location for one trial in the NB OFF condition. C.
Population activity center of mass in 30 simulations for 8 different cue locations. D. Diffusivity (blue) and tuning
amplitude (black) vs. FF Input at time t=5 s in the simulations of panel C (averaged over 8 cues and 60 random
initializations per cue). E. Population tuning curves averaged over trials at the end of the delay period (tuning
curves were recentered before averaging). Increased excitability leads to weaker tuning in the NB ON condition. F.
Endpoint deviations (mean corrected endpoint). Colors match dots in D. Lines are kernel density estimates. Error
bands 95% confidence intervals.

The marked impact that connection heterogeneities have on memory diffusion made us consider how
more realistic networks might respond to changes in excitability. In these networks, the conditions to
observe lower memory diffusion following increased excitability may depend on the specific biophysical
mechanisms that help maintain a quasi-continuous attractor dynamical regime (Stein et al., 2021). We
investigated these mechanisms in a biologically realistic model of spiking neurons. The model consists of
two populations - excitatory (E) and inhibitory (I) - of strongly recurrent leaky integrate-and-fire neurons
with tuned connections (Van Vreeswijk and Sompolinsky, 2005). We assumed that the
excitatory-to-excitatory synapses facilitate (Markram et al., 1998; Tsodyks et al., 1998). Facilitation has
been shown to promote persistent activity states with highly heterogeneous neural activity (Mongillo et
al., 2012; Hansel and Mato, 2013). The network exhibits multistability with an unstructured baseline and
structured persistent states (Fig 6B). Additionally, short-term synaptic facilitation has been shown to
significantly improve the robustness of WM by slowing down the drift of bump activity in heterogeneous
networks (Itskov et al., 2011; Hansel and Mato, 2013). In our current context, we reasoned that
short-term plasticity might serve as a potential synaptic saturation mechanism to regulate network
activity and tuning in responses to changes in excitability, such as those induced by NB stimulation.
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Figure 7: Cholinergic synaptic neuromodulation impacts bump tuning and diffusion, while cholinergic
input decorrelation decreases bump diffusion. A-D Top, Population tuning curves (averaged over 8 cues after
recentering, with 20 trials per cue) at the end of the delay period. Bottom, Endpoint deviation (mean corrected

endpoint). Blue: NB OFF condition ( ). Orange: NB ON condition ( ). The NB𝐽
𝐸0

= 1. 95 𝑚𝑆 𝑐𝑚−2 𝐽
𝐸0

= 2. 24 𝑚𝑆 𝑐𝑚−2

ON condition has additional modulations in B-D: in B and are doubled; in C and are decreased by𝐽
𝐸𝐸

𝐽
𝐼𝐸

𝐽
𝐸𝐼

𝐽
𝐼𝐼

20%; in D FF correlation modulation, , is divided by half. Inset, response Std in the two conditions. Error bars𝐶
𝐸0

are 95% bootstrapped confidence intervals.

In a strongly recurrent framework, the network dynamically evolves into a state where strong excitation is
balanced by strong inhibition such that the net input into the neurons is comparable to their thresholds
(van Vreeswijk and Sompolinsky, 1996, 1998). Neurons exhibit temporally irregular spiking patterns and
heterogeneous firing rates and tuning. However, diffusion in the bump state is particularly weak, as
previously observed in sparsely coupled spiking networks (Hansel and Mato, 2013; Stein et al., 2021)
and consistent with the effect of heterogeneity in rate-model networks (Fig 5; Kilpatrick et al. 2013;
Kilpatrick and Ermentrout 2013). To recover a sizable amount of diffusion, we assumed that the network
receives spatially correlated feedforward inputs that simulate inputs from other areas (Fig 6A). As a
result of these correlated inputs, the network exhibited weak spatiotemporal activity patterns during
baseline activity, and self-sustained bumps in the network showed pronounced memory diffusion,
consistent with experimental observations (Wimmer et al., 2014; Stein et al., 2020).

