Array Analysis of Simian Varicella Virus Gene Transcription in Productively Infected Cells in Tissue Culture

Steven B. Deitch,¹ Donald H. Gilden,^{1,2} Mary Wellish,¹ John Smith,¹ Randall J. Cohrs,^{1*} and Ravi Mahalingam¹

Departments of Neurology¹ and Microbiology,² University of Colorado Health Sciences Center, Denver, Colorado 80262

Received 11 November 2004/Accepted 21 December 2004

Simian varicella virus (SVV) is a neurotropic alphaherpesvirus of monkeys that is a model for varicella pathogenesis and latency. Like human varicella-zoster virus (VZV), SVV causes chicken pox (varicella), becomes latent in ganglia along the entire neuraxis, and reactivates to produce shingles (zoster). We developed macroarrays to determine the extent of viral transcription from all 70 predicted SVV open reading frames (ORFs) in infected cells in tissue culture. Cloned fragments (200 to 400 bp) from the 5' and 3' ends of each ORF were PCR amplified, quantitated, spotted onto nylon membranes, and fixed by UV cross-linking. Using a cDNA probe prepared from $poly(A)^+$ RNA extracted from SVV-infected Vero cells at the height of the cytopathic effect (3 days after infection) and chemiluminescence for detection, transcripts corresponding to all SVV ORFs were identified. The abundance of each SVV transcript was compared with that previously demonstrated for VZV in infected tissue culture cells.

Natural infection of humans with varicella-zoster virus (VZV) or monkeys with simian varicella virus (SVV) causes chicken pox (varicella) in their natural hosts. Both viruses spontaneously reactivate years later to produce zoster (shingles). Like VZV, SVV becomes latent in cranial nerve and dorsal root ganglia along the entire neuraxis exclusively in ganglionic neurons (5). The mechanisms of varicella reactivation are not known, although in humans the incidence of zoster correlates with a decline in cell-mediated immunity to VZV during aging and immunosuppression. The cascade of events leading to varicella reactivation cannot be determined in living humans, but it is possible to study ganglia from latently infected monkeys.

Transcriptional analysis applied to ganglia will provide valuable information about SVV gene expression during latency but must first be standardized and quantified in productively infected cells. In tissue culture, SVV and VZV are highly cell associated and do not grow to high titers, and synchronous infection is not possible. Nevertheless, even with unsynchronized infection, a uniform cytopathic effect can readily be demonstrated 72 h after cocultivation of uninfected cells with VZV-infected cells in tissue culture. Our earlier studies which used macroarrays to study VZV gene expression in tissue culture (3) revealed that the optimal time for analysis was at the height of the cytopathic effect (3 days after infection). Thus, we focused our efforts on this single time point and conducted triplicate independent analyses with SVV. SVV macroarrays were constructed, and chemiluminescence was used to detect and quantitate viral transcription from every SVV open reading frame (ORF) in SVV-infected cells in tissue culture.

MATERIALS AND METHODS

Virus and cells. SVV was propagated by cocultivation of infected and uninfected Vero (African green monkey kidney) cells. SVV-infected cells were scraped, washed, and centrifuged at $1,000 \times g$ for 5 min. Cell pellets were immediately frozen in liquid nitrogen and stored at -80° C.

DNA extraction and labeling. SVV nucleocapsids were prepared and DNA was extracted as described previously (1). Virus DNA was digested with restriction enzymes BamHI, BgIII, EcoRI, and NcoI. The integrity of SVV DNA was determined by agarose gel electrophoresis. Restriction enzyme-digested SVV DNA (1 μ g in 16 μ l of double-distilled water) was labeled with digoxigenin using the DIG High Prime DNA labeling and detection starter kit II (Roche Applied Science, Mannheim, Germany).

RNA extraction and PCR. Total RNA was extracted from SVV-infected cells using the RNeasy Midi kit (QIAGEN, Valencia, Calif.). Poly(A)⁺ SVV mRNA was purified using a mRNA purification kit (Amersham Biosciences, Bucking-hamshire, England), treated with 1 U/ μ g of RQ1 RNase-free DNase (Promega, Madison, Wis.) at 37°C for 30 min, and determined to be DNA free by PCR. All PCRs were performed as described previously (6).

Reverse transcription and cDNA labeling. Poly(A)+ SVV mRNA (2 µg) was mixed with 2 µg of oligo(dT) and 0.3 µg of random primers (Invitrogen, Carlsbad, Calif.), and the mixture (39.6 µl) was heated to 65°C for 5 min. The reaction temperature was decreased to 43°C over 10 min, after which 12 μ l of 5× avian myeloblastosis virus buffer (Promega) and 1.4 µl of avian myeloblastosis virus reverse transcriptase (high concentration) (600 U) (Promega), 6 µl of PCR nucleotide mix (Roche Applied Science), and 1 µl of 10-mg/ml bovine serum albumin were added. After incubation at 43°C for 130 min, the mixture was heated to 95°C for 5 min. Four tubes containing 2 µg each of SVV mRNA in 60 µl were reverse transcribed to yield a total of 8 µg of SVV cDNA/RNA hybrid. The SVV cDNA/RNA hybrid was treated with 1 μ l each of RNase H (1.5 U/ μ l) (Promega) and RNase-ONE RNase (10 U/µl) (Promega) at 65°C for 30 min to digest the RNA strand, extracted with phenol-chloroform, and alcohol precipitated. Single-stranded SVV cDNA was labeled with digoxigenin using the DIG High Prime DNA labeling and detection starter kit II (Roche). Unincorporated nucleotides were removed by phenol and chloroform extraction and alcohol precipitation.

Cloning of SVV DNA fragments. SVV DNA fragments (200 to 600 bp) from the 5' and 3' ends of each ORF were PCR amplified with forward primers (5'-TTTTCCTTTA<u>GCGGCCGC</u>-SVV DNA-3' [NotI]) and reverse primers (5'-AGGTTCAATTG<u>GAGCTC</u>-SVV DNA-3' [SstI]). A 284-bp DNA fragment was also amplified from pGEM3zf⁻ using forward primers (5'-TTTTCCTTA <u>GCGGCCGCGGCGCTTCTCATAGCTCAC-3'</u> [NotI]) and reverse primers (5'-AGGTTCAATTG<u>GAGCTC</u>CGTCTCGCGTCTCATGGTTT-3' [SstI]). Table 1 lists the primer sequences and their location on the SVV genome (4) of

^{*} Corresponding author. Mailing address: Department of Neurology, Mail Stop B182, 4200 E. 9th Avenue, Denver, CO 80262. Phone: (303) 315-8745. Fax: (303) 315-8720. E-mail: randall.cohrs@uchsc.edu.

