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data generated from nearly 1000 human blood or 
buccal swab samples. We evaluated different pre-
processing methods for age estimation, investigated 
the association of epigenetic age acceleration (EAA) 
with various lifestyle and sociodemographic factors, 
and undertook a series of novel genome-wide asso-
ciation analyses for different EAA measures to find 

Abstract DNA methylation (DNAm) clocks hold 
promise for measuring biological age, useful for 
guiding clinical interventions and forensic identi-
fication. This study compared the commonly used 
DNAm clocks, using DNA methylation and SNP 
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associated genetic variants. Our results highlighted 
the Skin&Blood clock with ssNoob normalization as 
the most accurate predictor of chronological age. We 
provided novel evidence for an association between 
the practice of yoga and a reduction in the pace of 
aging (DunedinPACE). Increased sleep and physi-
cal activity were associated with lower mortality risk 
score (MRS) in our dataset. University degree, veg-
etable consumption, and coffee intake were associ-
ated with reduced levels of epigenetic aging, whereas 
smoking, higher BMI, meat consumption, and man-
ual occupation correlated well with faster epigenetic 
aging, with FitAge, GrimAge, and DunedinPACE 
clocks showing the most robust associations. In addi-
tion, we found a novel association signal for SOCS2 
rs73218878 (p = 2.87 ×  10−8) and accelerated Grim-
Age. Our study emphasizes the importance of an 
optimized DNAm analysis workflow for accurate esti-
mation of epigenetic age, which may influence down-
stream analyses. The results support the influence of 
genetic background on EAA. The associated SOCS2 
is a member of the suppressor of cytokine signaling 
family known for its role in human longevity. The 
reported association between various risk factors 
and EAA has practical implications for the develop-
ment of health programs to improve quality of life 
and reduce premature mortality associated with age-
related diseases.

Keywords DNA methylation age · Epigenetic 
age acceleration · Epigenetic clock · Yoga · Coffee · 
SOCS2

Introduction

DNA methylation (DNAm) is a well-studied epi-
genetic modification with an age-related pattern of 
changes that can serve as a surrogate measure of bio-
logical aging in various tissues. Therefore, several 
DNAm age estimators have been developed to quan-
tify epigenetic aging as a powerful tool for monitor-
ing the effectiveness of geroprotective interventions 
[1, 2] or to precisely predict calendar age in forensic 
research [3]. The commonly used DNAm-based age 
estimators, known as DNAm clocks, consider various 
aspects of the aging process and vary in the preci-
sion of predicting age or the strength of association 
with various diseases. The first generation of DNAm 

clocks was trained on chronological age on mixed-age 
samples, ranging from children to older adults, using 
CpG sets with strongly time-dependent alterations 
in methylation patterns. These DNAm clocks such 
as Hannum [4], Horvath2013 [5], and Skin&Blood 
clock [6] estimate DNAm age in units of years, and 
the difference between their calculated DNAm age 
and chronological age can show that an individual 
is biologically younger or older than expected. Cor-
responding measures of age-adjusted epigenetic age 
acceleration (EAA) have been shown to be associated 
with different age-related health conditions such as 
obesity [7], all-cause mortality [8], physical and cog-
nitive fitness [9], as well as various lifestyle-related 
risk factors [10], and diseases such as Down syn-
drome [11] or Alzheimer’s disease [12].

Subsequently, the second generation of DNAm-
based prediction models shifted to predicting health 
span and life span rather than chronological age. 
These models, which aim to capture time to death, 
include the PhenoAge clock [13], which is trained 
on information obtained from clinical biomarkers of 
physiological status and additional information from 
chronological age, and the GrimAge clock [14], a 
mortality risk estimator trained on DNAm-based sur-
rogate measures of plasma proteins, and pack-years of 
smoking, plus sex and age. The corresponding age-
adjusted GrimAge Acceleration (GrimAgeAccel) was 
reported to outperform the EAA measures obtained 
from first-generation clocks and PhenoAgeAccel in 
predicting time to cancer and time to coronary heart 
disease.

Another type of DNAm model is a speedometer of 
the pace of aging, DunedinPoAm [15] and its newer 
version DunedinPACE [16]. These are trained on 
DNAm surrogate measures of clinical biomarkers, 
similar to second-generation clocks, while instead of 
being trained on mixed-age samples, they are longitu-
dinal estimates of biological aging in same-age indi-
viduals. The output of PoAm and PACE is reported 
as a measure of age-related physiological decline 
per year and is strongly associated with physical fit-
ness, cognitive ability, and facial aging. Also, recently 
a novel DNAm base indicator of biological aging, 
named DNAmFitAge, has been developed, based on 
blood-based DNAm surrogate measures for fitness 
parameters plus DNAm GrimAge. Physically  fitter 
individuals showed younger DNAmFitAge associated 
with decreased risk of mortality and coronary heart 
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disease [17]. Yet a new concept of DNAm age clock 
is emerging, aiming to capture changes observed in 
various biological processes and functions, based on 
a complex systems theory of aging, which suggests 
that the hallmarks of aging are caused by disruptions 
in the integration of regulatory mechanisms [18, 19].

Applying different DNAm age clocks simultane-
ously to a given dataset shows a weak correlation 
between different EAAs [20] and their disagreement 
in association with health conditions. This may indi-
cate that, due to a different set of information and 
samples used to train the models, the biological aging 
measures obtained by individual calculators may dif-
fer and relate to different aspects of the aging process 
[16]. Therefore, a mechanistic understanding of the 
underlying biology of the measure captured by each 
clock is important to select the appropriate model 
for a given biological study [21]. On the other hand, 
while the difference between DNAm age and calendar 
age appears to be biologically meaningful in medical 
research, other criteria define the appropriate DNAm 
clock for forensic purposes. The first generation of 
DNAm clocks show practical values in suspect iden-
tification by accurately predicting chronological age 
[5, 6, 22–25]. In addition, biological age and individ-
ual pace of aging, derived from the second and third 
generation of DNAm estimators, respectively, can be 
informative for forensic purposes in predicting age-
related physical appearance traits [26–28].

