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Abstract  Females live longer than males, and 
there are sex disparities in physical health and dis-
ease incidence. However, sex differences in biolog-
ical aging have not been consistently reported and 
may differ depending on the measure used. This 
study aimed to determine the correlations between 
epigenetic age acceleration (AA), and other mark-
ers of biological aging, separately in males and 
females. We additionally explored the extent to 
which these AA measures differed according to 
socioeconomic characteristics, clinical mark-
ers, and diseases. Epigenetic clocks (HorvathAge, 
HannumAge, PhenoAge, GrimAge, GrimAge2, 
and DunedinPACE) were estimated in blood from 
560 relatively healthy Australians aged ≥ 70  years 
(females, 50.7%) enrolled in the ASPREE study. A 
system-wide deficit accumulation frailty index (FI) 

composed of 67 health-related measures was gen-
erated. Brain age and subsequently brain-predicted 
age difference (brain-PAD) were estimated from 
neuroimaging. Females had significantly reduced 
AA than males, but higher FI, and there was no 
difference in brain-PAD. FI had the strongest cor-
relation with DunedinPACE (range r: 0.21 to 0.24 
in both sexes). Brain-PAD was not correlated with 
any biological aging measures. Significant correla-
tions between AA and sociodemographic charac-
teristics and health markers were more commonly 
found in females (e.g., for DunedinPACE and 
systolic blood pressure r = 0.2, p < 0.001) than in 
males. GrimAA and Grim2AA were significantly 
associated with obesity and depression in females, 
while in males, hypertension, diabetes, and chronic 
kidney disease were associated with these clocks, 
as well as DunedinPACE. Our findings highlight 
the importance of considering sex differences when 
investigating the link between biological age and 
clinical measures.
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Introduction

In 2020, approximately 10% of the world’s population 
was over 65  years of age [1]; and the proportion of 
older adults is growing at a faster rate than all other 
age groups. As aging represents the most profound 
risk factor for many chronic diseases, the prevalence 
of age-related diseases such as dementia and ischemic 
heart disease is also proportionately increasing [2]. 
The geroscience hypothesis posits that by targeting 
aging mechanisms, we can potentially reduce the risk 
of several age-related diseases and extend the health 
span (i.e., duration of life lived in good health) [3]. 
As such, increasing attention has been placed on the 
hallmarks of aging which may better capture under-
lying biological differences and thus an individual’s 
risk of disease.

One of the most studied and promising aging 
biomarkers is epigenetic age. It estimates biological 
age based on DNA methylation (DNAm) levels at 
multiple cytosine-phosphate-guanine dinucleotides 
(CpGs) across the genome [4–9]. While epigenetic 
age can be estimated from any tissue, when meas-
ured in the blood, it reflects system-wide biologi-
cal age [4, 10]. Over the previous decade, a number 
of epigenetic clock algorithms have been devel-
oped [4–9]. The first-generation epigenetic clocks, 
namely, HorvathAge [5] and HannumAge [6], 
were generated to predict chronological age using 
the specific CpGs sites which are strongly associ-
ated with chronological age. HorvathAge [5] was 
developed on 353 CpGs sites across multiple tissue 
samples whereas HannumAge [6] was trained on 71 
CpGs sites from blood samples. Second-generation 
clocks such as PhenoAge [7] and GrimAge [8, 11] 
were trained in blood samples by incorporating 
additional age-related clinical markers. PhenoAge 
[7] used 513 CpGs sites which are related to chron-
ological age and nine phenotypic aging biomarkers 
including albumin, creatinine, and C-reactive pro-
tein levels whereas GrimAge [8] considered 1030 
CpGs sites associated with smoking-pack-years 
and a selection of plasma proteins including adre-
nomedullin, beta-2-microglobulin, and cystatin-C. 

Further, using the same set of 1030 CpGs that 
underline the original GrimAge, GrimAge2 was 
recently developed by additionally incorporating 
two new DNAm-based plasma proteins—high sen-
sitivity C-reactive protein, and hemoglobin A1C 
[11]. The second-generation clocks have been found 
to outperform the first-generation clocks in the risk 
prediction of age-related diseases and all-cause 
mortality [5–8, 11, 12]. For the first- and second-
generation clocks, the residual taken from regress-
ing epigenetic age on chronological age is referred 
to as epigenetic age acceleration (AA) [10]. A posi-
tive value of AA indicates an older epigenetic age 
relative to chronological age, which has been shown 
to be predictive of several age-related diseases [10]. 
More recently, a third generation, the Pace of Aging 
(DunedinPACE) was developed using 173 CpGs 
sites in blood samples [9]. In contrast to prior gen-
erations, DunedinPACE was built by incorporating 
longitudinal within-person physiological change 
together with methylation pattern and thus specifi-
cally designed to measure the rate of aging [9].