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC% ^e
$A-1F^f$ $A-1R^g$	1029 1232	TGCAATATCTTCCGTGATG GCGGCAAAGTTTTAATGACA	1048 1213	204	47.10
A-2F A-2R	1570 1746	TCGGTAAACACCCTCCACA ACGAGTCCACTGCACAACAC	1588 1765	177	42.90
BF BR	2396 2582	CCCATCACTTACAACGCAGA GGGACACAATAACGCACACA	2415 2575	187	44.90
1F 1R	2733 2924	AGCGCCTATTACTGGGACTT CCGTGTTCCCAACAGAAACT	2752 2904	192	38.00
3F 3R	3590 3791	AATGGGAATTCGGATGGTTT	3609 3772	202	42.60
4-1F 4-1R	4269 4470	ACACCGGCCTTACAAGATCC	4288	202	40.60
4-2F 4-2P	5269 5473	TCTCAAAATTAGGCTGCGTG	5288 5454	205	45.90
5-1F	5663	GGCTTACTTGGACTCGTTG	5681	192	41.10
5-1R 5-2F	5854 6527	CCGGAGCCGTAGCATATACA	5835 6546	124	35.00
5-2R 6-1F	6650 6697	GCGCTGGGAATTAAAACAGA ACCGCGTGTTCCATTAGGTAA	6631 6717	164	38.40
6-1R	6860	CACATCGAGGAGGAAGAACG	6841	100	
6-2F 6-2R	9449 9856	TCTGCGTGTATGGCAAATGT AAGCTGTGCCGTTTCGTACT	9468 9837	408	38.70
7F 7R	10025 10443	CGCCTACAGGAAGCATTAG AGCATGGCATTTACACCACA	10043 10424	419	42.50
8-1F 8-1R	11067 11345	AACACTTTGGTTGCGGTGTT TATGATGTGTGTGCCCCATT	11086 11326	279	35.10
8-2F 8-2R	11675 11956	TGTACCCGGAATCAATCACA TTTTGCTGGATGTTGGAATG	11694 11937	282	43.30
9AF 9AR	12050 12279	GCTCTTTGGAATTGTTCATG GGATCGAGTAAATAACCGGAAA	12069 12259	230 230	43.00
9-1F 9-1R	12512 12803	TGTACCACGAAGAAGCGTTG TATCATGCGAGGTTGTGCAT	12531 12784	292	41.40
9-2F 9-2R	12926 13207	TCCAACACCGGCATATAACA GGCTCATCATCCGTGTCTTT	12945 13188	282	46.50
10-1F 10-1R	13641 13950	GGAACACAACGCAGGTTCAT	13660 13931	310	37.40
10-2F 10-2R	14417 14722	ATTATCGCCGCAGACAACTT	14436 14703	306	43.80
10-2R 11-1F	15094	ATTAGCATCCCCAGCAACAG	15113	262	43.50
11-1R 11-2F	16714 16779	ATTACTGCCACCAGCCCTTT	15556 16733	266	41.40
11-2R 12-1F	16979	CAATCAATCCCAACAATTTCA CAAACCGGAAAAATGTAATGG	16959 17208	272	41.50
12-1R	17459	TTGTCCGTTGACATACACGA	17478	200	10.50
12-2F 12-2R	18774 19042	CGCAGGTTAAAGCAGCCT TGCCAGAGCTATCAAGCAAA	18791 19061	269	43.50
13-1F 13-1R	19329 19603	AACAGATCGAACCGGAACTG TCAGCTCCAAAATGTCTCCA	19348 19622	275	37.80
13-2F 13-2R	19729 20030	GCCTGGAACGCTAAAGATGT ATGCGAAGAGTTGGGAATTG	19748 20011	302	39.40

TABLE 1. SVV oligonucleotide primers used in macroarray

Continued on facing page

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC%e
14-1F 14-1R	20317 20552	ACGTTGATGCTGATGAGGAC TGTTTAGCCAGTTGTGTTCCT	20336 20572	236	41.10
14-2F 14-2R	21451 21761	GGGTTGTTTGGGTGTGAAA AACGCCGCAGTTACATCAA	21469 21743	311	58.50
15-1F 15-1R	22074 22386	AAACCACACATGCTCCCATT GCCGGTGTTTTGGTTATGTT	22093 22367	313	31.00
15-2F 15-2R	22932 23192	ACTGTTGCCCTGAAGTCCA CGGCAAAATGTGTTCCTTGT	22950 23173	261	31.00
16-1F 16-1R	23429	ATCTGCTCCGATTCCACATT	23448 23714	305	39.30
16-2F	24155	GGATACGCATTTCGGTGAA	24173	290	40.30
16-2R 17-1F	24444	CATGGGGCTCTTTGGACTT	24423 24793	293	38.90
17-1R 17-2F	25067 25763	GATTTACAACCCGGTGACCTT	25048 25783	334	40.10
17-2R 18-1F	26096 26238	GGAGTGGGGGGGGGGAGCAAGTAA TGGTGTGTTTTTCCGCTGT	26078 26256	291	38.10
18-1R 18-2F	26528 26757	TCCATACAAGTGCTTCTTGCTG	26508 26777	319	32.60
10-21 18-2R	27075	CTGGAATGCCCGGATATAAA	27056	249	20.20
19-1F 19-1R	27166 27413	TTAAACGCTCGTCATCCTCT	27183 27394	248	38.30
19-2F 19-2R	29165 29465	AACACTGAATCGCTCTCCTCA AGCTACAGCCCGTCAAACA	29185 29447	301	39.20
20-1F 20-1R	29749 30049	ACGTTCCATTTTTCGTGCA GTTTTTATTGGGCCGCATTC	29767 30030	301	44.20
20-2F 20-2R	30711 31013	CATCTGGACGACATAAATCTGTT CGAACGTAATGTTAATGGGAGA	30731 30992	303	32.70
21-1F 21-1R	31272 31577	CCCAACCGTGGATATTATGG TTTTGTGTGCAATGCGATTC	31291 31558	306	36.90
21-2F 21-2R	34044 34312	CGACAGAACATCTACCCCAGA TCATAAGCCATCTTTGTTCGATT	34064 34290	269	37.20
22-1F 22-1R	34664 34950	CCCAACCGTGGATATTATGG TTTTGTGTGCAATGCGATTC	34684 34290	287	37.30
22-2F 22-2R	42223 42499	ACATAACAAGGCAATCTCACG GGTAACGTCTGCGTTCAACA	42243 42480	277	48.40
23-1F 23-1R	43184 43482	TTACACCCGCCGACTACTTC AACAACCACCCCCTTCAAA	43203 43464	299	49.80
23-2F 23-2R	43588 43848	TTGGTCGAAGCCATGTCA GAGCGCATTTTGATCCATCT	43605 43829	261	44.40
24-1F 24-1R	43973 44247	CCCCAAAGTAACGGCAGA CAGAAGATCCAACCCGTACA	43990 44228	275	38.20
24-2F 24-2R	44252	CATGAAACGAAAAGCAAGTTGT ATTGGGCAGAATGCGTATGT	44273	284	38.00
25F 25P	45020	GGACGAAAAACGATCCGTAA	45039	306	37.30
26-1F 26-1P	45306	TGGTTGTCAGATGCGTTTTC	45325	371	36.40
26-2F 26-2R	45070 46667 46949	TTGCGATCCTTTTTGTGCT GGTATGTTCGAGGGAGACCA	45558 46685 46930	283	42.00