In the current study, we applied different DNAm 
age prediction models to the novel set of methylation 
array data to compare the outputs of different epige-
netic clocks available in the literature. To increase the 
reproducibility of the methylation data, the selection 
of the best preprocessing method to control different 
known or unknown noises is critical, since the reli-
ability of the outputs of DNAm clocks is sensitive 
to technical variations [29]. Therefore, we assessed 
the effect of different commonly used preprocess-
ing methods on the accuracy of the age predicted by 
each clock to suggest the most effective and precise 
model for chronological age prediction. In addition, 
we presented statistical characteristics of epigenetic 
aging in the Polish population and assessed the asso-
ciation of different epigenetic age measures with soci-
odemographic data and lifestyle-related risk factors to 
further evaluate the relevance of each clock in aging 
research. Finally, we performed a series of novel 
genome-wide association studies on various EAA 

parameters to assess the effect of genetics vs. environ-
ment on the rate of epigenetic aging.

Material and methods

Study design

The number of 741 blood and 221 buccal swab 
samples, obtained from healthy Polish individu-
als (age range 20–81  years; mean ± SD: 46.5 ± 14.7, 
49.7 ± 17.8 for blood and buccal swabs, respectively), 
were analyzed. Samples were collected from volun-
teers as part of the Polish epigenome project to col-
lect methylation and SNP data representative of the 
Polish population. For the purposes of the analyses 
performed in this study, relatives and individuals 
under the age of 20 were excluded. Written informed 
consent forms were obtained from all participants and 
the study was approved by the Bioethics Committee 
of the Jagiellonian University in Krakow (decision 
no. 1072.6120.132.2018). DNA was extracted using 
an automated method and the Maxwell RSC Blood 
DNA Kit (Promega Corporation), and next assessed 
for purity using NanoDrop (Thermo Scientific, MA, 
USA), and for concentration using the Qubit dsDNA 
HS Assay Kit (Thermo Fisher Scientific).  SNP data 
were collected using the Global Screening Array 
(GSA, Illumina, San Diego, CA) with 200 ng as the 
input DNA material. For the purpose of DNA meth-
ylation profiling, the amount of 500 ng of DNA per 
sample was subjected to bisulfite conversion using the 
EZ-96 DNA Methylation kit (Zymo Research Corp., 
CA, USA) following the manufacturer’s instructions 
for Infinium assays. The DNA methylation profile, for 
samples randomized using the web-based application 
RANDOMIZE [30], was obtained using the Illumina 
Infinium Methylation EPIC microarray (Illumina, San 
Diego, CA, USA) [31].

Participants

For each participant, demographic characteristics, 
lifestyle data, and dietary information were collected 
through a comprehensive self-report questionnaire. 
Education, occupation, socioeconomic status, and 
place of residence were reported by the participants. 
Education level was divided into two categories and 
those with no university degree (primary school, high 
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school, or vocational school) were compared to par-
ticipants with a university degree. In addition, self-
reported socioeconomic status (SES) was collected. 
We asked participants to define their socioeconomic 
status as very low, low, average, and above average, 
and we suggested that they consider several key fac-
tors that may collectively affect their quality of life, 
including their income, education, occupation, pro-
fessional status, and wealth. For the purpose of sta-
tistical analyses, the categorization of socioeconomic 
status was simplified from four to three categories 
by combining the categories low and very low into 
“low,” average into “medium,” and above average 
into “high” SES. Place of residence was catego-
rized as village, city with less than 100,000 inhabit-
ants (City < 100 K), and city with more than 100,000 
inhabitants (City > 100 K). Job type was categorized 
as physical/manual, mental work partially sedentary 
(up to 4  h per day; sedentary mental; SM), mental 
work only sedentary (more than 4  h per day; long 
hours sedentary mental; LSM), or retired/unem-
ployed. For statistical comparisons, the unemployed/
retired group was excluded from the analyses. Harm-
ful factors in the workplace were also recorded, 
including low/high temperature in the workplace, 
exposure to pesticides/chemicals, toxins/heavy met-
als/air pollution, ionizing radiation, sun, and stress.

The physical activity levels of the participants 
was also recorded. Self-reported physical activity, 
described as any type of physical activity (e.g., exer-
cising, jogging, cycling), was collected, and those 
who reported being active at least once a week or 
every day were classified as active, and those who 
reported being active once a month or not at all were 
classified as inactive. Data were also collected on the 
specific types of physical activity engaged in and cat-
egorized into three types of physical activity: aerobic 
(e.g., soccer, volleyball, basketball, running, jogging, 
dancing, karate, swimming, fishing, walking, tennis, 
and cardio), strengthening (e.g., bodybuilding, body 
shaping, cross fit, weight lifting, strength training, and 
gym), and yoga/balance. Specific types of physical 
activity was compared with inactivity. Participants’ 
smoking status was categorized into three discrete 
groups: current smokers, former smokers who had 
quit smoking for at least one year or more, and never 
smokers. Frequency of alcohol consumption was 
classified into three categories: non-drinkers, occa-
sional drinkers (drinking once a week), and frequent 

drinkers (drinking at least three times a week). Infor-
mation was also collected on the number of meals 
per day, portion of fruit and vegetables, frequency 
of fish and meat consumption, and cups of coffee per 
day. Sleep hours were recorded and individuals were 
divided into two groups with less than or equal to 8 h 
of sleep and more than 8  h of sleep. Detailed soci-
odemographic and lifestyle-related characteristics are 
reported in Table S1.