We performed extensive simulations to investigate how parameters affect the model’s dynamics. Figure
6B shows population activity through a single simulated trial for parameters for which the network is
multistable: The network goes from an unstructured low rate baseline state to a structured high rate
bump state after stimulus presentation. In the bump state, bumps exhibit little drift and diffuse around the
cue's location (Fig 6C). For short simulations (5s in our case), the network exhibits transient tuning in the
low rate state (Fig 6C). We investigated how network excitability affected the bump tuning and the bump
diffusion in this network by systematically varying the strength of feedforward tonic inputs onto excitatory
neurons (Fig 6D). Bump tuning and diffusivity changed with excitability in a qualitatively similar way as
observed in the simpler continuous attractor rate model (Fig 3B). Short-term plasticity is the saturation
mechanism leading the spiking model to nonmonotonic bump width and diffusion in a range of FF inputs.
However, diffusivity varied only weakly in the bump state of the network, even when tuning changed
significantly. As a result, also for this more biophysically detailed network model we observed a
broadening of population tuning curves upon increasing network excitability (Fig 6D), but this was not
accompanied by a significant difference in the distributions of bump center endpoint locations corrected
for response biases (Fig 6E). This is consistent with the sharp reduction in endogenously generated
bump diffusion caused by network heterogeneity (Fig 5). In realistic EI networks, the mere depolarization
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of the circuit is unable to reproduce the increased memory precision that would explain task performance
improvements upon NB stimulation, which may thus depend on additional cholinergic effects in the
circuit.

Modeling cholinergic neuromodulation solely as an increase in excitatory neuron excitability neglects
important impacts of acetylcholine release in cortex. Indeed, acetylcholine has been reported to
intricately affect multiple cortical mechanisms (Picciotto et al., 2012; Thiele et al., 2012; Minces et al.,
2017; Colangelo et al., 2019). We selected a set of specific mechanisms with particular prevalence in the
neocortex to test our network model. In particular, in addition to the cellular depolarization of pyramidal
neurons that we modeled so far (McCormick and Prince, 1986; Haj-Dahmane and Andrade, 1996),
acetylcholine modulates cortical function through: 1) increased synaptic excitatory transmission (Nuñez
et al., 2012; Fernández de Sevilla et al., 2021); 2) Reduced GABA release (Salgado et al., 2007; Nuñez
et al., 2012); and 3) reduced neuronal correlations (Thiele et al., 2012; Minces et al., 2017).

Therefore, we investigated how, in addition to a change in excitability, changes in synaptic strength or
correlations impacted tuning and diffusion in the spiking network model (Fig 7). In the model, increasing
excitatory synaptic strength (to both excitatory and inhibitory neurons) did not affect bump tuning but
instead significantly reduced bump diffusion (Fig 7B, inset). The reduction of inhibitory synaptic strengths
had instead the opposite effect, enhancing bump diffusion (Fig 7C, inset). Finally, reducing spatial
correlations in the FF input in the NB ON condition led to comparable tuning and a marked reduction in
bump diffusion (Fig 7D, inset). We conclude that the interplay between strengthened excitatory synaptic
transmission, diminished neuronal correlations, and increased neuronal excitability, reflect the cholinergic
modulations responsible for Qi et al.’s neural and behavioral observations following NB stimulation
(Figure 3E-F).

Our simulations, thus, support the association between reduced neuronal tuning and improved memory
precision based on attractor dynamics, which is the basis of our interpretations in the bump attractor
model simulations. In addition, the model proposes a role for the cholinergic reduction of neuronal
correlations in achieving behavioral improvements in WM.

In summary, bump attractor dynamics in inhomogeneous ring networks with short-term plasticity, which
effectively causes saturation in recurrent inputs, naturally explain the contrasting effects of NB
stimulation on monkey behavioral and neural responses: response variance is generally reduced, while
neural tuning broadens.

Discussion

Here, we show how bump attractor models can reconcile the dynamics of PFC neurons and the behavior
of monkeys performing a visuospatial WM task under cholinergic neuromodulation (Qi et al., 2021). We
explain how behavior correlates with PFC neural data: cholinergic neuromodulation of PFC reduces
neural tuning while reducing bump diffusion, thus enhancing decoding precision and behavioral
performance in the task. We found that network depolarization can lead to broader tuning and reduced
diffusion in bump attractor models with cellular or synaptic saturation, which can be enhanced by other
synaptic and population effects associated with acetylcholine. Our results provide a mechanistic
understanding of how elevated prefrontal excitability, possibly combined with other cholinergic
mechanisms, impacts spatial WM through changes in bump attractor dynamics in PFC. Our model
interpretation is strengthened by the match with the specific distractor condition dependencies observed
by (Qi et al., 2021). NB stimulation improved or impaired WM depending on the distance between the
target and the distractor. Our model associates impairments in nearby distractor filtering with a
broadening of the bump activity that is not counteracted by reduced bump diffusion upon network
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depolarization. Conversely, increased performance for distant distractors results from robust reductions
in bump attractor diffusion.