Continued on following page

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC% ^e	
27-1F 27-1R	46927 47183	CACTGGTCTCCCTCGAACA TCAAATGGAAGCGTTACAGG	46945 47164	257	40.90	
27-2F 27-2R	47601 47822	CATTTTAGCCGCATGTAGGG CGAGGAGGAACAAAGTCGTC	47620 47803	222	36.90	
28-1F 28-1R	47758 48070	GATGGGGAATTGCTTCTTGA GTGTATGCTGCTGGACATGG	47777 48051	313	35.80	
28-2F 28-2R	51039 51246	TCATATTCACGTCCATCGTAGT TGGCTAACAGAACAGATTTTTG	51060 51267	208	34.60	
29-1F 29-1R	51477 51743	AACTGGCCCTTTGGGTTAC CCACCGTGAAATACAAATGC	51504 51724	267	39.30	
29-2F 29-2R	54792 55034	TTCTGATGCCGTTTTAGAAGC ACCATATCCATTGTAAGGCTCA	54812 55013	243	38.70	
30-1F 30-1R	55184 55384	CCTTTCAAATGGAACTCCTACG GCCTCTGCTTCGTATTGAAGA	55204 55364	201	36.30	
30-2F 30-2R	57135 57384	TTTCATTGTGGAGAGGTTGCT GAACAAGCCGCTGAATTAGA	57155 57365	250	38.80	
31-1F 31-1R	57270 57579	CCCCTGATTGCAGTATTACACA GATTCGTGGAGAGCCTTTCT	57291 57560	310	38.40	
31-2F 31-2R	59732 59980	GCTGATGGTGTCGATCCTTT ACGTGATTTACCCCGGTTCT	59751 59961	249	39.00	
32F 32R	60192 60496	CTACAACCGCTGCATTGACA CCAGTCTTCTTCTGGCGTGT	60211 60477	305	45.90	
33-1F 33-1R	60647 60942	TACATTCGGCCACACATCA CGGCAGGAAATAAGTGAGTTG	60665 60922	296	44.60	
33-2F 33-2R	62098 62384	CACGTAAAGCAGACGCTCAG TAGCGGGTTATTTGGCGTT	62117 62366	287	41.80	
33.5F 33.5R	61209 61507	TACCCCTATCAGCAGCCAAC GGCCGCTAGTGTTACAAACG	61228 61498	299	42.10	
34-1F 34-1R	62445 62699	ACGCCACAGAGGTAAACTGG TTATGCGGCTTATCGCTCTT	62464 62680	255	38.00	
34-2F 34-2R	63921 64087	GCGGCTTTAATCTACGCTCA TCCTTCGTACTGGACGGAAC	63940 64068	167	43.70	
35-1F 35-1R	64279 64504	AAGCCCTCCGAAGTACGTTT CTTACGTGGTAATGCGGTTG	64298 64485	226	39.80	
35-2F 35-2R	64690 64987	AGATGTAAACCGACACGATTTT TCTCCAGAAGCGTTTTCGAC	64711 64968	298	30.20	
36-1F 36-1R	65036 65261	TGCAGAGATCCGGTTTGTATT GTGCGTCGTTATCGGAGATT	65056 65242	226	44.20	
36-2F 36-2R	65759 66019	GAAAACCCAGTAATTGAAAACACA CGAATCGGACATTTCTTGTAAA	65782 65998	261	38.30	
37-1F 37-1R	66243 66551	ACGCTACACAGAAACCATG GCGAGGCGGAGATTTAAGTT	66261 66532	309	38.50	
37-2F 37-2R	68528 68757	CGCTTTTAACCCAGACGTTC CCAAAGGGACAGCGGTATATT	68547 68737	230	40.40	
38-1F 38-1R	68827 69028	GTGTGCGGGGGATTTAATGT TTATATGCCGGGGGAAAGTTG	68845 69009	202	36.60	
38-2F 38-2R	70098 70337	CCGCATAAATCACGTTCGTT TTTTATTTGCGGGGGGTTGT	70117 70319	240	43.30	
39-1F 39-1R	70719 71001	GAAAAACGAAGAGTCGGGTTC TGCAAGACGAAAGTAGTGGA	70739 70982	283	32.90	