DNA methylation analysis, preprocessing, and 
quality control

Primary quality control of the generated DNAm data 
was done using GenomeStudio software (Methylation 
Module v1.8, Illumina Inc, 2008). The Illumina inter-
nal controls and background subtraction were applied 
to the samples. The internal control metrics were 
generated, considering Illumina-recommended cut-
offs, and samples were filtered based on the Illumina 
guide. Further quality control and preprocessing steps 
were done using R version 4.2.2.

After loading raw data files into R, low-quality 
samples and probes were filtered based on the thresh-
old of 0.05 detection P-values. Then minfi package 
was used to apply different preprocessing steps for 
background correction and probe-type and dye-bias 
adjustment. Five different preprocessing pipelines 
were used including the Illumina pipeline, imple-
mented in the GenomeStudio Methylation Module 
and the minfi package, subset-quantile within array 
normalization (SWAN), a single sample of normal-
exponential out-of-band (ssNoob) background correc-
tion method, Quantile and Functional normalization 
(FunNorm) [32–37].

DNA methylation age estimation

Different DNAm-based biomarkers were calculated 
using DNAm predictors including the DNAm Age 
(Horvath2013) [5], DNAm Age Hannum [4], DNAm 
Age Skin&Blood [6], DNAm PhenoAge [13], DNAm 
GrimAge [14], and DNAm FitAge [17]. Respective 
epigenetic age acceleration (EAA) measures were cal-
culated, as the residuals of the DNAm age regressed 
on chronological age, respectively as the intrinsic 
epigenetic age acceleration (IEAA), extrinsic epige-
netic age acceleration (EEAA), DNAm Skin&Blood 
age acceleration (Skin&BloodAgeAccel), DNAm 
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PhenoAge acceleration (PhenoAgeAccel), DNAm 
GrimAge acceleration (GrimAgeAccel), and DNAm 
FitAge acceleration (FitAgeAccel). Also, DNAm-
based pace of aging (DunedinPACE and PoAm) and 
Mortality risk score (MRS) were measured [15, 16, 
38]. Descriptions of the analyzed epigenetic estima-
tors are shown in Table 1.

DNAm ages for each model were obtained using the 
Horvath online calculator, or the R packages includ-
ing methylCIPHER and Methylclock [39, 40]. The 
accuracy of each clock for chronological age predic-
tion was evaluated by calculating the mean absolute 
error (MAE). The MAEs obtained from the output 
of methylclock and methylCIPHER R packages were 
compared to examine the concordance among available 
methods regarding estimating DNAm age. In addition, 
we tested the reliability of the results of various epige-
netic clocks in a set of 47 blood samples for which we 
had access to technical replicates per sample (age range 
23–78). The estimated age was expected to be equal 
for each pair of technical replicates and the deviation 
between two measures in each pair was calculated for 
Horvath2013, Hannum, Skin&Blood, PhenoAge, and 
GrimAge clocks as well as the principal component-
based version of each clock (PC-clocks). The R codes 
available for PC clocks were used for calculating the 
PC version of each model [41]. All the analysis and 
data visualization were done using R packages [42–45] 
in R version 4.2.2 [46].

Statistical analysis

The association of sociodemographic char-
acteristics including education, type of job, 

socioeconomic status, area of residence and life-
style risk factors including stress status, yoga prac-
tice, sleeping hours, physical activity, BMI, smok-
ing status, frequency of alcohol drinking, diet type, 
coffee consumption, vegetable, fruit, and meat 
consumption with different EAA measures includ-
ing IEAA, EEAA, PhenoAgeAccel, GrimAgeAc-
cel, and FitAgeAccel as well as DunedinPACE, 
DunedinPoAm, and MRS was assessed. For each 
set of association analyses, two linear regression 
models were fitted. Firstly, each DNAm biomarker 
was analyzed as the outcome and each sociodemo-
graphic or lifestyle factor at a time was introduced 
as the predictor, adjusting for age and sex (Model 
1). Then, fully adjusted models were fitted for each 
DNAm age acceleration measure as the outcome 
and a single sociodemographic factor of interest as 
the predictor adjusting for age, sex, selected life-
style-related risk factors, including smoking status, 
physical activity, and BMI, as well as blood cell 
compositions [47] (Model 2, full model). In addi-
tion, the results of yoga’s association with epige-
netic aging were adjusted for physical activity, fre-
quency of meat and vegetable consumption, hours 
of sleep, and cups of coffee per day. For EAA 
measures the coefficients were interpreted as the 
degree of epigenetic age acceleration associated 
with the sociodemographic factor. For Dunedin-
PACE, the coefficients were interpreted as a change 
in the rate of aging per year associated with each 
sociodemographic factor. And for the MRS the 
coefficients were interpreted as the score of mor-
tality risk associated with each sociodemographic 
factor.