Other measures have also been developed to estimate 
biological aging in recent years. Another system-wide 
measure of biological aging is the deficit accumulation 
frailty index (FI), a multidimensional tool that meas-
ures the accumulation of health deficits across a range 
of physical, psychological, and mental processes [13]. 
Unlike AA, FI can capture the clinical state of age-
related physiological decline in which a person is more 
susceptible to developing adverse health outcomes [14, 
15]. There are also aging biomarkers that target specific 
organs. Brain age is estimated using neuroimaging data, 
and an older brain relative to chronological age, positive 
brain-predicted age difference (brain-PAD), indicates 
accelerated brain aging [16]. In recent years, evidence 
has found that accelerated brain aging was predictive of 
cognitive performance, and physical disability, particu-
larly in older people [17–19]. In literature, few studies 
have investigated the associations between epigenetic 
clocks and frailty and/or brain age, showing inconsist-
ent relationships between these biological aging meas-
ures [20–22]. Further, all these previous studies were 
investigated using only first or second generations of 
epigenetic clocks. Thus, it is yet unclear to what extent 
these other biological aging indices are strongly corre-
lated with different generations of epigenetic AA, and 
thus, it remains unclear to what extent these capture dif-
ferent aspects of the aging process.
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On average, females have a longer lifespan than 
males [23] but may carry a higher disease and disabil-
ity burden [24]. Such discrepancies may reflect differ-
ences in biological phenotypes, genetic constitutions, 
and physiological traits between males and females 
[23, 25], In terms of social behaviors, there are rec-
ognized sex differences in health-related behaviors, 
and in healthcare seeking, including accessing social 
and familial support [26]. Given these disparities, 
it is important to understand how the relationships 
between AA and health status might differ between 
males and females.

This study aimed to determine the correlation 
between epigenetic aging, with other measures of bio-
logical aging (i.e., system-wide FI, and brain-PAD), in 
an initially healthy population of males and females 
aged ≥ 70 years. We additionally explored the extent to 
which these AA measures were associated with soci-
odemographic characteristics, clinical measures, and 
chronic conditions, separately in males and females.

Methods

Study population

This study sub-sampled 560 Australians from the 
ASPREE (ASPirin in Reducing Events in the Elderly) 
study, who provided blood samples at baseline [27]. 
Full details regarding the sampling procedure, inclu-
sion and exclusion criteria, and study design of the 
ASPREE study have been published previously [27, 
28]. Briefly, in Australia, participants aged ≥ 70 years 
were recruited through a partnership with general 
practices, from March 2010 through December 2014. 
The ASPREE exclusion criteria included a history of 
cardiovascular disease (CVD), atrial fibrillation, ane-
mia, dementia, a score of < 78 on the Modified Mini-
Mental State examination (3MS), uncontrolled high 
blood pressure (i.e., ≥ 180/ ≥ 105  mm Hg), or other 
major life-limiting health conditions likely to cause 
death within 5 years.

The ASPREE study complies with the Decla-
ration of Helsinki and was approved by multiple 
Institutional Review Boards (www.​aspree.​org). All 
participants signed written informed consent on par-
ticipation. The present sub-study was approved by the 
Monash University Human Research Ethics Commit-
tee (MHREC 30734).

Epigenetic age

Blood samples were processed within 4 h of the blood 
collection and stored at ultra-low − 80° temperatures. 
All samples have barcodes and are prepared for long-
term storage at a purpose-built large biorepository 
near the ASPREE National Co-ordinating Centre in 
Melbourne (www.​aspree.​org).

DNA methylation (DNAm) from peripheral 
blood samples (buffy coat) collected at baseline was 
extracted using Qiagen DNeasy Blood and Tissue 
Kits (https://​www.​qiagen.​com/​au). Cytosine-phos-
phate-guanine (CpG) probe methylation was meas-
ured using the Illumina Infinium Methylation EPIC 
BeadChip (EPIC) and run at the Australian Genome 
Research Facility, Melbourne, Victoria (https://​www.​
agrf.​org.​au/). The programming platform R version 
4.1.3 with R package minfi was used for preprocess-
ing data for use in Horvath’s online “New DNAm 
Age Calculator” (https://​dnama​ge.​genet​ics.​ucla.​edu/​
new). The preprocessNoob method was used to nor-
malize the EPIC data [29]. According to the online 
age calculator’s expectation, the beta values from 
the EPIC data set were limited to the probes that the 
450  K array could measure, and the beta values of 
missing probes that are not present on the 450 K array 
(33,124 probes) were filled with “NA” in the data set. 
The list of 33,124 missing probes has been described 
previously [30].