Continued on facing page

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC% ^e
39-2F 39-2R	71047 71346	CCACTATCCACATCACAGCAG CCTCATTAAAGCCCGTACCC	71067 71327	300	35.70
40-1F 40-1R	71591 71862	AAACCGCCTTTCCAGCTT CACCATCACGAACATATCC	71608 71844	272	38.60
40-2F 40-2R	75479 75720	AGAATCTCGTGCGGTTTGTT CAGACAGACAACCCCGTATG	75498 75701	242	44.20
41-1F 41-1R	75870 76111	GCCCAACGAAACGTCTAAC AAAGTCCAGGGGCGTTAAA	75888 76093	242	43.00
41-2F 41-2R	76402 76701	GCCAACGCCGTAAATATGTC AATTGCCTTTGTTCCCAATG	76421 76682	300	40.70
42/45-1F 42/45-1R	76854 77159	AGATGTTTCCATCCCTCCAA	76873 77142	306	37.60
43-1F 43 1P	78085	AACGATACAACAAGAGGCATGA	78106	269	39.00
43-2F	79693	CCGTGTTGGTTGGGAAATAG	79712	335	39.40
43-2R 44-1F	80262 80262	TCTGCGCGAATACTAACACC	80281 80402	249	41.60
44-1R 44-2F 44-2R	80958 81255	CCCAATCACACAGAAAGCTG	80492 80977 81237	297	43.00
42/45-2F 42/45-2R	82118 82419	TTTTACCCGTTCCATCCTTG TGGTAATAAGGTAGGCGAGCA	82137 82399	302	38.40
46-1F 46-1R	82543 82814	GCACCACGCAACTTTCAA TTTTCGTATGGTTGTTTGTTCC	82560 82793	272	42.30
46-2F 46-2R	82841 83118	AGCGCCAAACTTCGTAGAAC TGTTTGTCATCGCGTTTTTTC	82860 83099	278	46.40
47-1F 47-1R	83026 83311	CTCCACCAACCCAAAACACT CCTTGATAACTGCGATATTCTAAACA	83045 83286	286	39.50
47-2F 47-2R	84193 84493	GGACACACTGGCATATCGTG CCAGCTTGGATTTTGCCA	84212 84476	301	43.20
48-1F 48-1R	84475 84760	ATGGCAAAATCCAAGCTG TGAATAGTTCTTTGCAGGCTGA	84492 84739	286	34.30
48-2F 48-2R	85686 85971	CAATCCACGCCACCTAAACT GCGTGCCTCGTTTTCAATT	85705 85953	286	40.60
49F 49R	86005 86154	TGGGTCAAACAACATCTACTGG GATTACCAGCCTCGTTGGTC	86026 86135	150	43.30
50-1F 50-1R	86395 86694	TTATCACGCGGAAGATTTG AGCTGCTCATGCGTATATGG	86413 86675	300	38.00
50-2F 50-2R	87348 87655	TGCCCCATATCCTTTATTTCC TGTTCGTGTCTTCGACGTTT	87368 87636	308	42.20
51-1F 51-1R	87692 87911	GCGTTATATGGAGCCGATTT AAACTTCGTCGGCAAGACAC	87711 87930	220	45.50
51-2F 51-2R	89747 90039	CGTTTAGTGTGGGAACAGCTT AACATTGGCAACTGGGTGTT	89767 90015	293	33.40
52-1F 52-1R	90271 90534	GGTTGTATTTGTGCGGCTAGT ACGCCACATATCGCAGTTG	90291 90552	264	44.30
52-2F 52-2R	92204 92463	GTACACCCGACGGAGCTTT TGGAGTTTCAACATCAAAGTCA	92222 92484	260	40.40
53-1F 53-1R	92684 92916	CGCTTCTTAGAGGTGCGTTC TACGTTAATGCGGCTTGTTG	92703 92896	233	40.30

Continued on following page

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC% ^e	
53-2F 53-2R	93204 93495	CGGCTGTTGTTGACATTGTT CGTCCAAATACCAAGCGTTC	93223 93476	292	38.70	
54-1F 54-1R	93432 93749	TTCCGCTCGCACTAAGAGA TGGAGGCGTATTTGACACAA	93450 93730	318	36.80	
54-2F 54-2R	95295 95582	TCAATAACACGGTTGCCTGA GCAAAAGTACCGATGTGCAA	95314 95563	288	40.60	
55-1F 55-1R	95749 95974	CGAACTTGCCTCGGAAACT GTTTTGTGCCGCAATTCTG	95767 95956	226	42.50	
55-2F 55-2R	97968 98232	ACGACGCAGAGCTTACAATG GGATCTCGTAGCGCCTCTAA	97987 98213	265	41.90	
56-1F 56-1R	98334 98557	TTGGTGTTCGCCTCTAACAA AATCTGTCATCCCATCCAATG	98353 98537	224	37.90	
56-2F 56-2R	98627 98820	TCGTTCCCTTTGAAAATTGG TTGTCGTAAACGTGGCTCCT	98646 98801	194	37.60	
57F 57R	98955 99108	GCGTGCGCTGTGTTGTTC GAGCGAAACAATGTGCGTTT	98972 99089	154	44.80	
58-1F 58-1R	99137 99386	TGTTCCAGATGTTAGCAGTTC AATCAAAAAGCCGGAAGCT	99158 99368	250	40.80	
58A-2F 58A-2R	99490 99708	ATTGTCTTCTGCCCGGTTC TACAGTGGGGTTGGGGGAGAA	99508 99689	219	38.40	
59-1F 59-1R	99778 100088	ATGGGTTCTCCTCGTTTCAA GATAATTGGGCTCGACAAGG	99797 100069	311	41.80	
59-2F 59-2R	100331 100626	CCCGCTGTCTGTATTGTTCA TGTGTTTGAGCGAAAAAGGA	100350 100607	296	38.90	
60-1F 60-1R	100611 100822	TTTTCGCTCAAACACAGAC CACATGGCGTATTGGGTAAA	100629 100803	212	43.90	
60-2F 60-2R	100907 101070	TACCGAAGGCGCTGAGTATT TGGAAGGACATAGGTTTGTTTT	100926 101091	164	29.30	
61-1F 61-1R	102303 102577	AATGCGAGCAATACCCTGTT GTAGACGCCCAGGTAGACCA	102322 102558	275	48.40	
61-2F 61-2R	103502 103704	TCTGTAATGGTGCATCTTCGTT CTCCGGTCTCGGTAAAACCT	103523 103685	203	45.80	
62-1F 62-1R	104647 104943	GACGAGGACATCCACTCCAT CGAGGATGACGGTGAAGG	104666 104926	297	72.10	
62-2F 62-2R	108129 108411	GGCCAAATCCACCAAAGAA TCCCAGTGCATTAGAGCTGA	108148 108392	283	50.90	
63-1F 63-1R	109853 110130	CCCCGAGATGAAATGAC CGGCCCATTAAGTAAAAATCA	109869 110110	278	51.80	
63-2F 63-2R	110331 110579	ATGACGACCAATCAACCACA TATGCTCTACCGAGGCGTTG	110350 110560	249	48.20	
64-1F 64-1R	110853 111123	GGATTTATACAGGGCCGAAC CACGGCAGGGAAGGATATT	110872 111105	271	57.60	
64-2F 64-2R	111131 111388	CAACACTGGCGGTTCTCC CGTGTTTTATGTTGCGGTCT	111148 111369	258	51.60	
65F 65R	111723 111932	AAACCAAAAATGTAACACGCTTT ATAGTGAGGCCGTAGCGTTG	111745 111913	210	38.10	
66-1F 66-1R	112442 112692	TACGATATGCTTGCGGATG CGTATGATTACCGGGTGGTT	112460 112673	251	45.00	
66-2F 66-2R	113169 113409	CTGGAGTTCATCCCAGTGAA GGATATGGGTCCGGTATATCA	113188 113389	241	43.20	

