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Abstract  Whole brain irradiation (WBI), also 
known as whole brain radiation therapy (WBRT), is 
a well-established treatment for multiple brain metas-
tases and as a preventive measure to reduce the risk 
of recurrence after surgical removal of a cerebral 
metastasis. However, WBI has been found to lead 
to a gradual decline in neurocognitive function in 
approximately 50% of patients who survive the treat-
ment, significantly impacting their overall quality 

of life. Recent preclinical investigations have shed 
light on the underlying mechanisms of this adverse 
effect, revealing a complex cerebrovascular injury 
that involves the induction of cellular senescence 
in various components of the neurovascular unit, 
including endothelial cells. The emergence of cellu-
lar senescence following WBI has been implicated in 
the disruption of the blood-brain barrier and impair-
ment of neurovascular coupling responses following 
irradiation. Building upon these findings, the present 
study aims to test the hypothesis that WBI-induced Tamas Kiss, Anna Ungvari, Rafal Gulej and Ádám Nyúl-
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endothelial injury promotes endothelial dysfunc-
tion, which mimics the aging phenotype. To inves-
tigate this hypothesis, we employed a clinically rel-
evant fractionated WBI protocol (5 Gy twice weekly 
for 4 weeks) on young mice. Both the WBI-treated 
and control mice were fitted with a cranial window, 
enabling the assessment of microvascular endothe-
lial function. In order to evaluate the endothelium-
dependent, NO-mediated cerebral blood flow (CBF) 
responses, we topically administered acetylcholine 
and ATP, and measured the resulting changes using 
laser Doppler flowmetry. We found that the increases 
in regional CBF induced by acetylcholine and ATP 
were significantly diminished in mice subjected to 
WBI. These findings provide additional preclinical 
evidence supporting the notion that WBI induces dys-
function in cerebrovascular endothelial cells, which 
in turn likely contributes to the detrimental long-term 
effects of the treatment. This endothelial dysfunction 
resembles an accelerated aging phenotype in the cer-
ebrovascular system and is likely causally linked to 
the development of cognitive impairment. By inte-
grating these findings with our previous results, we 
have deepened our understanding of the lasting con-
sequences of WBI. Moreover, our study underscores 
the critical role of cerebromicrovascular health in 
safeguarding cognitive function over the long term. 
This enhanced understanding highlights the impor-
tance of prioritizing cerebromicrovascular health in 
the context of preserving cognitive abilities.

Keywords  Senescence · WBI · WBRT · whole 
brain radiation therapy · aging · vascular cognitive 
impairment · VCI · dementia

Introduction

Brain metastases rank as the second most frequent occur-
rence in cancer patients, with an incidence ranging from 
10 to 30% among individuals with systemic malignancies 
[1, 2]. Whole brain irradiation (WBI) represents a widely 
employed therapeutic approach for patients afflicted with 
multiple brain metastases. While WBI effectively pro-
longs overall survival in individuals with cancer, it is 

distressing to note that more than half of the long-term 
survivors experience a gradual deterioration in cognitive 
function following WBI [3–9]. This cognitive decline sig-
nificantly diminishes their quality of life and contributes 
to escalated healthcare expenses. Intriguingly, laboratory 
studies on animals have corroborated these clinical find-
ings, as they demonstrate a progressive impairment of 
cognitive performance in response to WBI, thereby simu-
lating the cognitive side effects observed in patients sub-
jected to WBI treatment [3, 8, 10–14].

Recent advancements in preclinical investiga-
tions have provided valuable insights into the under-
lying mechanisms behind these deleterious effects, 
unveiling a complex injury within the cerebrovascu-
lar system [14–17]. This injury entails the activation 
of cellular senescence in diverse constituents of the 
neurovascular unit, including endothelial cells [15]. 
The emergence of cellular senescence subsequent to 
WBI has been linked to disruptions in the blood-brain 
barrier and impairments in neurovascular coupling 
responses post-irradiation [15].