Next, the sample methylation data file (includ-
ing beta measurements) and the sample annotation 
file, which included sample ID, age, sex, and tissue 
type, were uploaded to the online calculator. The 
default option (i.e., “Normalize Data”) and an addi-
tional option—“Advanced Analysis”—were selected 
before submitting the data. The output of the online 
age calculator consisted of HorvathAge [5], Hannum-
Age [6], PhenoAge [7], GrimAge [8], and their AA 
measures (residuals from regressing epigenetic age 
on chronological age). A positive value of AA indi-
cates an older epigenetic age relative to chronological 
age. Further, version-2 of GrimAge [11] and its AA 
were estimated through the new online software of 
Clock Foundation (https://​dnama​ge.​clock​found​ation.​
org/). We also considered other DNAm estimates—
telomere length [31] and DNAm-based components 
of original GrimAge and GrimAge2 [8, 11] (adre-
nomedullin (ADM), beta-2-microglobulin (B2M), 
cystatin-C, growth differentiation factor 15 (GDF-15), 

http://www.aspree.org
http://www.aspree.org
https://www.qiagen.com/au
https://www.agrf.org.au/
https://www.agrf.org.au/
https://dnamage.genetics.ucla.edu/new
https://dnamage.genetics.ucla.edu/new
https://dnamage.clockfoundation.org/
https://dnamage.clockfoundation.org/
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leptin, smoking-pack-years, plasminogen activation 
inhibitor 1 (PAI-1), tissue inhibitor of metalloprotein-
ases 1 (TIMP-1), high sensitivity C-reactive protein 
(CRP), and hemoglobin A1C (A1C)). The Pace of 
Aging (DunedinPACE) is a measure of the ongoing 
rate of deterioration in system integrity. Dunedin-
PACE was estimated using R software (version 4.1.3) 
and the codes described in Belsky et al. [9].

Brain age

ASPREE participants living in the Greater Mel-
bourne region and without MRI contraindications 
(e.g., specific foreign bodies or electronic implants, 
claustrophobia) were invited to participate in the 
ASPREE-NEURO sub-study [32]. Brain scans were 
performed at the Monash Biomedical Imaging Facil-
ity, Melbourne, Australia, using a 3 Tesla Siemens 
Skyra scanner (Siemens, Erlangen, Germany). Raw 
3D T1-weighted images were pre-processed using the 
MATLAB Statistical Parametric Mapping software 
package (University College London, London, UK) 
[33]. Full details regarding the pre-processing of this 
data have been described in detail previously [19]. 
Brain age was calculated using a trained, publicly 
accessible processing pipeline and prediction algo-
rithm created by Cole et al. (BrainageR, version 2.1, 
https://​github.​com/​james-​cole/​brain​ageR) [16].

The brain-predicted age difference (brain-PAD) 
refers to the difference between an individual’s esti-
mated brain age and their chronological age. A posi-
tive brain-PAD value indicates that the individual’s 
brain is older than its chronological age.

Frailty index

A deficit accumulation frailty index (FI) of 67 items 
was constructed based on the method of Rockwood 
and Mitnitski [13]. The index included chronic disease 
diagnosis and indicators (24 items), physical deficits 
interfering in completing the activities of daily liv-
ing (26 items), mental and psychosocial deficits (11 
items), and measures of physical functional engage-
ment and cognitive function (6 items), as described 
in detail previously [34]. Each item was scored from 
0 (deficit absent) to 1 (deficit present). The FI was 
derived by summing the number of deficits noted for 
each person and dividing this by the total number of 
possible deficits. Higher scores indicate greater frailty.

Sociodemographic characteristics

Sociodemographic characteristics included in this 
study were chronological age, sex (male or female), 
years of education (< 12  years or ≥ 12  years), living 
situation (at home alone or with family/others), and 
socioeconomic status (SES) (very low, low, mid-
dle, high, very high). SES was estimated through the 
Socio-Economic Indices for Areas-Index of Rela-
tive Socioeconomic Advantage and Disadvantage 
(SEIFA-IRSAD) based on the information from the 
2011 Australian Census using the residential post-
codes of participants [35]. Smoking was categorized 
into never, former, or current. Alcohol consump-
tion was defined as never, former, current-low risk 
(i.e., ≤ 10 standard drinks per week and ≤ 4 standard 
drinks on any 1  day), or current-high risk (i.e., > 10 
standard drinks per week or > 4 standard drinks on 
any 1 day) [36].