Continued on facing page

ORF (orientation)	5' location ^a	Sequence ^b	3' location ^c	Size ^d	GC% ^e	
67-1F	113730	CGCGGCAATTATTTATAGGG	113749	247	38.50	
67-1R	113976	ACCAGTGCGAATACGTGGA	113958			
67-2F	114449	CCGCAGATGTATTTATGATTG	114469	241	41.10	
67-2R	114689	TGTGGAGGGTTTTCCTCTTG	114670			
68-1F	114977	TCTGCGGAACACTATCATGG	114996	289	37.40	
68-1R	115265	TTGTTTCCATCTCCCAATTCTT	115244			
68-2F	116437	CCATCATCGCCCAATGTTAC	116456	262	47.70	
68-2R	116698	CGCCTTCGTCTACCTCAACT	116679			

TABLE 1—Continued

^a 5' location of primer.

^b Sequence of primer.

^c 3' location of primer.

^d Size of amplified fragment (bp).

^e Molar G+C content of amplified fragment.

^f Forward primer (F) with the sequence TTTTCCTTTAGCGGCCGC containing NotI (GCGGCCGC) attached at the 5' end of each of the SVV sequences.

^g Reverse primer (R) with the sequence AGGTTCAATTGGAGCTC containing SstI (GAGCTC) attached at the 3' end of each of the SVV sequences.

oligonucleotide primers for all SVV ORFs, as well as the G+C content of each amplified segment. Computer analysis of DNA sequences was performed using DNAMax (MiraiBio, Inc., Alameda, Calif.). PCR products were digested with NotI and SstI and inserted directionally in the multiple cloning sites of pGEM11zF (Promega). The concentrations of all recombinant plasmids were determined by absorbance at 260 nm and diluted to 30 ng/µl. The cloned SVV or pGEM3zf⁻-specific inserts were amplified using vector-specific primers (GEMF [5'-CCCAGTCACGACGTTGTAAA-SVV DNA-3'] and GEMR [5'-T CACAAGGAAACAGCTATG-SVV DNA-3']). The closed segment of pGEM3zf⁻ and no DNA were used as negative controls. Actin, a positive control for cellular transcription, was amplified as described previously (2).

Array construction. SVV DNA fragments and positive and negative controls were amplified, quantitated, spotted (40 ng/4 μ l) onto a 200-cm² neutral BioBond nylon membrane (Sigma-Aldrich, St. Louis, Mo.) and fixed by UV cross-linking twice at 125 mJ using the GS gene linker (Bio-Rad, Hercules, Calif.).

Hybridization and detection. The UV-fixed target SVV DNA fragments were prehybridized in a hybridization oven (Boekel Scientific, Feasterville, Pa.) for 3 h at 42°C in 35 ml of Digoxigenin Easy hybridization solution (Roche Applied Science) in glass cylinders (35 by 300 mm) (VWR Scientific Products, Brisbane, Calif.). Digoxigenin-labeled DNA (2 µg) or cDNA (8 µg) was denatured at 95°C for 10 min and quenched on ice for 5 min. The prehybridization solution was replaced with 20 ml of fresh hybridization solution containing probe and hybridized for 48 to 72 h at 42°C. The nylon membrane was washed in 35 ml of 0.1× SSC (1× SSC is 0.15 M NaCl plus 0.015 M sodium citrate) and 0.1% sodium dodecyl sulfate at room temperature (three times for 5 min each and twice for 15 min each) and then in 90 ml of washing buffer (100 mM maleic acid, 150 mM NaCl) for 5 min at room temperature. The membrane was then placed in 30 ml of blocking solution (3 ml of 10× blocking solution [DIG High Prime DNA labeling and detection starter kit II; Roche Applied Science] with 27 ml of maleic acid buffer [0.1 M maleic acid, 0.15 M sodium chloride]) for 2 h at room temperature. The membranes were treated using one of the following two methods. (i) The membranes were incubated in 28 ml of alkaline phosphatase-conjugated antidigoxigenin Fab fragments (2.8 ml of blocking solution, 25.2 ml of maleic acid buffer, 1.4 µl of antidigoxigenin antibodies [1:20,000]; Roche Applied Science) for 1 h at room temperature, washed at room temperature with 140 ml of blocking solution (14 ml of $10 \times$ blocking solution with 126 ml of maleic acid buffer) three times for 8 min each time, and washed at room temperature with 140 ml of washing buffer (99.62 mM Tris-HCl, 99.25 mM NaCl, pH 9.5) twice for 8 min. (ii) The membranes were incubated with 40 ml of peroxidase-conjugated antidigoxigenin poly-Fab fragments (4 ml of blocking solution, 36 ml of 100 mM Tris-HCl, pH 7.5, 150 mM NaCl, 120 µl of antidigoxigenin antibodies [1:333]; Roche Applied Science) for 2 h at room temperature and washed by the washing protocol described above. Chemiluminescence detection was performed twice using two different preparations of mRNA with the CDP-Star detection reagent (New England BioLabs, Beverly, Mass.) and once using another independent preparation of mRNA with the ECL Western Blotting Detection Reagents and Analysis System (Amersham Bioscience, Piscataway, N.J.). Hybridization signals were detected using Kodak Biomax Light film. Uninfected Vero cells were treated by identical protocols.