Nonmonotonic cholinergic neuromodulation of prefrontal neurons
The effects of acetylcholine on neuronal activity have been investigated in non-human primates with
micro-iontophoresis and systemic drug administration. Cholinergic agonists generally increase the
activity of prefrontal neurons (Yang et al., 2013; Sun et al., 2017; Dasilva et al., 2019). Conversely,
systemic administration of the muscarinic antagonist scopolamine reduces prefrontal activity (Zhou et al.,
2011), as does micro-iontophoresis of muscarinic and nicotinic-α7 inhibitors (Yang et al., 2013; Major et
al., 2015; Galvin et al., 2020b). However, the increase in activity by agonists is selective for the preferred
location of the neuron so that tuning is enhanced, in contrast to the effect of NB stimulation observed by
(Qi et al., 2021). This discrepancy may be resolved by noting that the sharpening of prefrontal neurons’
tuning takes place with low doses of cholinergic agonists, while high doses of carbachol or M1R
allosteric inhibitors lead to broader tuning in WM tasks (Major et al., 2018; Vijayraghavan et al., 2018;
Galvin et al., 2020b). The continuous bump attractor model provides a mechanistic explanation for this
nonmonotonic relationship between neural tuning and cholinergic modulation. Figure 2E shows that
progressive depolarization of the network initially renders neural tuning sharper but then makes it
progressively broader when neurons start engaging the saturating part of their input-output function.
Under this framework, intrinsic cholinergic neuromodulation through the stimulation of NB represents a
strong release of acetylcholine that mimics the effect of high-dose agonists. A direct empirical exploration
of the nonmonotonic dependence predicted by our model could be achieved with graded activation of
NB, possibly using optogenetic approaches.

Cholinergic neuromodulation of prefrontal circuits and performance
The decrease in selectivity by cholinergic overstimulation (Major et al., 2018; Vijayraghavan et al., 2018;
Galvin et al., 2020b) has been assumed to correspond to the descending section of an inverted-U
function, representing a regime over which cholinergic agonists would impair performance (Galvin et al.,
2020a). This interpretation is based on robust behavioral results with drugs targeting the dopamine
system, showing parallel inverted-U dose-response of dopaminergic drugs at the behavioral and neural
levels (Arnsten, 2011). However, the behavioral impact of cholinergic drugs needs to be clarified.
Available evidence from the manipulation of intrinsic acetylcholine release suggests that WM
performance may depend monotonically on acetylcholine prefrontal concentration: prefrontal cholinergic
input depletion leads to selective WM impairment (Croxson et al., 2011), while electrical stimulation of
NB leads to WM performance enhancement (Blake et al., 2017; Liu et al., 2017; Qi et al., 2021). Our
network model is consistent with this apparent monotonic relationship. Still, it predicts that a finer
sampling of cholinergic modulation of prefrontal circuits should reveal a nonmonotonic component in the
behavioral dose-response curve (Fig 3B). Notably, our network simulations in Figure 3B show that the
nonmonotonic dose-response relationships for neural tuning and behavior are not aligned in their
maximum/minimum, thus breaking the intuition that neural tuning maps directly to behavioral
performance.

Relationship between neural tuning and behavioral performance
Sharper tuning is typically associated with increased performance. This is particularly clear for conditions
in which decoding precise stimulus information is essential, as in discrimination tasks after perceptual
learning (Li et al., 2004; Yang and Maunsell, 2004a; Raiguel et al., 2006a; Sanayei et al., 2018a).
Theoretical studies have shown, however, that broader tuning curves can produce either worse or better
performance depending on the task and noise conditions in the network (Pouget et al., 1999; Zhang and
Sejnowski, 1999a; Butts and Goldman, 2006; Ma et al., 2006a). For conditions in which stimuli are highly
discriminable, and performance depends on the ability to filter distractors or other intervening noise
during a memory period, our modeling shows that broader prefrontal tuning can be associated with better
memory performance. The connection between reduced neural tuning and increased WM precision
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depends on specific network implementations and may not generalize to other behavioral readouts in
WM tasks. Indeed, previous studies have investigated how improved selectivity can lead to better
performance in WM tasks (Yang and Maunsell, 2004b; Compte and Wang, 2005; Raiguel et al., 2006b;
Busse et al., 2008; Sanayei et al., 2018b). A network far from saturation shows this tendency. Optimizing
mechanisms to increase signal durability during delays may occur at the cost of accuracy, and a
stability-accuracy tradeoff may determine performance in a task. Unlike the effects of perceptual
learning, learning to perform a WM task also induces a broadening of neural selectivity (Qi et al., 2011;
Qi and Constantinidis, 2013).