Clinical measures, chronic conditions, and 
self‑reported outcomes

Clinical measures included systolic blood pres-
sure (SBP) and diastolic blood pressure (DBP) in 
mmHg, dominant hand grip strength in kilograms, 
and gait speed in meters/seconds. Full detailed proce-
dures for taking measurements have been previously 
reported [37]. In brief, for SBP and DBP, the aver-
age scores after three measurements were used. The 
grip strength of both hands was assessed three times 
using an isometric handheld dynamometer (Jamar; 
Lafayette Instruments). The mean score for each par-
ticipant’s self-reported dominant hand was used in the 
analysis. Gait speed was assessed as the time spent 
walking 3 m at a habitual pace on a flat surface from 
a standing start. Gait speed was measured twice, and 
the mean score was used in the analysis.

Self-reported outcomes were assessed through the 
SF-12 version-2 questionnaire [38]. Self-rated health 
ranged from 1 (excellent) to 5 (poor). Physical (PCS) 
and mental component scores (MCS) of health-
related quality of life (HRQoL) were generated using 
a norm-based scoring method [38]. Higher scores 
indicate better health-related quality of life.

Chronic conditions investigated included hyperten-
sion (systolic blood pressure ≥ 140 mmHg or diastolic 
blood pressure ≥ 90  mmHg and/or treatment for high 
blood pressure), diabetes (fasting glucose ≥ 126  mg/

https://github.com/james-cole/brainageR


1779GeroScience (2024) 46:1775–1788	

1 3
Vol.: (0123456789)

dL or treatment or self-report), dyslipidemia (choles-
terol-lowering medications or low-density lipoprotein, 
LDL > 160  mg/dL (> 4.1  mmol/L), or serum choles-
terol ≥ 212  mg/dL (≥ 5.5  mmol/L)), obesity (body 
mass index ≥ 30  kg/m2) [39], chronic kidney disease 
(estimated glomerular filtration rate (eGFR) < 60  ml/
min per 1.73 m2 or spot urinary albumin: creatinine 
ratio (UACR) ≥ 3  mg/mmol with eGFR ≥ 60  ml/min 
per 1.73 m2) [40], and depression (Center for Epidemi-
ological Studies-Depression CES-D-10 score ≥ 8) [41].

Statistical analysis

First, the correlations between different measures of 
biological age (i.e., HorvathAge, HannumAge, Phe-
noAge, GrimAge, GrimAge2, DunedinPACE, brain 
age, and FI) and chronological age were examined. 
Next, Pearson’s correlation, with pairwise deletion, 
was used to investigate the correlation between the 
different biological aging measures. Pearson’s cor-
relation, t-tests, or one-way ANOVA, as appropriate, 
were also used to investigate the correlations between 
the AA measures and other DNAm-based estimates 
and sociodemographic characteristics, clinical meas-
ures, and chronic diseases, separately in males and 
females. Analyses were undertaken in STATA statisti-
cal software version 17.0, and the figures and graphs 
were plotted using the programming platform R ver-
sion 4.1.3.

Results

Participants’ characteristics

The characteristics of the 560 study participants are 
shown in Table  1. Approximately, half were female 
(50.7%), and the chronological age ranged from 70.0 
to 92.0 years, with a mean of 74.5 years. The estimated 
brain age (mean, 72.1 ± 6.9 years), HorvathAge (mean, 
70.6 ± 6.1  years), GrimAge (mean, 70.1 ± 5.0  years), 
and GrimAge2 (mean, 74.1 ± 5.3  years) were simi-
lar to the mean chronological age, whereas Hannum-
Age (mean, 59.5 ± 6.1  years) and PhenoAge (mean, 
58.9 ± 7.7 years) were younger than the chronological 
age. DunedinPACE ranged from 0.69 to 1.30, with a 
mean of 0.97, and the mean FI was 0.10. Compared 
to females, males had significantly higher epigenetic 
aging whereas females had higher deficit accumulation 

frailty scores than males. Brain age was identical 
between males and females (Table 1).

Correlation between different measures of biological 
age, and chronological age

Epigenetic age, brain age, and FI were positively cor-
related with chronological age (Fig. 1). The strongest 
correlation was found for GrimAge (r = 0.67), while 
DunedinPACE (r = 0.16) and FI (r = 0.14) had the 
weakest correlations with chronological age.