FIG. 1. Specificity of SVV arrays. The arrays contain target DNA fragments from the 5' and 3' ends of each of the 70 predicted SVV ORFs. Fragments corresponding to each SVV ORF were quantitated, spotted onto a nylon membrane, and fixed as described in Materials and Methods. Arrays were hybridized to digoxigenin-labeled DNA from uninfected (A) and SVV-infected Vero cells (B) and to digoxigenin-labeled cDNA probes prepared from poly(A)⁺ RNA extracted from uninfected (C) or SVV-infected Vero cells 3 days after infection (D). Signals were detected using antidigoxigenin antibodies conjugated to horseradish peroxidase and detected by chemiluminescence. Table 2 lists the location (column and row) of the 70 SVV DNA ORF targets. Each array contained two sets of three controls: array B contained actin (column 11, rows 1 and 9), pGEM (column 11, rows 2 and 10), and no DNA (column 11, rows 3 and 11). Arrays A, C, and D contained actin (column 11, rows 2 and 10), pGEM (column 11, rows 1 and 9), and no DNA (column 11, rows 3 and 11).

ORF Regior		Loc: a	ation on rray ^a	Relative	SD^c	Order ^d	order ^d ORF Region	Loca	Location on array ^a Relati		b SD ^c O	Order ^d		
	C	Row	Column	expression						Row	Column	expression		
A	3'	1	1	50.0	9.8	45	35		5'	7	8	34.4	12.6	87
A	5'	1	2	44.9	8.0	48	36		5'	7	9	35.8	12.8	96
B 1	All	1	3	48.1	12.0	50 27	36		3'	7	10	36.2	11.2	81
3		1	4	40.9	2.0 7.4	43	3/		2'	8	1	43.0 71.2	4.4	88 51
4	3'	1	6	60.0	1.5	11	38		3'	8	3	50.6	15.2	67
4	5'	1	7	60.7	12.8	17	38		5'	8	4	40.0	2.2	92
5	3'	1	8	48.3	10.8	37	39		5'	8	5	49.2	11.7	64
5	5'	1	9	39.6	5.0	70	39		3'	8	6	49.2	10.9	49
6	3' 5'	1	10	36.9 52.1	3.9 12.8	112	40		5'	8	7	44.6	6.2	84
7	All	2	2	55.6	7.1	34	40		3'	8	8	44.4	12.2	60
8	3'	2	3	55.5	5.5	19	41		5' 2'	8	9 10	68.5 70.0	3.8 14.0	30 18
8	5'	2	4	64.4	9.8	16	42.45		3'	9	10	53.0	91	76
9A	All	2	5	58.9	5.9	25	42.45		5'	9	2	36.4	3.6	122
0	3'	2	07	95.5 100.0	20.1	2 1	43		5'	9	3	44.0	6.3	108
10	5' 5'	2	8	44.4	3.5	38	43		3'	9	4	42.2	5.7	85
10	3'	2	9	42.8	7.1	54	44		5'	9	5	49.9	11.3	74
11	5'	2	10	48.9	3.7	42	44		3'	9	6	64.2	8.6	26
11	3'	3	1	91.1	23.5	4	40		3'	9	8	50.1 43.4	10.1	52 103
12	5' 2'	3	2	34.1	8.4	94 40	40		5 5'	9	9	46.1	9.1	83
12	5 5'	3	4	56.7	7.1	22	47		3'	9	10	53.3	5.7	61
13	3'	3	5	57.1	2.0	15	48		5'	10	1	43.9	12.2	111
14	3'	3	6	48.1	3.8	35	48		3'	10	2	67.5	15.0	59
14	5'	3	7	51.5	0.7	30	49		All	10	3	70.9	20.1	53
15	3'	3	8	68.0 46.4	1.4	22	50		3'	10	4	81.8	18.3	12
16	3'	3	10	34.7	8.3	98	51		5 5'	10	5	75.5 41 3	15.0	14
16	5'	4	1	33.5	6.4	75	52		3'	10	9	51.5	4.4	56
17	5'	4	2	28.2	5.5	110	53		3'	10	10	53.5	10.0	79
17	3'	4	3	39.2	3.0	55	53		5'	11	1	43.2	13.8	113
18	5'	4	4	49.6 50.2	2.0	33 20	54		3'	11	2	40.1	11.1	126
19	3'	4	6	49.5	3.1	39	54		5'	11	3	37.3	6.4	120
19	5'	4	7	37.0	5.3	91	55		2 2'	11	4	32.7 47.1	8.3 16.5	123
20	3'	4	8	50.5	10.2	41	56		5 5'	11	6	41.3	11.5	117
20	5'	4	9	34.4	12.4	102	56		3'	11	7	46.3	5.9	66
21	5' 3'	4	10	33.3 30.7	12.2	68	57		All	11	8	67.8	9.6	46
22	5 5'	5	2	29.8	7.9	106	58		3'	11	9	72.4	8.2	24
22	3'	5	3	32.3	3.5	86	58		5'	11	10	46.5	8.1	93
23	3'	5	4	94.6	26.2	3	59		3' 5'	12	1	59.3	22.4	125
23	5'	5	5	78.0	9.4	5	60		3'	12	3	45.0	14.9	123
24	3' 5'	5	6 7	54.5 57.0	3.9	21	60		5'	12	4	36.3	9.9	120
25	All	5	8	33.4	11.0	109	61		3'	13	1	66.8	22.0	72
26	5'	5	9	32.1	11.6	115	61		5'	13	2	45.9	19.6	127
26	3'	5	10	37.2	15.0	82	62		3'	13	3	28.3	16.8	129
27	5'	6	1	40.3	8.3	101	62		5'	13	4	42.1	11.6	121
27	3'	6	2	48.5 57.4	8.2 7.4	58 20	63		3'	13	5	91.1	32.1	10
28	5 5'	6	4	31.6	1.5	29 97	64		5 5'	13	7	93.4 54.0	14.1	80
29	5'	6	5	42.0	6.4	78	64		3'	13	8	57.9	12.9	71
29	3'	6	6	54.2	4.4	31	65		All	13	9	30.5	6.2	118
30	5'	6	7	37.8	7.1	104	66		5'	13	10	42.1	1.8	63
30	3'	6	8	37.8	13.1	107	66		3'	14	1	42.8	11.0	105
31	3'	0 6	9 10	45.4 62.0	0.4 11 1	13	67		5'	14	2	52.8	17.0	95
32	All	7	1	94.7	30.5	8	68		5' 5'	14 17	3	51.8 55 4	18.6	99 57
33	3'	7	2	69.2	14.0	47	68		3'	14 14	4 5	90 7	0.7 28.8	57
33	5'	7	3	57.3	5.1	23			5	14	5	20.7	20.0	0
33.5	All	7	4	55.6	3.7	28	Avg an	rray controls		1	11	0.2	0.1	121
54 34	5' 5'	7	5 6	48.7 42.4	10.6 8 3	69 69	Acti	n		2	11 11	0.2 1.0	0.1	131
35	3'	7	7	45.0	6.4	90	No 1	DNA		3	11	0.2	0.1	132

TABLE 2. Quantitative analysis of SVV gene transcription 3 days after infection

^a See Fig. 1 for array with column and row designations.
^b Relative ORF transcription normalized according to the equation in Materials and Methods.
^c Standard deviation for each ORF.
^d Order in decreasing magnitude of the relative expression for each array target.