It is worth noting that post-mitotic cells, such as 
mature neurons, are generally regarded as radioresist-
ant. In contrast, proliferating cells within the neuro-
vascular unit, specifically microvascular endothelial 
cells, demonstrate sensitivity to the damaging effects 
of ionizing radiation [15, 18]. Normal endothelial 
function in the cerebral microcirculation plays a mul-
tifaceted role in the preservation of cognitive health. 
An accumulating body of preclinical and clinical evi-
dence highlights the critical, complex role of radia-
tion-induced neurovascular and cerebromicrovascular 
injury in the manifestation of cognitive decline subse-
quent to WBI [13, 19–22]. Importantly, WBI-induced 
neurovascular injury associates with impaired neu-
rovascular coupling responses [14, 15] and a decline 
in capillary density within the hippocampus, a phe-
nomenon referred to as “cerebromicrovascular rar-
efaction” [19–21]. Maintaining microvascular health 
is also crucial for preserving the integrity of the 
blood-brain barrier (BBB) [23, 24]. Strong evidence 
suggests that WBI and γ-irradiation-induced micro-
vascular injury contribute to BBB disruption [25–33], 
leading to neuroinflammation [34, 35].

One key aspect of endothelial function is the cru-
cial role of endothelial NO-mediated vasodilation 
in regulating and maintaining cerebral blood flow 
(CBF). Endothelial cells release NO in response 
to various stimuli, including neurotransmitters and 
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gliotransmitters (e.g., acetylcholine, ATP) and shear 
stress. NO acts as a potent vasodilator, relaxing the 
vascular smooth muscle cells and pericytes surround-
ing cerebral blood vessels, thereby decreasing resist-
ance and increasing blood flow to active brain regions. 
This dynamic regulation of CBF is essential for supply-
ing oxygen and nutrients to the brain and for effective 
wash-out of toxic metabolic by-products, ensuring opti-
mal neuronal activity and synaptic plasticity. Further-
more, endothelial NO-mediated vasodilation is integral 
to the preservation of neurovascular coupling response, 
a critical hoeostatic process that ensures that increases 
in neuronal activity are matched with enhanced CBF 
to sustain neuronal function [36–51]. Importantly, 
intact endothelial function and NO-mediated vasodila-
tion serve as a protective mechanism against ischemic 
events in the brain. The ability of endothelial cells to 
respond and dilate blood vessels helps maintain optimal 
blood flow even under conditions of reduced oxygen 
supply. Inadequate endothelial function compromises 
this protective response, rendering the brain more sus-
ceptible to ischemic damage and impairments in cog-
nitive function. Taken together, normal endothelial 
function in the cerebral microcirculation is critical for 
the preservation of cognitive health. Despite the impor-
tance of endothelial NO-mediated vasodilation in regu-
lation and maintenance of adequate CBF, the effects of 
WBI on it have not been well characterized.

Building upon the aforementioned findings, the pre-
sent study aims to test the hypothesis that WBI-induced 
endothelial injury promotes endothelial dysfunction, 
which mimics the aging phenotype. To investigate this 
hypothesis, we employed a clinically relevant fraction-
ated WBI protocol (5 Gy twice weekly for 4 weeks) on 
young mice. Both the WBI-treated and control mice 
were fitted with a cranial window, enabling the assess-
ment of microvascular endothelial function. In order to 
evaluate the endothelium-dependent, NO-mediated cer-
ebral blood flow (CBF) responses, we topically admin-
istered acetylcholine and ATP, and measured the result-
ing changes using laser Doppler flowmetry.

Materials and methods

Experimental animals and experimental design

C57BL/6J (3 months old, n = 20) male mice were 
purchased from the Jackson Laboratories (Bar 

Harbor, ME) and housed three per cage in the spe-
cific pathogen free animal facility at the University 
of Oklahoma Health Sciences Center (OUHSC). 
Animals were kept on a 12-h light/dark cycle and fed 
standard rodent chow and water ad  libitum, follow-
ing standard husbandry techniques. One week before 
radiation treatment, mice were transferred to the con-
ventional facility (OUHSC) and housed under similar 
conditions. Mice were anesthetized and subjected to 
clinical series of WBI (n = 8, 5 Gy twice weekly for 
a total cumulative dose of 40 Gy) or used as a control 
group (n = 8). Mice were left to recover for 3 months 
in the original environment. At the end of the recov-
ery period, mice were experimentally tested for cer-
ebromicrovascular endothelial function. All animal 
protocols were approved by the Institutional Animal 
Care and Use Committee of OUHSC.

Fractionated whole brain irradiation protocol

After acclimating to the conventional facility for 1 
week, mice were randomly assigned to either con-
trol or irradiated groups. Animals were weighed and 
anesthetized via i.p. injection of ketamine and xyla-
zine (100/15 mg per kg). Mice in the irradiated group 
were subjected to clinically relevant WBI (5 Gy 
twice weekly for a total cumulative dose of 40 Gy) 
[17]. Radiation was administered using a 137Cesium 
gamma irradiator (GammaCell 40, Nordion Interna-
tional). A Cerrobend® shield was utilized to mini-
mize exposure outside the brain. The radiation dose 
received by the mice was verified using film dosim-
etry, as described [13, 14, 16, 21].