Correlation between AA, brain‑PAD, and FI

All AA measures were positively correlated with one 
another (r ranged from 0.08 to 0.57), but Dunedin-
PACE showed weak correlations, particularly with 
1st generation HorvathAA and HannumAA (Fig.  2). 
GrimAA and Grim2AA were strongly correlated with 
each other (r = 0.95). Brain-PAD was not correlated 
with any of the AA measures, or FI. FI had the strong-
est correlation with DunedinPACE (r = 0.19) and Gri-
m2AA (r = 0.15), and significant but weak correlations 
with HannumAA, PhenoAA, and GrimAA (r ≤ 0.12). 
Similar correlations were also found in males and 
females (Supplementary Tables 1 and 2).

AA variations according to the sociodemographic 
characteristics

In males (Supplementary Table  3), we observed an 
association between smoking and both versions of 
GrimAA (p-value < 0.001) and DunedinPACE only 
(p-value = 0.003). In females, however (Supplemen-
tary Table  4), we observed associations across all 
the sociodemographic characteristics. In particu-
lar, less than 12  years of education was associated 
with accelerated DunedinPACE; living alone was 
linked to an accelerated HorvathAA, low SES, cur-
rent smoking, and former alcohol consumption were 
associated with higher in both versions of GrimAA 
(p-values < 0.05).

Correlation between AA, clinical measures, and 
self‑reported health outcomes

Correlations between AA measures and clini-
cal measures/self-reported health outcomes were 
also more commonly found in females than males 



1780	 GeroScience (2024) 46:1775–1788

1 3
Vol:. (1234567890)

Table 1   The characteristics of study participants

All participants (n = 560) Males (n = 276, 49.3%) Females (n = 284, 50.7%)

Chronological age (years); mean (SD) 74.5 (4.2) 74.5 (4.2) 74.5 (4.2)
Epigenetic age (years)
  HorvathAge; mean (SD) 70.6 (6.1) 71.0 (6.1) 70.1 (6.0)
  HannumAge; mean (SD) 59.5 (6.1) 60.4 (6.1) 58.6 (6.0)
  PhenoAge; mean (SD) 58.9 (7.7) 59.7 (7.7) 58.1 (7.6)
  GrimAge; mean (SD) 70.1 (5.0) 71.5 (5.1) 68.6 (4.5)
  GrimAge2; mean (SD) 74.1 (5.3) 75.4 (5.5) 72.8 (4.8)
  DunedinPACE; mean (SD) 0.97 (0.11) 0.99 (0.11) 0.95 (0.11)

Epigenetic age acceleration (AA, years)
  HorvathAA; mean (SD) 0.08 (4.96) 0.49 (4.96)  − 0.31 (4.92)
  HannumAA; mean (SD) 0.07 (4.84) 0.79 (5.04)  − 0.64 (4.54)
  PhenoAA; mean (SD) 0.09 (6.37) 0.76 (6.46)  − 0.55 (6.21)
  GrimAA; mean (SD) 0.02 (3.52) 1.35 (3.34)  − 1.27 (3.19)
  Grim2AA; mean (SD) 0.02 (4.04) 1.16 (3.99)  − 1.08 (3.78)

Other measures of biological aging
  Mean brain agea; mean (SD) 72.1 (6.9) 72.1 (7.4) 72.1 (6.4)
  Brain-PADa; mean (SD)  − 1.50 (6.05)  − 1.70 (6.39)  − 1.27 (5.67)
  Deficit accumulation frailty index; mean (SD) 0.10 (0.06) 0.09 (0.06) 0.12 (0.06)

Participants’ characteristics
Years of education; n (%)

   < 12 years 234 (41.8) 111 (40.2) 123 (43.3)
   ≥ 12 years 326 (58.2) 165 (59.8) 161 (56.7)

Living situation; n (%)
  At home alone 159 (28.4) 47 (17.0) 112 (39.4)
  With family or others 401 (71.6) 229 (83.0) 172 (60.6)

Socioeconomic status (SES)b; n (%)
  Very low 48 (8.6) 23 (8.4) 25 (8.8)
  Low 44 (7.9) 19 (6.9) 25 (8.8)
  Middle 85 (15.2) 43 (15.6) 42 (14.8)
  High 121 (21.7) 61 (22.2) 60 (21.1)
  Very high 261 (46.7) 129 (46.9) 132 (46.5)

Smoking; n (%)
  Never 312 (55.7) 129 (46.7) 183 (64.4)
  Former 227 (40.5) 135 (48.9) 92 (32.4)
  Current 21 (3.8) 12 (4.4) 9 (3.2)

Alcohol consumption, n (%)
  Never 80 (14.3) 25 (9.1) 55 (19.4)
  Former 21 (3.8) 12 (4.4) 9 (3.2)
  Current-low riskc 336 (60.0) 158 (57.3) 178 (62.7)
  Current-high riskd 123 (22.0) 81 (29.4) 42 (14.8)