Table 1  Description of the different epigenetic age estimators

HOC: Horvath Online Calculator https:// DNAmA ge. clock found ation. org/; R code for DNAmFitAge: https:// github. com/ krist enmcg 
reevy/ DNAmF itAge; R code for DunedinPACE: https:// github. com/ danbe lsky/ Duned inPACE

Clock No. CpGs Measured parameter Available method for calculation

Horvath 2013 353 Chronological age HOC, methylCIPHER, methylClock
Horvath Skin&Blood 391 Chronological age HOC, methylCIPHER, methylClock
Hannum 71 Chronological age HOC, methylCIPHER, methylClock
PhenoAge 513 Biological age, health span HOC, methylCIPHER, methylClock
GrimAge 1030 Biological age, mortality risk HOC
FitAge 627 Biological age, fitness biomarkers R code for DNAm FitAge
MRS 10 Mortality risk score methylCIPHER, methylClock
DunedinPACE 173 Pace of aging R code for DunedinPACE

https://DNAmAge.clockfoundation.org/
https://github.com/kristenmcgreevy/DNAmFitAge
https://github.com/kristenmcgreevy/DNAmFitAge
https://github.com/danbelsky/DunedinPACE
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Genome-wide association analysis

Genotyping of DNA samples was conducted using 
the Illumina (San Diego, CA) Global Screening 
Array (GSA 24V3). Primary quality control was 
done using GenomeStudio 2.0 software and vari-
ants with a call rate of 0% were removed. Further 
quality control was conducted using PLINK V1.9 
based on the 0.95 call rate for samples and vari-
ants [48]. Also, variants were filtered based on 
minor allele frequencies (MAF < 0.01) and devia-
tion from Hardy–Weinberg equilibrium (HWE, 
p < 1.0 ×  10−6). Biallelic SNPs mapped to a unique 
genomic location based on GRCh37 were retained 
for further analysis. Sample relatedness was 
checked, and principal component analysis (PCA) 
was done on the pruned SNPs to detect population 
stratification and genetic outliers. Imputation was 
done using Beagle version 5.4 [49].

The genome-wide association study (GWAS) was 
conducted using 719 blood samples and 477,827 
quality-controlled and imputed SNPs on autosomal 
chromosomes to find significant associations with 
different epigenetic age acceleration measures includ-
ing IEAA, EEAA, Skin&BloodAgeAccel, Grim-
AgeAccel, PhenoAgeAccel, FitAgeAccel, PACE, and 
PoAm. Multivariate linear regression adjusted for age 
and sex was used and the p < 5 ×  10−8 (FDR-adjusted 
p < 0.05) was considered for genome-wide statistical 
significance.

Results

The effect of different preprocessing methods on the 
mean absolute error of age prediction

The accuracy of each DNAm age clock was assessed 
through the examination of the impact of different 
preprocessing approaches, with a focus on comparing 
the mean absolute error (MAEs). In blood samples, 
the smallest MAE was obtained for the DNAm age 
Skin&Blood (MAE = 2.47) after ssNoob normaliza-
tion. Also for buccal swab samples, the Skin&Blood 
clock showed the highest accuracy of calendar age 
prediction after ssNoob normalization (MAE = 3.86), 
while in general the calculated MAEs for all DNAm 
age clocks were higher for buccal samples compared 
to blood samples. The results for the PC version of 

all DNAm clocks for buccal swab samples, showed 
a higher MAE compared to the original models, and 
the same results were obtained for blood samples, but 
exceptionally the PC version of the PhenoAge showed 
a smaller MAE than the original models for all nor-
malization methods except quantile normalization 
and the PC version of Hannum age showed a smaller 
MAE compared to the original model after ssNoob 
and Funnorm normalization. The calculated MAEs 
for all models and all normalization methods showed 
consistency between methylclock and methylCIPHER 
R packages. Detailed results of the comparison of the 
effect of different preprocessing methods for different 
clocks are summarized in Tables  S2&S3 and illus-
trated in Fig. S1.

Correlation among different epigenetic age 
acceleration measures

Assessing pairwise correlation indicated a significant 
correlation (r > 0.90, p < 0.05) between chronological 
age and all DNAm ages. The mean and range of each 
DNAm measure were compared among three age cat-
egories: early adulthood (20–39  years old), middle 
adulthood (40–59 years old), and old age (60 + years 
old). It was observed that all DNAm ages increased 
with age as expected, while the trend of EAA changes 
weakly corresponded to the age groups. However, 
the mean of EAAs in middle adulthood was margin-
ally higher than in both early adulthood and old age 
groups. Also, the mean of DunedinPACE, PoAm, and 
MRS showed a slight increase with age categories 
from early adulthood to old age, and the categorical 
form of the mortality risk score showed a broader 
range in old ages. The summary statistics of each 
measure are reported in Table S4 and Figs. S2 & S3. 
The full report of pairwise correlation analysis among 
all DNAm Age measures and calendar age is illus-
trated in Table S5 and Fig. S4.

Assessing the correlation between different DNAm 
age acceleration measures along with the pace of 
aging (DunedinPACE) and the mortality risk score 
(MRS) showed a varied range of correlation coeffi-
cients with the lowest correlation obtained between 
Skin&BloodAgeAccel and MRS (r = 0.05) followed 
by DunedinPACE (r = 0.06) and highest correlation 
between GrimAgeAccel and FitAgeAccel (r = 0.61) 
followed by PACE (r = 0.53). Detailed results for 
pairwise correlations between different EAAs, 
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DunedinPACE, and MRS are shown in Fig.  1 and 
Table S6.

Assessing the association between sociodemographic 
characteristics, different lifestyle-related risk factors, 
and EAAs

The association of each sociodemographic character-
istic or lifestyle-related risk factor with different EAA 
measures was examined using linear regression mod-
els adjusted for age and sex, Table 2. The full models, 
adjusted for age, sex, smoking status, BMI, and phys-
ical activity, together with DNAm-based estimations 
of blood cell compositions, were used for assessing 
the association of each sociodemographic characteris-
tic with different EAAs (Table 3).