Based on our model, we propose that NB stimulation leads to reduced bump diffusion in PFC, resulting
in a more precise neural code at the end of the delay. This could be tested with large population
recordings in PFC during this task. We predict contrasting results of decoders trained on the activity of
simultaneously recorded neurons compared to decoders trained on the activity of pseudo-populations of
neurons. Decoders trained on pseudo-populations of neurons pooled from different sessions would show
reduced accuracy after NB stimulation, likely reflecting the broadening of neural tuning. In contrast,
decoding from a true population of simultaneously recorded neurons should show higher accuracy in
NB-stimulated trials due to lower levels of correlated noise within the population.

Circuit mechanisms controlling memory diffusion and neural tuning
Weaker tuning in our continuous attractor network framework can lead to better performance when it is
concomitant with a reduction of the noisy diffusion of the memory traces (Pouget et al., 1999; Zhang and
Sejnowski, 1999b; Butts and Goldman, 2006; Ma et al., 2006b; Stein et al., 2021). How these two
components are integrated into attractor dynamics depends on specific network implementations. We
explored here several different network implementations, which have been extensively studied in the
literature in relation to the formation of bump attractors in rate models (Amari 1977, Wilson Cowan 1972)
and in spiking models (Compte et al 2000; Hansel and Mato 2013), diffusion of the bump (Zhang 1996;
Kilpatrick and Ermentrout 2013; Compte et al 2000; Wimmer et al 2014; Krishnan et al. 2018), sensitivity
to distractors (Compte et al 2000), or the impact of heterogeneities (Hansel and Mato, 2013; Kilpatrick
and Ermentrout 2013; Kilpatrick et al 2013; Seeholzer et al). We specifically asked how neural excitability
jointly affects bump diffusion and tuning in these models. In idealized homogeneous networks, the mere
depolarization of the network close to saturation provides both broader tunings and reduced diffusion; in
heterogeneous networks, however, additional mechanisms are required to observe a significantly
reduced bump diffusion. Our modeling identifies a reduction in spatial correlations as one possible
additional mechanism. Indeed, changes in neuronal correlations significantly impact the diffusion of
bump attractors (Kilpatrick and Ermentrout, 2013), and bump diffusion is a determinant of behavioral
imprecisions in these tasks (Wimmer et al., 2014). A role for modulation of neuronal correlations in our
data is plausible since cholinergic activation is known to reduce neuronal correlations in multiple brain
areas (Thiele et al., 2012; Minces et al., 2017). Furthermore, a reduction in correlated variability between
neurons has been linked to increased attention (Cohen and Maunsell, 2009; Mitchell et al., 2009; Herrero
et al., 2013), typically associated with improved cognitive performance.

We do not view our modeling approach as a commitment to a specific mechanistic basis for
neuromodulating neuronal correlations. Previous computational work has explored the effect of
feedforward excitation on correlations in recurrent E-I networks (Rosenbaum et al., 2017), showing that
fluctuations in the feedforward inputs can drive correlated activity. Here, we implemented a similar
mechanism but did not explore in depth the possible role of recurrent dynamics on the neuromodulation
of neural correlations. Indeed, (Darshan et al., 2018) have shown that recurrent structural motifs can
generate collective network activity. How specific pathways of neuromodulation might impact correlations
induced by recurrent circuitry remains an open question.

A methodological approach to identifying mechanisms of behavioral alterations
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The challenge of relating cellular or synaptic mechanism modulations with changes in cognitive function
using biological neural network models has been pointed out before (Stein et al., 2021). To constrain
network models, obtaining neural-level information about how the considered cellular changes affect
neural circuits implicated in the behavioral readout is crucial. We applied this approach by constraining
our models with neural tuning curves obtained with and without NB stimulation and testing their
behavioral predictions. This has allowed us to identify a role for neural saturation dynamics, excitatory
synaptic transmission, and neural co-variability in determining cholinergic WM improvements. This
approach is necessary to advance toward a circuit-level understanding of how alterations in
neuromodulators and receptors underlie cognitive dysfunctions, so efforts must be put into generating
relevant neural-level data upon hypothesized cellular and synaptic perturbations.

In sum, we show that the bump attractor model can provide a causal link between PFC electrophysiology
and the complex pattern of behavioral improvement and impairment in WM caused by endogenous
acetylcholine release. The relevant mechanisms in these network models are cholinergic cellular
depolarization, cholinergic excitatory synaptic enhancement, neuronal saturation, and cholinergic
reduction of input correlations. Our evidence supports that attractor dynamics in PFC are under the
neuromodulatory control of cholinergic centers to improve cognitive performance in WM.
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