Clinical measures
  Systolic blood pressure (mmHg); mean (SD) 137.8 (16.0) 140.7 (15.3) 134.9 (16.2)
  Diastolic blood pressure (mmHg); mean (SD) 75.8 (10.2) 77.3 (10.1) 74.2 (10.0)
  Grip strength (kg)e; mean (SD) 28.5 (9.9) 35.9 (7.6) 21.3 (5.6)
  Gait speed (m/s); mean (SD) 1.1 (0.2) 1.1 (0.2) 1.0 (0.2)
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(Fig.  3). In males, correlations were observed 
between SBP and HannumAA (r = 0.13), between 
gait speed and Grim2AA (r =  − 0.12), and between 
PCS and both versions of GrimAA (r =  − 0.15). 
In females, all clinical measures and self-reported 
health status, except for MCS, were correlated with 
AA measures (r ranged from − 0.23 to 0.24) with 
DunedinPACE having the greatest number of signifi-
cant correlations.

AA variations according to the chronic condition status

Hypertension, diabetes, and chronic kidney disease 
were associated with accelerated GrimAA (both ver-
sions) and DunedinPACE in males (Supplementary 
Table  5). In contrast, only obesity and depression 
were associated with accelerated GrimAA (both ver-
sions) in females, and obesity was also associated 
with accelerated DunedinPACE.

a Numbers of participants, total n = 400, males n = 209, and females n = 191
b SES, total n = 559, males n = 275, and females n = 284
c Current-low risk, ≤ 10 standard drinks per week and ≤ 4 standard drinks on any 1 day
d Current-high risk, > 10 standard drinks per week or > 4 standard drinks on any 1 day
e Grip strength, total n = 558, males n = 275, and females n = 283
f Obesity, total n = 557, males n = 274, and females n = 283
g Chronic kidney disease, total n = 525, males n = 260, and females n = 265

Table 1   (continued)

All participants (n = 560) Males (n = 276, 49.3%) Females (n = 284, 50.7%)

Self-reported health outcomes
Self-rated health; n (%)

  Excellent 89 (15.9) 43 (15.6) 46 (16.2)
  Very good 279 (49.8) 133 (48.2) 146 (51.4)
  Good 172 (30.7) 90 (32.6) 82 (28.9)
  Fair 19 (3.4) 10 (3.6) 9 (3.2)
  Poor 1 (0.2) 0 (0.0) 1 (0.4)

Health-related quality of life
  Physical component score; mean (SD) 48.5 (8.7) 49.3 (8.1) 47.7 (9.1)
  Mental component score; mean (SD) 55.5 (7.4) 56.1 (6.4) 54.9 (8.2)

Chronic conditions
Hypertension; n (%)

  Yes 381 (68.0) 197 (71.4) 184 (64.8)
  No 179 (32.0) 79 (28.6) 100 (35.2)

Diabetes; n (%)
  Yes 65 (11.6) 43 (15.6) 22 (7.8)
  No 495 (88.4) 233 (84.4) 262 (92.3)

Dyslipidemia; n (%)
  Yes 351 (62.7) 140 (50.7) 211 (74.3)
  No 209 (37.3) 136 (49.3) 73 (25.7)

Obesityf; n (%)
  Yes 151 (27.1) 70 (25.6) 81 (28.6)
  No 406 (72.9) 204 (74.5) 202 (71.4)

Chronic kidney diseaseg; n (%)
  Yes 107 (20.4) 53 (20.4) 54 (20.4)
  No 418 (79.6) 207 (79.6) 211 (79.6)

Depression; n (%)
  Yes 57 (10.2) 26 (9.4) 31 (10.9)
  No 503 (89.8) 250 (90.6) 253 (89.1)
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Other DNAm‑based estimates and their associations 
with sociodemographic characteristics, clinical 
measures, self‑reported health outcomes, and the 
chronic condition status

There were also sex differences in the associa-
tions between other DNA-based estimates (telomere 
length, plasma proteins, and smoking-pack-years) 
and sociodemographic factors and health markers 

Fig. 1   Correlations between estimated biological age (y-axis) 
and chronological age (x-axis). A HorvathAge vs. chrono-
logical age (n = 560); B HannumAge vs. chronological age 
(n = 560); C PhenoAge vs. chronological age (n = 560); D 
GrimAge vs. chronological age (n = 560); E GrimAge2 vs. 