Male sex showed a significant association with 
accelerated IEAA (p = 0.02), GrimAgeAccel 
(p = 7.12 ×  10−20), DunedinPACE (p = 0.001), and 
MRS (p = 1.75 ×  10−7), but it was significantly asso-
ciated with younger FitAge (p = 5.37 ×  10−11). Higher 

BMI showed significant association with higher EAA 
values obtained from the second and third generations 
of DNAm age clocks, PhenoAgeAccel (p = 0.04), 
GrimAgeAccel (p = 0.01), FitAgeAccel (p = 0.02), 
DunedinPACE (p = 6.20 ×  10−14), and DunedinPoAm 
(p = 0.01), but not with MRS. In addition, a significant 
association of smoking status showed a consistent and 
dose-dependent effect of cigarette smoking on EAA. 
Former smoking status had a smaller effect on Grim-
AgeAccel (std. beta = 0.1, p = 0.003), FitAgeAccel 
(beta = 0.09, p = 0.01), and DunedinPoAm (beta = 0.1, 
p = 0.007) than current smoking status (Grim-
AgeAccel, beta = 0.41, p = 2.40 ×  10−31; FitAgeAc-
cel, beta = 0.28, p = 6.40 ×  10−14, DunedinPoAm, 
beta = 0.29, p = 1.00 ×  10−15) (Fig.  2); whereas, only 
current smoking status, but not former smoking, 
showed a significant association with DunedinPACE 
(p = 3.10 ×  10−6) and MRS (p = 7.13 ×  10−6). Physical 
activity was associated with slower epigenetic aging 
in the studied population, as measured by all clocks 
tested. Importantly, the effect size of the association 

Fig. 1  Pairwise correlation among DNAm Age acceleration 
measures for different DNAm age clocks. The significance of 
correlation (p < 0.05) is indicated with asterisks  (no stars: not 
statistically significant, one to three stars: significant respec-

tively at 0.1, 0.05, and 0.01 levels). Density plots indicate the 
distribution of each of the DNAm Age acceleration measures 
in the Polish population
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increased with the frequency of physical activity, with 
daily activity showing a highly significant associa-
tion for PhenoAgeAccel (p = 0.006), GrimAgeAccel 
(p = 5.3 ×  10−6), FitAgeAccel (p = 1.34 ×  10−5), and 
PACE (p = 5.2 ×  10−4). Considering different types of 
sports, aerobic exercise was significantly associated 
with GrimAge and PACE. Notably, yoga practice was 
significantly associated with slower DunedinPACE 
(std. beta =  − 0.1, p = 0.003), and the result remained 
significant after additional adjustment for physi-
cal activity, frequency of meat and vegetable con-
sumption, hours of sleep, and cups of coffee per day 
(p = 0.02, Table 2). Increased sleeping hours showed 
significant association with decreased GrimAgeAccel 
(p = 0.007) and lower mortality risk score (p = 0.01). 
We found a significant decrease in epigenetic aging 
with vegetable consumption. Individuals who con-
sumed at least 1–2 servings of vegetables per day 
had slower GrimAge and FitAge (p = 0.01 and 0.04, 
respectively). Frequent meat consumption was found 
to accelerate the process of epigenetic aging, showing 
a significant and positive association with GrimAge 
(p = 0.03) and FitAge (p = 0.003) when daily meat 
consumption was recorded. This result is consistent 
with a positive effect of vegetarianism on reduced Fit-
AgeAccel (p = 0.04). Interestingly, drinking 1–2 cups 
of coffee per day was associated with reduced EEAA 

and PhenoAgeAccel in our population (p = 0.003 and 
0.03, respectively). The comparison of direction and 
effect size obtained for the association of selected fac-
tors with EAAs is shown in Fig. 2.

Educational level (university degree versus no uni-
versity degree) was robustly associated with reduced 
epigenetic aging across different clocks, includ-
ing GrimAgeAccel (p = 1.38 ×  10−6), FitAgeAc-
cel (p = 0.0001), DunedinPACE (p = 1.22 ×  10−6), 
and DunedinPoAm (p = 0.002) in the age and sex-
adjusted models (Table 2). In the fully adjusted model 
university degree was significantly associated with 
decreased GrimAgeAccel (p = 2.0 ×  10−4), FitAgeAc-
cel (p = 0.01), DunedinPACE (p = 4.7 ×  10−5), Dun-
edinPoAm (p = 0.02), and MRS (p = 8.00 ×  10−4), but 
with accelerated IEAA (p = 0.04, Table 3). Compari-
son of self-reported high socioeconomic status (SES) 
with low SES, showed a significant association with 
reduced DunedinPACE (p = 0.02), while no signifi-
cant effects remained in the full model (Table 3). The 
area of residence, comparing residency of cities with 
a population greater or less than 100,000 residents to 
those living in villages, showed no significant associ-
ation with any of the DNAm measures in reduced or 
fully adjusted models in Model 1 or 2. Age- and sex-
adjusted long hours sedentary mental work was sig-
nificantly associated with reduced DNAm GrimAge 

Fig. 2  Presentation of the value and direction of effect sizes 
obtained for age- and sex-adjusted association analysis of 
selected lifestyle and sociodemographic risk factors (each vari-
able at a time) with EAAs. The X-axis shows the range of each 
EAA measure. The Y axis indicates the standardized regres-
sion coefficient of the respective variable from the regression 
model adjusted for age and sex. Variable include Education 
status: University degree versus no university degree; SES: 
High socioeconomic status compared to low SES; type of job: 

long hours sedentary mental (LSM) compared to manual job; 
(PA) physical activity versus inactivity; PA.Everyday: every-
day physical activity vs. inactivity; C.Smoker: current smoker 
versus never smokers; F.Smoker: former smoker vs. never 
smokers; Coffee: 1–2 cups of coffee vs. no coffee; Meat: eve-
ryday meat consumption vs. no meat consumption; Vegetables: 
3–4 portion of vegetables vs. no vegetable consumption; Sleep: 
more than 8 h of sleep vs. less than or equal to 8 h of sleep; 
Aerobic: aerobic exercises vs. no aerobic
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(p = 0.02), FitAge (p = 0.01), and DunedinPoAm 
(p = 0.02), but not in a full model. In addition, in 
model 1, being exposed to extremely high or low tem-
peratures in the workplace was associated with higher 
FitAgeAccel (p = 0.002, 0.007 respectively).