FIG. 2. Transcription of SVV ORFs in SVV-infected Vero cells in culture. The ORF numbers are shown on the x axis, and the level of expression relative to actin is shown on the y axis. Each data point indicates the average spot intensity for each ORF (average of the 5' and 3' ends). Each error bar indicate the standard deviation for each data point. Expression levels of array controls (actin, no DNA, and pGEM) are shown at the lower right.

FIG. 3. Comparative transcription of SVV and VZV ORFs in cells 3 days after infection. The graph shows the average spot intensities of all predicted SVV and VZV ORFs. On the x axis, ORF 0 is SVV ORF A, ORF 0.5 is SVV ORF B, and ORF 42.5 is SVV ORF 42.45. Note that transcripts corresponding to ORF 9 (encoding the tegument protein) and 63 (an immediate-early gene) are among the five most abundantly expressed genes by both viruses.

TABLE 3. Relative expression of SVV ORFs during lytic infection

ORF	Relative expression	VZV gene function
Δ	48.61	Truncated homolog of VZV ORE 4
B	49.21	Homolog of VZV ORF S/L
1	50.08	Membrane protein
3	45.74	Virion assembly
4	61.80	Transcriptional activator, IE protein 2^a
5	44.99	Glycoprotein K
07	45.57	Virion phosphoprotein
8	61 37	Glycoprotein N
9A	60.36	Glycoprotein N
9	100.00	Tegument protein that is a major viral structural component capable of nuclear shuttling and may
		play a role in virus entry and/or egress
10	44.67	Transcriptional activator, tegument protein
11	37.49	Tegument protein
13	58.27	Thymidylate synthetase
14	50.99	Glycoprotein C
15	58.54	Membrane protein
16	34.93	Associated with DNA polymerase
17	34.50	Host shutoff virion protein
10	51.10 44.27	Ribonucleotide reductase, small subunit
20	43.45	Capsid protein
21	37.39	Tegument protein
22	31.82	Tegument protein
23	88.36	Capsid protein
24	57.55	Membrane phosphoprotein
25	34.20	Viral DNA cleavage/packaging
20	45.46	Nuclear phosphoprotein
28	45.56	DNA polymerase
29	49.25	Single-stranded DNA binding protein
30	38.74	Viral DNA cleavage/packaging
31	53.98	Glycoprotein B
32	96.99 64.78	Phosphoprotein Protesse, capsid assembly protein
33.5	56.90	Totease, capsic assembly protein
34	46.65	Viral DNA cleavage/packaging
35	40.64	Membrane protein
36	36.82	Thymidine kinase
37	58.54	Glycoprotein H
30 30	40.40	VITION protein viral earess
40	45.56	Major capsid protein
41	75.52	Capsid protein
42.45	45.78	Spliced product, viral terminase
43	44.14	Viral DNA cleavage/packaging
44	58.44	Virion protein
40	47.85	Protein kinase
48	57.03	DNase
49	72.63	Myristylated virion protein
50	79.49	Glycoprotein M
51	44.68	Origin binding protein
52	46.76	Component of DNA helicase-primase complex
53 54	49.52	γ-1 protein Viral DNA cleavage/packaging
55	40.89	Component of DNA helicase-primase complex
56	44.86	γ -2 protein
57	69.38	Nonessential VZV protein
58	60.87	Phosphoprotein
59	52.41	Uracil DNA glycosylase
0U 61	30./9 57.71	Glycoprotein L Transcriptional activator repressor IE protein 1
62	36.02	Transcriptional activator, repressor, in protein 1 Transcriptional activator, IE protein 3, duplicate of ORE 71
63	94.47	Transcriptional activator, IE protein 4, duplicate of ORF 70
64	57.29	Tegument phosphoprotein, duplicate of ORF 69
65	31.18	Tegument phosphoprotein
66	43.48	Protein kinase
67	53.52	Glycoprotein
08	/4.80	Giycoprotein E

^a IE, immediate early.

Data analysis. Desktop optical scanning was used to digitize each radiogram. Individual ORF intensities were quantitated with Quantity One densitometry software (Bio-Rad, Hercules, Calif.). Optical density (OD) for each SVV target was used to calculate the relative expression (RE) of each SVV ORF according to the following formula:

$RE_i = OD_i / [(\overline{OD}_{no DNA})(\overline{OD}_{act})]$

where RE_{*i*} is the relative expression of the *i*th SVV ORF, OD_{*i*} is the OD of the *i*th SVV ORF, $\overrightarrow{OD}_{no DNA}$ is the average OD for the no-DNA targets, and $\overrightarrow{OD}_{act}$ is the average OD for the actin targets. The denominator standardizes each radiogram for variations in background intensity or specific activity of the probe. To allow comparison of SVV transcription data with those published for VZV, the average relative SVV ORF expression (RE_{*i*}) obtained from all individual arrays was expressed as a percentage of the most abundant SVV ORF.

RESULTS

Macroarrays containing PCR fragments representing the entire SVV genome were constructed and probed with labeled SVV DNA or cDNA fragments. Figure 1 illustrates the specificity of the arrays examined with DNA probes as well as cDNA probes prepared from uninfected and SVV-infected cells. DNA probes from uninfected cells detected only actin (Fig. 1A), while DNA probes prepared from SVV-infected cells detected all 129 SVV DNA targets as well as actin (Fig. 1B). The signal intensities of actin after hybridization of DNA from both infected and uninfected cells were similar (Fig. 1A and B). cDNA probes from uninfected cells detected only actin (Fig. 1C), while cDNA probes from SVVinfected cells detected each of the 70 viral ORFs and actin (Fig. 1D). None of the probes hybridized to the negative controls (pGEM3zf⁻ and no DNA). The signal intensities of actin after hybridization of cDNA from both infected and uninfected cells to actin were similar (Fig. 1C and D). Table 2 lists every ORF, region, location (row and column) on the array, relative expression of transcription, standard deviation for each SVV DNA target, and relative order of abundance 3 days after infection. For example, the 3' end of ORF 9 is located in row 2 and column 7 on the array and is the most abundant transcript.