chronological age (n = 560); F DunedinPACE vs. chronologi-
cal age (n = 560); G Brain age vs. chronological age (n = 400); 
H deficit accumulation frailty index vs. chronological age 
(n = 560)
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Fig. 2   Pearson’s correlation matrix on epigenetic age acceleration (HorvathAA, HannumAA, PhenoAA, GrimAA, Grim2AA, Dun-
edinPACE), brain-PAD, and deficit accumulation frailty index. *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001
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(Supplementary Tables  6 to 15). The correlations 
between telomere length and clinical measures except 
for DBP and MCS were found only in females (Sup-
plementary Table  8). Regarding the chronic condi-
tions, only chronic kidney disease was associated with 
shorter telomere length in females, and no associa-
tions were found in males (Supplementary Table  9). 
Correlations between either plasma proteins or smok-
ing-pack-years and clinical measures were commonly 
found in both males and females (Supplementary 
Tables  12 and 13). At least one plasma protein was 
associated with diabetes, dyslipidemia, obesity, and 
chronic kidney disease in both males and females, 
but associations were more commonly found in males 
than females (Supplementary Tables 14 and 15).

Discussion

In this study, we examined the extent to which dif-
ferent measures of epigenetic aging were correlated 
with a system-wide measure of biological aging (FI) 
and an organ-specific biological aging marker (brain-
PAD), separately in males and females. We observed 

that FI had weak but significant positive correlations 
with AA in both sexes, whereas brain-PAD was not 
correlated with any of the other biological aging 
measures. This suggests that these system-wide meas-
ures of biological aging are capturing somewhat 
overlapping, yet distinct aspects of the aging process. 
We also found that epigenetic aging was correlated 
with participants’ sociodemographic characteristics 
and health status, but this varied between males and 
females. Together, these findings indicate that mark-
ers of biological aging may be useful clinical indica-
tors of overall physical, cognitive, and psychosocial 
deficits even in relatively healthy older people who 
have reached 70 years without major illness, includ-
ing CVD and dementia. Further, we also found that 
there were differences between males and females 
in the relationships between other DNAm estimates 
(i.e., telomere length, plasma proteins, and smoking-
pack-years) and health status.

Not surprisingly, in our present study, the first-gen-
eration AA measures were most strongly correlated 
with one another, and the most recent of these meas-
ures, DunedinPACE, was most significantly associ-
ated with the second-generation AA measures where 

Fig. 3   Correlation matrix 
between epigenetic age 
acceleration measures and 
systolic blood pressure 
(SBP), diastolic blood pres-
sure (DBP), grip strength, 
gait speed, self-rated health 
(higher scores indicating 
worse health), and physical 
component score (PCS) 
and mental component 
score (MCS) of the SF-12, 
separately in males and 
females. *p-value < 0.05; 
**p-value < 0.01; 
***p-value < 0.001
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the correlation with Grim2AA was the highest. Our 
finding is supported by previous research [5, 6, 8, 9] 
and aligns with the general purpose for which these 
epigenetic clock algorithms were developed. The 
first-generation epigenetic clocks were generated to 
predict chronological age [5, 6] whereas the second-
generation clocks, like GrimAge [8, 11], go beyond 
just estimating chronological age and additionally aim 
to predict the risk of developing health outcomes. To 
reflect that purpose, GrimAge algorithms were con-
structed by incorporating additional age-related clini-
cal and laboratory measures as well as lifestyle fac-
tors such as smoking [8, 11]. Thus, clear evidence has 
been found that second-generation clocks outperform 
first-generation clocks in the risk prediction of age-
related diseases and death [8]. The latest generation 
clock—DunedinPACE—was specifically designed to 
capture the gradual, progressive deterioration simul-
taneously affecting different organ systems with aging 
[9]. This noticeably contrasts with first-generation 
clocks which were designed and trained to predict 
chronological age (HorvathAge [5] and HannumAge 
[6]). Moreover, prior studies have reported significant 
but weak correlations between AA and system-wide 
FI [21, 42]. However, as ours is the first to investigate 
correlations with GrimAge2 and DunedinPACE, we 
added new evidence to the field that DunedinPACE 
and GrimAge2 are more strongly correlated with FI 
rather than other AAs. This is not surprising given 
both DunedinPACE and FI have a multidimensional 
nature. Like DunedinPACE, the FI defines biologi-
cal aging through the accumulation of age-related 
health deficits across a range of functions (physical, 
psychological, and social). Noticeably, our study also 
demonstrated that the correlations of GrimAge2 with 
DunedinPACE and FI were slightly stronger than 
those of the original GrimAge. This finding could be 
due to the additional inclusion of two commonly used 
biomarkers (i.e., DNAm-based high-sensitivity CRP, 
and hemoglobin A1C) in the GrimAge2 development 
[11]. Further, our finding of GrimAge2 also some-
what reflects the fact that GrimAge2 outperforms the 
original GrimAge in terms of mortality and morbidity 
risk prediction [11].