Genome-wide association study identifies novel 
genetic variants for EAA

The genome-wide association analysis for different 
epigenetic age acceleration measures was performed 
on 477,827 SNPs using additive genetic models 
implemented in PLINK [48] and the multivariate 
linear regression adjusted for age and sex. We found 
a genome-wide significant association between 
rs73218878, located in the SOCS2 gene, and DNAm 
GrimAge acceleration (p = 2.87 ×  10−8). This result 
remained statistically significant after accounting 

for other lifestyle factors aside from sex and age, 
such as smoking (FDR = 0.01, p = 3.1 ×  10−8) and 
BMI (FDR = 0.03, p = 5.9 ×  10−8). The result is 
illustrated in the Manhattan and QQ plots in Fig. 3.

In addition to the genome-wide significant result 
at p < 5 ×  10−8, 10 additional SNPs were associ-
ated with GrimAgeAccel at a suggestive thresh-
old (p < 1 ×  10−5) (Table  4).  Among these SNPs, 
rs118072622 located at chromosome 6, and mapped 
to the Crystallin Beta-Gamma Domain Contain-
ing 1 (CRYBG1) gene had the strongest association 
(p = 1.7 ×  10−6).

Discussion

In this study, we showed extensive research 
presenting a wide list of environmental and 

Fig. 3  a QQ-plot for the GWAS on GrimAgeAccel. b Man-
hattan plot showing the results of GWAS analysis for Grim-
AgeAccel. The GrimAgeAccel showed a genome-wide sig-
nificant association (p = 2.87 ×  10−8) with rs73218878 after 

adjusting for age and sex. The red line indicates the genome-
wide significant level (p = 5 ×  10−8) and the blue line indicates 
p = 1 ×  10−5

Table 4  Top 10 
SNPs (p <  10−5) for 
GrimAgeAccel

Number SNP Chr Position Closest reference gene Alleles p

1 rs73218878 12 93975417 SOCS2 C > A, T 2.87e − 08
2 rs118072622 6 106912438 CRYBG1 T > C 1.74e − 06
3 rs11120686 1 216050785 USH2A T > C 3.84e − 06
4 rs117658875 17 50219309 CA10 G > A 4.20e − 06
5 rs17520509 13 67780695 PCDH9 A > C 4.38e − 06
6 rs151037173 20 3089900 UBOX5 A > C 4.46e − 06
7 rs118104025 19 19146732 ARMC6 G > A, T 5.78e − 06
8 rs117006309 15 87952919 LOC105370956 A > C, G 8.24e − 06
9 rs10744533 12 1236286 ERC1/LOC124902857 T > A, C, G 8.30e − 06
10 rs11742455 5 133599786 CDKL3 C > T 9.45e − 06
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demographic factors analyzed for associations with 
epigenetic aging using an exhaustive list of avail-
able epigenetic clocks, while at the same time, we 
analyzed the technical aspects of obtaining reli-
able results for estimating epigenetic age and other 
related parameters. We applied three different 
types of epigenetic predictors, including the most 
recently introduced epigenetic biomarker of fit-
ness, DNAmFitAge, and the updated speedometer 
of the pace of aging, DunedinPACE to quantify 
biological aging in a cohort of > 700 individuals in 
our dataset. Our results, showing a strong correla-
tion between estimated DNAm age values and the 
chronological age, are consistent with the litera-
ture and validate the utility of DNAm Age clocks 
in this dataset. Our results emphasized the effect of 
different methylation array preprocessing methods 
on the accuracy of DNAm age estimations among 
different clocks. In our dataset, the DNAm Skin & 
Blood clock outperformed other models for accu-
rate estimation of chronological age, providing the 
lowest MAE after ssNoob preprocessing for both 
blood and buccal swab samples. In addition, our 
study provided evidence for an association between 
various sociodemographic and lifestyle-related fac-
tors and EAA measures. In particular, we showed 
for the first time that yoga practice is significantly 
associated with lower DunedinPACE and that cof-
fee consumption may be beneficial in reducing 
EEAA and PhenoAgeAccel levels.

The effect of different normalization methods, 
different types of DNAm clocks, and available R 
packages on the accuracy of chronological age 
estimation

DNA methylation arrays are being prominently 
used for capturing age-related DNA methylation 
changes. These changes are pervasive throughout 
the methylome and can be captured by the avail-
able cost-effective methylation array platforms 
such as the updated Infinium Methylation EPIC 
array which interrogates > 850,000 CpGs. How-
ever, the quality of the array data can be affected 
by experimental and technical factors. Our EPIC 
array data analysis highlighted the importance of 
preprocessing strategies for obtaining an accurate 
estimation of chronological age. Comparing the 
MAE obtained from different DNAm clocks after 

applying five different preprocessing methods 
showed that for chronological age estimation, the 
Skin&Blood clock outperforms the Horvath2013 
and Hannum models, and the second generation 
of DNAm clocks, PhenoAge and GrimAge, fol-
lowing the ssNoob method (MAE = 2.47 for blood 
samples and 3.86 for buccal swab samples). This 
result is consistent with previous work introduc-
ing the Skin&Blood clock as a robust age predic-
tor of blood or buccal swab samples for forensic 
applications (reporting the median absolute devia-
tion of 2.5 and 2  years between DNAm age and 
chronological age in blood and buccal swab sam-
ples, respectively) [6]. Besides, partly because of 
the evolving field of methylation array technology, 
different computational methods, including online 
web calculators and different R packages, are intro-
duced to calculate the measure for several existing 
DNAm age clocks. As a result, the estimated age 
for a specific model may show deviation between 
different calculators. Testing available R packages 
for obtaining the DNAm Ages showed slight dif-
ferences at the individual level while the calculated 
MAE showed consistency between methylclock 
and methylCIPHER R packages.