Figure 2 graphically displays the average spot intensity and standard deviation of each ORF in SVV-infected cells compared to those of a cellular transcript (actin). The values are the averages of three independent experiments in which the spot intensity for each SVV ORF was first divided by the product of the no-DNA and actin spot intensities and then normalized to the spot intensities obtained for the no-DNA and actin targets on three individual control arrays. All signal intensities of SVV ORFs are >1 standard deviation above the negative controls. Not unexpectedly, some variation in virus transcription was seen in the three samples of independently obtained RNA from SVV-infected cells (error bars in Fig. 2), but the relative expression of individual SVV genes was not affected (Table 2). Table 3 lists the average signal intensity of each SVV ORF 3 days after infection and their predicted gene function (4). The most abundant SVV transcript detected during productive infection is ORF 9 (tegument protein). Figure 3 graphically shows a comparison for the transcriptional abundance of each ORF for both SVV and VZV in cells 3 days after infection.

DISCUSSION

This study is the first to use macroarrays with chemiluminescence detection to study varicella virus gene expression during lytic infection in culture. Chemiluminescent probes are safer than radiolabeled probes for the investigator and the environment and can be stored for prolonged periods. Moreover, hybridization signals require shorter exposure times, and as little as 0.1 pg (700 genome equivalents) of labeled SVV DNA can be detected (data not shown). However, chemiluminescence applied to the study of cDNA can be capricious, and it often took multiple experiments to yield quantifiable results.

Digoxigenin-labeled DNA from SVV-infected cells hybridized to all array targets. Similarly, digoxigenin-labeled cDNA from SVV-infected cells hybridized to all array targets but with various signal intensities. Several factors, including the abundance of mRNA, RNA stability, and the efficiency of the reverse transcription reaction, may have influenced our observations. The longer or shorter half-life of SVV transcripts is probably compensated for by the decrease or increase in their abundance. A similar pattern of global transcription for the two varicella viruses was seen (Fig. 3). The four most abundant transcripts in SVV (i.e., ORFs 9, 32, 63, and 23) were found to be greater than the relative expression of actin. The levels of transcription for two of these (e.g., ORF 9 and 63) correlated well with that previously reported by array analysis for VZV (3). As in VZV, the most abundant ORF found in SVV during lytic infection was ORF 9. ORF 9 is predicted to encode a tegument protein. The herpes simplex virus type 1 homolog of varicella virus ORF 9, VP22 protein (herpes simplex virus type 1 UL49) has been shown to be one of the four proteins responsible for mediating capsid binding to the nuclear pore complex (7). Therefore, the ORF 9 protein in the tegument of SVV may be necessary for cell-to-cell infection. VZV ORF 63 is an immediate-early gene. SVV ORFs 32 and 23 were found to have a greater transcriptional abundance during the height of the cytopathic effect, while these ORFs in VZV were not as abundantly transcribed. VZV ORF 32 is predicted to encode a phosphoprotein and ORF 23 a capsid protein. Both of these VZV ORFs have less than 50% homology to SVV, which may explain the variations in transcriptional abundance. It is also

possible that the stability of the mRNA transcribed from these VZV ORFs may be more stable than their SVV homologs. The SVV ORFs 62 to 64 and 69 to 71 map within the inverted repeat segment of the virus genome. By design, the array targets cannot differentiate between transcripts originating from either of the diploid genes. Therefore, ORF 62 to 64 expression levels determined by array analysis may be overrepresented by twofold (the difference attributed to ORF 69 to 71 transcription, respectively). The implication is that the promoter activity for these three diploid SVV genes may be lower than shown on Table 2. However, this report describes the steady-state levels of all SVV genes transcribed and not the specific promoter activities.

Overall, transcription from every SVV ORF could be identified in lytically infected cells using array technology and chemiluminescence detection.

ACKNOWLEDGMENTS

This work was supported in part by Public Health Service grants AG 06127 and NS 32623 from the National Institutes of Health. Steven Deitch is supported by Public Health Service grant NS 07321 from the National Institutes of Health.

We thank Marina Hoffman for editorial assistance and Cathy Allen for manuscript preparation.

REFERENCES

- Clarke, P., S. D. Rabkin, M. V. Inman, R. Mahalingam, R. Cohrs, M. Wellish, and D. H. Gilden. 1992. Molecular analysis of simian varicella virus DNA. Virology 190:597–605.
- Cohrs, R. J., J. Randall, J. Smith, D. H. Gilden, C. Dabrowski, H. van der Keyl, and R. Tal-Singer. 2000. Analysis of individual human trigeminal ganglia for latent herpes simplex virus type 1 and varicella-zoster virus nucleic acids using real-time PCR. J. Virol. 74:11464–11471.
- Cohrs, R. J., M. P. Hurley, and D. H. Gilden. 2003. Array analysis of viral gene transcription during lytic infection of cells in tissue culture with varicellazoster virus. J. Virol. 77:11718–11732.
- Gray, W. L., B. Starnes, M. W. White, and R. Mahalingam. 2001. The DNA sequence of the simian varicella virus genome. Virology 284:123–130.
- Kennedy, P. G. E., E. Grinfeld, V. Traina-Dorge, D. H. Gilden, and R. Mahalingam. 2004. Neuronal localization of simian varicella virus DNA in ganglia of naturally infected African green monkeys. Virus Genes 28:273–276.
- Mahalingam, R., M. Wellish, W. Wolf, A. N. Dueland, R. Cohrs, A. Vafai, and D. Gilden. 1990. Latent varicella zoster viral DNA in human trigeminal and thoracic ganglia. N. Engl. J. Med. 323:627–631.
- Ojala, P. M., B. Sodeik, M. W. Ebersold, U. Kutay, and A. Helenius. 2000. Herpes simplex virus type 1 entry into host cells: reconstitution of capsid binding and uncoating at the nuclear pore complex in vitro. Mol. Cell. Biol. 20:4922–4931.