Our finding that males had accelerated epigenetic 
age in comparison to females is consistent with prior 
evidence demonstrating that, for individuals with the 
same chronological age, males tend to be biologi-
cally older than females [43]. This also aligns with 

the established longer life expectancy of females 
compared to males [23] which could be driven by a 
complex interaction of biological factors, includ-
ing genetic influences and sex hormones, as well as 
behavioral factors [44]. Males may be more likely 
to engage in risky behaviors and unhealthy lifestyles 
such as smoking and heavy drinking [45, 46] and 
have an age-related decline in testosterone concentra-
tions, which could lead to a greater risk of fatal ill-
nesses including heart disease and cancer [47, 48]. 
There is also evidence that females are more willing 
to engage with health-related information and are 
more likely to seek medical treatment for their illness 
[49] which together could help initiate early detection 
and intervention. In this manner, females may have 
less fatal outcomes. In contrast, females in our study 
had higher deficit accumulation FI scores than males, 
which captures the overall disease burden. This find-
ing also supports the conclusion of a prior meta-anal-
ysis among 37,426 participants, showing that females 
of all ages have a poorer health status in terms of FI, 
compared to males [50]. Thus, our finding from this 
relatively healthy older cohort might also reflect the 
male–female health-survival paradox, in that females 
live longer and are more likely to experience disabili-
ties and disease burdens [46, 51].

Several studies have investigated whether AA 
measures are associated with participants’ sociode-
mographic characteristics and markers of their health 
status [52–54]. These studies have generally, but not 
consistently, shown that lower SES status and/or 
risk factors for chronic diseases, such as high blood 
pressure and smoking, are associated with acceler-
ated aging. However, very few studies have consid-
ered whether these associations may vary between 
males and females. Our study provides an important 
new contribution to this field, demonstrating clear 
evidence of sex differences. In females, several sig-
nificant correlations were observed between AA 
and health risk factors such as low SES and living 
alone, as well as markers of physical functioning 
(e.g., grip strength and gait speed), SBP, DBP, and 
self-rated overall and physical health whereas only 
associations between AA, especially Grim2AA, and 
SBP, gait speed, and self-rated physical health were 
found in males. Thus, our cross-sectional findings 
highlight that accelerated epigenetic aging could 
be linked with physical health deterioration in both 
males and females. Hence, a further longitudinal 
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study is suggested to enhance this novel relationship 
and to examine whether accelerated epigenetic aging 
could be predictive of physical health deterioration 
in later life. Moreover, significant associations were 
found between newer accelerated AA measures and 
hypertension, diabetes, and chronic kidney disease 
in males only whereas the associations of AA meas-
ures with obesity and depression were observed only 
in females. Although the exact reasons for these dif-
ferences are still unclear, biological disparities and 
previously noted sex differences in the prevalence of 
health conditions [55, 56] may have contributed to 
our results. Overall, it highlights the importance of 
considering separately males and females when inves-
tigating causal inference of our observed relationships 
in future longitudinal studies.

Our study had both strengths and limitations. The 
strength of this study includes investigating several 
epigenetic clocks including the most recent ones—
GrimAge2 and DunedinPACE and their correlations 
with the system-wide FI, and brain-PAD, among 
community-based individuals. Our sex-balanced 
sample (females 50.7%) allowed us to investigate 
the relationships between AA and markers of health 
in males and females separately. We acknowledged 
that our community-based sample comprises rela-
tively healthy older Australians without dementia 
or CVD, and about two-thirds had high SES. Thus, 
this could limit the generalizability of our findings. 
However, the sample had a good distribution in 
terms of education level (e.g., 41.8% had < 12 years 
of education) and ranged in age from 70 to 92 years. 
The findings add new evidence about the utility of 
biological aging measures even in relatively healthy 
older individuals.

In conclusion, our study showed that, in relatively 
healthy older individuals, epigenetic age was cor-
related with the system-wide deficit accumulation 
FI, but not with the neuroimaging-based brain aging 
biomarker (brain-PAD). We also showed that despite 
having similar chronological ages, females in our 
study had lower epigenetic aging, but higher FI, than 
males. Further, this study provides novel evidence 
showing sex differences in the relationships between 
AA measures and markers of health status. Thus, our 
results highlight the importance of considering sex 
differences when investigating biological aging and 
its utility as a marker of health or disease risk.
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