In addition, we compared the performance of 
different DNAm age clocks with their PC version, 
the principal component-based clocks (PC-clocks) 
which are suggested as an alternative method 
to control the reported age estimation noise and 
enhance the reliability of the results of the DNAm 
age clocks [41]. The estimated age for PC-clocks 
after applying the same optimized quality con-
trol and normalization steps indicated in general 
a smaller MAE for original clocks compared to 
their respective PC-versions, suggesting that the 
PC-clocks did not improve the chronological age 
estimation unless for PhenoAge clock with dif-
ferent normalization methods and Hannum age 
clock after ssNoob or Funnorm normalization. On 
the other hand, PC versions revealed an enhanced 
reliability of age estimation between replicates. 
A comparison of 47 pairs of technical repli-
cates revealed a higher noise for DNAm age esti-
mated by the original clocks versus PC versions. 
For instance, the Horvath 2013 clock showed an 
average of 2.74 deviations, ranging from 0.15 to 
9.55 years, for 47 analyzed pairs of technical rep-
licates while the agreement between these samples 
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for the PC-Horvath version was improved on aver-
age by 2 years. Our results support that PC clocks 
may be particularly useful for longitudinal moni-
toring of biological aging or for tracking the effects 
of rejuvenating interventions in clinical trials.

Correlation between different DNAm Age and 
epigenetic age acceleration measures

The results of the pairwise correlation between 
chronological age and estimated DNAm age 
were consistent with previous studies indicating 
a strong correlation for all clocks (r above 0.90). 
Assessing the correlation between respective age-
adjusted epigenetic age acceleration measures 
(EAAs), along with the pace of aging (Dunedin-
PACE) and the mortality risk score (MRS) exhib-
ited varied and weaker correlations. The weakest, 
non-significant correlation was found between 
Skin&BloodAgeAccel and MRS followed by 
Skin&BloodAgeAccel and DunedinPACE, while 
the highest correlation was found between Grim-
AgeAccel and FitAgeAccel (r = 0.61). These 
results suggest that the varied range of correlations 
between different EAA measures obtained from 
various clocks probably reflect their different capa-
bility in capturing different aspects of biological 
aging. We observed the highest correlations among 
second and third-generation clocks and the small-
est correlation between first and third-generation 
clocks. This result was expected since DNAm 
clocks with improved accuracy for forensic age 
estimation (Skin&Blood clock) are constructed 
from CpGs strongly correlated with calendar age, 
which may limit their capability of capturing mor-
tality or morbidity risk. Consistent with our obser-
vation, previous studies also reported that EAA 
from different clocks are not strongly correlated 
[20, 21]. In this regard, a systematic evaluation of 
the correlation between three different epigenetic 
clocks reported that their measures were correlated 
with each other in the range of 0.3 to 0.5, suggest-
ing that the same chronological age individuals 
varied in measures of biological aging calculated 
by epigenetic clocks [50].

Association between sociodemographic 
characteristics and EAA measures

Different sociodemographic and lifestyle-related risk 
factors have been studied as determinants of all-cause 
mortality and aging-related diseases [51]. In our study, 
the highest significance and the largest effect sizes for 
the association with epigenetic age acceleration were 
observed for smoking. The association was found for 
five of the eight clocks analyzed, and the effect was 
stronger in current smokers than in former smokers. 
This is consistent with other research indicating that 
smoking is the predominant cause of epigenetic aging 
[14, 38, 52]. The second factor that showed a strong 
influence on EAA measures in our population is physi-
cal activity. Daily exercise was associated with reduced 
PhenoAge, FitAge, GrimAge, and PACE. This is not 
surprising, as there are several studies in the literature 
showing the beneficial effects of regular exercise on 
slowing epigenetic aging [53–55]. Although we did 
not observe a statistically significant association of 
EAA with strength sport type in this dataset, a previ-
ous study conducted on a smaller group of our popu-
lation enriched for male bodybuilders confirmed the 
positive impact of this type of sport on DNAmFitAge 
[17]. Interestingly, accelerated epigenetic aging has 
been observed elsewhere in elite athletes characterized 
by extremely intense physical training, but a complex 
impact of intense exercises on aging has been hypoth-
esized, suggesting that increased DNA methylation at 
selected loci may potentially contribute to the observed 
lower risk of cardiovascular disease and cancer in elite 
athletes [56].

Importantly, practicing yoga or meditation as a 
mind–body therapy was found in our study to be 
significantly associated with a slower pace of aging, 
and the effect remained significant after adjusting for 
other lifestyle factors, including diet. To the best of 
our knowledge, this is the first study directly link-
ing yoga with epigenetic aging and this result fits in 
well with the decelerating effect of intensive relaxing 
training on DNAm age, reported in a 60-day longitu-
dinal study but calculated based on a different model 
using the methylation level of 5 methylation mark-
ers only [57]. This result may suggest that DNAm 
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age clocks may serve as a proper monitoring tool for 
tracking the effectiveness of relaxing techniques for 
decreasing mortality and morbidity risk. Interestingly, 
reduced mean methylation levels of the tumor necro-
sis factor (TNF), and serum level of immunologi-
cal inflammatory markers were reported in women 
with psychological distress after practicing yoga for 
8 weeks [58, 59]. Also, differentially methylated loci 
were reported through genome-wide methylation 
analysis of a group of adolescents with a history of 
adverse childhood experiences after a one-week mul-
timodal intervention, including daily yoga [60].