Assessment of cerebromicrovascular endothelial 
function

To determine how accelerated brain senescence 
induced by WBI affects cerebromicrovascular func-
tion, CBF responses elicited by the endothelium-
dependent vasodilator agents acetylcholine and ATP 
were assessed at 3 months post WBI treatment. Mice 
in both groups were anesthetized with isoflurane (4% 
induction and 1% maintenance), endotracheally intu-
bated, and ventilated (MousVent G500; Kent Sci-
entific Co, Torrington, CT). A thermostatic heating 
pad (Kent Scientific Co, Torrington, CT) was used 
to maintain rectal temperature at 37 °C [52]. The 
right femoral artery was canulated for arterial blood 
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pressure measurement (Living Systems Instrumen-
tations, Burlington, VT). The blood pressure was 
within the physiological range throughout the experi-
ments (90–110 mmHg). Mice were immobilized and 
placed on a stereotaxic frame (Leica Microsystems, 
Buffalo Grove, IL), and the scalp and periosteum 
were pulled aside. Mice were equipped with an open 
cranial window, and changes in CBF were assessed 
above the left somatosensory cortex using a laser 
Doppler probe (Transonic Systems Inc., Ithaca, NY), 
as described [39, 52, 53]. The cranial window was 
superfused with artificial cerebrospinal fluid (ACSF, 
composition: NaCl 119 mM, NaHCO3 26.2 mM, KCl 
2.5 mM, NaH2PO4 1 mM, MgCl2 1.3 mM, glucose 
10 mM, CaCl2 2.5 mM, pH = 7.3, 37 °C). To assess 
microvascular endothelial function, endothelium-
dependent, NO mediated CBF responses to topical 
administration of acetylcholine (ACh; 10−5 mol/L)), 
and ATP (10−6 mol/L)) were obtained following 
established protocols [45]. In each study, the experi-
menter was blinded to the treatment of the animals. 
At the end of the experiments, the animals were killed 
by decapitation. All reagents used in this study were 
purchased from Sigma-Aldrich (St Louis, MO) unless 
otherwise indicated.

Statistical analysis

The data are presented as means ± standard error of 
the mean (SEM). Statistical analysis was conducted 
using the GraphPad Prism 8 software (La Jolla, CA, 
USA) [50, 54]. Student’s two-sample T-test was 
employed to compare the experimental results, and 
differences were deemed significant at p < 0.05.

Results

WBI induces persisting endothelial dysfunction

In order to determine whether WBI results in persist-
ing cerebromicrovascular endothelial dysfunction, 
we assessed endothelium-dependent vasodilation in 
the cerebral cortex in mice at 3 months post-WBI. 
We found that CBF responses in the somatosensory 
cortex elicited by acetylcholine were significantly 
decreased in WBI-treated mice compared to control 
animals indicating impaired endothelial function at 
3 months post-irradiation (Fig. 1A). In control mice, 

topical administration of ATP also resulted in sig-
nificant CBF increases in the somatosensory cortex, 
whereas these responses were significantly attenuated 
in WBI-treated mice (Fig. 1B).

Discussion

Our study aimed to investigate the hypothesis that 
WBI-induced endothelial injury promotes endothe-
lial dysfunction, mimicking the aging phenotype. The 
results of our study provide compelling evidence of 
persisting cerebromicrovascular endothelial dysfunc-
tion following WBI. At 3 months post-irradiation, 
we observed a significant decrease in endothelium-
dependent vasodilation in the cerebral cortex of 
WBI-treated mice compared to control animals. Spe-
cifically, the CBF responses elicited by acetylcholine 
were markedly impaired in WBI-treated mice, indi-
cating compromised endothelial function. Addition-
ally, the CBF responses induced by ATP, another 
endothelium-dependent vasodilator, were signifi-
cantly attenuated in WBI-treated mice, further con-
firming the presence of endothelial dysfunction.

These findings align with previous studies dem-
onstrating the detrimental effects of WBI on cerebro-
microvascular health (Fig.  2). Endothelial cells play 
a crucial role in regulating CBF flow through the 
release of NO, a potent vasodilator, which relaxes 
vascular smooth muscle cells and pericytes. Impaired 
endothelial NO-mediated vasodilation decreases 
basal CBF and compromises the dynamic regulation 
of regional CBF, impeding the delivery of oxygen, 
nutrients to active brain regions, and the effective 
clearance of metabolic by-products. Consequently, 
this disruption in CBF can adversely affect neuronal 
activity and synaptic plasticity, contributing to cogni-
tive impairment [41].

The observed persisting endothelial dysfunction 
in WBI-treated mice adds to the growing body of 
evidence implicating cerebromicrovascular and neu-
rovascular injury in the development of cognitive 
decline following WBI (Fig. 2). Our findings extend 
the results of previous studies demonstrating a decline 
in capillary density within the hippocampus, the cer-
ebral cortex, and/or the white matter in response 
to WBI [13, 17, 19–21, 55]. Irradiation-induced 
microvascular rarefaction likely exacerbates the 
negative effects of impaired endothelium-mediated 
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microvascular dilation and neurovascular coupling 
responses, compromising cerebral blood supply and, 
subsequently, cognition (Fig.  2). Furthermore, intact 
endothelial function is crucial for maintaining the 
integrity of the blood-brain barrier (BBB). Disruption 
of the BBB, as observed in WBI and γ-irradiation-
induced microvascular injury [25–33], can lead to 
neuroinflammation and contribute to the genesis of 
cognitive impairment [34, 35] (Fig. 2).

One crucial mechanism underlying the detrimental 
effects of γ-irradiation on endothelial cells involves 
the generation of persistent DNA damage, triggering 
a chronic stress response known as cellular senes-
cence [15, 18, 56, 57] (Fig. 2). Compelling evidence 
indicates that cerebromicrovascular endothelial cells 
(CMVECs) are particularly vulnerable to DNA dam-
age induced by γ-irradiation, leading to the acquisi-
tion of senescent phenotypes in cultured CMVECs 
[18]. When cellular senescence is induced in culture, 
irradiated CMVECs undergo cell cycle arrest, dis-
play significant morphological changes, and develop 
a senescence-associated secretory phenotype (SASP), 
characterized by an increased secretion of pro-
inflammatory cytokines [18]. The growing preclini-
cal evidence highlights the contribution of senescent 

endothelial cells and their SASPs to the pathogene-
sis of microvascular disorders and cognitive decline 
associated with aging [49]. Moreover, studies in 
genetically modified mice, where cells expressing 
the senescence marker p16INK4A were depleted, 
have shown promising outcomes. These mice exhibit 
prolonged median lifespan, improved overall health, 
restored microvascular function, and enhanced cogni-
tion [58–67], providing further support for the pivotal 
role of cellular senescence in brain and cerebromicro-
vascular aging [49, 68–70].

Building upon these findings, our recent studies 
have demonstrated that eliminating senescent cells 
in WBI-treated mice yields protective effects on the 
regulation of cerebral blood flow and preserves cog-
nitive performance [15]. These observations highlight 
the significance of targeting cellular senescence as a 
potential therapeutic strategy to mitigate the adverse 
consequences of WBI on cerebromicrovascular health 
and cognitive function (Fig. 2). Expanding upon these 
significant findings, our recent studies have provided 
compelling evidence that the elimination of senescent 
cells in WBI-treated mice confers remarkable protec-
tive effects on multiple aspects of cerebromicrovas-
cular health and cognitive function [15]. Notably, the 

Fig. 1   Whole brain irradiation (WBI) induces persistent 
endothelial dysfunction in the cerebral circulation. Laser Dop-
pler probe measurements were utilized to assess changes in 
cerebral blood flow (CBF) in the cerebral cortex of mice fol-
lowing topical perfusion of the endothelium-dependent vaso-
dilator agents acetylcholine (A) and ATP (B) at 3 months 
post-WBI. Bar graphs depict summary data. Importantly, both 

acetylcholine and ATP-induced CBF responses in the soma-
tosensory cortex were significantly reduced in WBI-treated 
mice compared to control animals, indicative of impaired 
endothelial function persisting at 3 months post-irradiation. 
Data presented are mean ± S.E.M. (n = 8 for each data point). 
*P < 0.05 vs. control
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elimination of senescent cells was found to rescue 
neurovascular coupling responses [15]. The impaired 
neurovascular coupling observed in WBI-treated 
mice was ameliorated when senescent cells were tar-
geted, suggesting a restoration of the intricate inter-
play between neurons, astrocytes, and endothelial 
cells within the neurovascular unit. This restoration 
of neurovascular coupling responses is of paramount 
importance as it ensures an adequate supply of oxy-
gen and nutrients to active brain regions, thereby sup-
porting optimal neuronal function. Furthermore, the 
elimination of senescent cells also exhibited a pro-
found impact on preserving the integrity of the blood-
brain barrier (BBB) in WBI-treated mice (Gulej et al. 
2023 in press). Targeting senescent cells not only 
improves vasodilator function of the endothelial cells 
and restores BBB integrity but also likely mitigates 
the associated neuroinflammatory responses, thus 
providing a holistic therapeutic avenue to alleviate 
the genesis of cognitive decline following WBI treat-
ment. These observations hold immense potential 

for the development of novel translational therapeu-
tic strategies that can counteract the adverse conse-
quences of WBI on cerebromicrovascular function 
and cognitive performance, ultimately improving the 
quality of life for individuals undergoing brain irra-
diation treatments. In the cerebral microcirculation, 
CMVECs are interconnected via specialized channels 
called gap junctions, facilitating the transfer of sol-
utes and cytoplasmic signals [71]. This arrangement 
enables the formation of a functional syncytium [71], 
where a single senescent endothelial cell can directly 
influence the function and characteristics of neigh-
boring CMVECs. Moreover, senescence can propa-
gate within the microcirculation through the exposure 
of neighboring cells to paracrine factors released by 
senescent CMVECs, known as the senescence-asso-
ciated secretory phenotype (SASP). This phenom-
enon, referred to as paracrine senescence or senes-
cence-induced senescence, can result in the spread 
of senescence to adjacent cells. As a consequence, 
the increased presence of senescent endothelial and 

Fig. 2   Proposed scheme for the contribution of neurovascu-
lar senescence and endothelial dysfunction to WBI-induced 
cognitive decline. γ-irradiation induced DNA damage and 
cellular senescence in cells of the neurovascular unit, includ-
ing endothelial cells, perivascular microglia, and astrocytes. 
Endothelial senescence results in functional and struc-
tural impairment of the cerebral microcirculation, including 
endothelial dysfunction, impairment of neurovascular coupling 
responses, and microvascular rarefaction, all of which con-
tribute to a significant decline in cerebral blood flow (CBF). 
γ-irradiation-induced neurovascular senescence disrupts the 

blood brain barrier, exacerbating neuroinflammation. Height-
ened inflammatory status of the neurovascular unit, due to 
endothelial senescence and the increased secretion of pro-
inflammatory SASP factors from senescent microglia and 
astrocytes exacerbates cerebromicrovascular dysfunction and 
neuroinflammation. The resulting ischemic and inflammatory 
foci play a role in the pathogenesis of cognitive impairment. 
The model predicts that the aforementioned senescence-related 
structural and functional cerebromicrovascular alterations syn-
ergize to promote cognitive impairment in patients treated with 
WBI
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astroglial cells in the brains of WBI-treated mice is 
anticipated to impact a substantial portion of the cere-
bral microcirculatory network. Conversely, the elimi-
nation of senescent cells through treatment with seno-
lytics is likely to confer protective effects throughout 
the entire cerebral microcirculation.

In this study, we have endeavored to provide valu-
able insights into the effects of WBI on cerebromicro-
vascular endothelial function. However, it is impera-
tive to acknowledge certain limitations that impact 
the interpretation and generalizability of our findings, 
including the lack of comprehensive data on sys-
temic cardiovascular function. Future research could 
also explore WBI-induced transcriptomic changes in 
endothelial cells, including changes in mRNA and 
protein expression of NOS isoforms and potential 
alterations of the local renin-angiotensin II system 
[72, 73].

In conclusion, our results support the hypoth-
esis that WBI-induced endothelial injury promotes 
endothelial dysfunction, resembling the aging pheno-
type. The observed persisting endothelial dysfunction 
in WBI-treated mice contributes to our understanding 
of the long-term consequences of WBI and the role of 
cerebromicrovascular health in preserving cognitive 
function. Further research is warranted to elucidate 
the precise mechanisms underlying WBI-induced, 
senescence-related endothelial dysfunction, and its 
impact on cognitive decline, with the ultimate goal of 
developing targeted therapeutic strategies to mitigate 
these adverse effects.
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