Various eating behaviors were also found in our 
study to correlate well with epigenetic measures of 
aging. In particular, meat consumption on a daily 
basis and vegetable consumption were associated 
with increased and decreased aging, respectively. This 
is consistent with the finding that a vegetarian diet 
was associated with slower epigenetic aging. Coffee 
consumption was also associated in our study with 
decreased EEAA and PhenoAgeAccel. Reports on the 
impact of healthy dietary patterns on epigenetic aging 
are available in the literature and conclude that the con-
sumption of red meat is significantly associated with 
accelerated DNAm aging, and this is consistent across 
different clocks [13, 61]. Studies have shown that cof-
fee consumption leaves signatures in DNA methylation 
of human blood [62]. However, due to its known com-
plex components, coffee is thought to have both good 
and bad effects on health, and it seems that the amount 
of coffee consumed matters [63]. To our knowledge, 
this is the first study linking coffee consumption to 
lower EEAA and PhenoAgeAccel. Next, in our dataset, 
longer sleep duration was also associated with lower 
mortality risk score and slower GrimAge. Sleep dura-
tion is a known factor associated with mortality and 
cardiovascular disease [64] and a recent study showed 
that short sleep was associated with GrimAge [65].

Our study provided evidence of accelerated 
DNAm GrimAge and PACE measurement in indi-
viduals with self-reported high socioeconomic level 
compared to those categorized as low SES. However, 
this finding requires further investigation as it lost its 
significance when adjusted for other lifestyle factors. 
There was also a statistically significant decrease in 
GrimAgeAccel, FitAgeAccel, DunedinPACE, and 
DunedinPoAm for participants with a university 
degree. Previous studies reported higher education 
as a protective causal factor associated with lower 

GrimAgeAccel [50] and PhenoAgeAccel [66]. How-
ever, in contrast to the study that showed a significant 
decelerating effect of higher education on the IEAA, 
EEAA, and PhenoAgeAccel [10, 67], in our study, 
higher education level showed a positive direction of 
association with IEAA, which is suggested to track 
both age-related changes in blood cell composition 
and intrinsic epigenetic changes. However, as the 
effect was not significant when adjusted for age and 
sex in model 1, but became marginally significant 
with additional adjustment for additional lifestyle fac-
tors, this result should be treated with caution.

Epigenetic clocks are multifactorial composites 
which makes the mechanistic understanding of their 
underlying biological insights more complicated. The 
clocks are constructed of distinct modules of func-
tionally related CpGs with different time-dependent 
methylation patterns, which probably signal different 
biological consequences. Accordingly, different EAA 
measures were associated with various aging-related 
diseases. Therefore, in an attempt to better understand 
the biological meaning and the differences of the 
signals captured by each clock, multi-omics analysis 
of purified CD14 + monocytes and dorsolateral pre-
frontal cortex tissue indicated shared transcriptional 
associations for Horvath2013, Skin&Blood, Hannum, 
and PhenoAge clocks enriched in pathways linked 
to metabolism, immunity, and autophagy. Also, 
in  vitro analysis assigned the accelerated PhenoAge 
to cellular senescence and mitochondrial dysfunc-
tion [68]. In another study, DNAm age clocks were 
deconstructed into distinct modules of CpGs based 
on their methylation alterations during aging and in 
response to reprogramming factors [69]. This showed 
that the contribution of each category of module to 
the total value calculated by each clock is different. 
That is, the values obtained by the first generation 
of mixed-age and multi-tissue clocks, such as Hor-
vath2013 and Skin&Blood, and partially the Han-
num clock, were mostly captured by age-associated, 
but weakly mortality-associated modules of CpGs. 
The opposite was true for the second and third gen-
eration clocks, such as GrimAge and DunedinPoAm. 
Yet, the PhenoAge clock, as a second-generation 
clock, developed to capture biological age and health 
span based on clinical biomarkers, showed a pattern 
more like the first generation of chronological age 
clocks which may introduce the PhenoAge clock as a 
hybrid model between two generations. It seems that 
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the distribution of the functional modules in a clock 
can determine the differential proportions of signal 
captured by each clock regarding specific aspects 
of epigenetic aging. This may explain why different 
EAAs are moderately correlated, and the disagree-
ment in associations with aging-related outcomes or 
anti-aging interventions. Furthermore, there is still a 
lack of research focusing on individual cytosines and 
their actual role in the aging process. A better knowl-
edge of the biological significance of changes at the 
level of individual cytosines may help in the future to 
understand the importance of the association of indi-
vidual clocks with individual demographics and life-
style type.

SOCS2 is associated with epigenetic age acceleration

Studies have shown that accelerated epigenetic 
age is influenced by genetic variants, suggesting 
a potential genetic component in the regulation 
of epigenetic aging. Previous GWAS analysis on 
EAAs in blood samples identified five genetic loci 
associated with IEAA, and three SNPs associated 
with EEAA and revealed the role of the telomer-
ase reverse transcriptase gene (TERT) in epigenetic 
aging rate and its influence on the overall aging 
process [70]. A meta-analysis of GWAS studies 
on EAAs further explored the genetic architecture 
underlying the EAA and reported several genetic 
loci associated with IEAA and EEAA [71]. Addi-
tionally, a recent GWAS identified 137 genetic 
loci associated with IEAA, EEAA, PhenoAgeAc-
cel, and GrimAgeAccel [72]. Here we performed 
GWAS analysis for different EAA measures and 
found a novel SNP associated with GrimAgeAccel 
at the GWAS level (p < 5 ×  10−8). The rs73218878 
located on chromosome 18 is mapped to the 
SOCS2 gene. This gene encodes a member of the 
suppressor of cytokine signaling (SOCS) fam-
ily, which acts as a negative regulator of cytokine 
receptor signaling through the JAK/STAT pathway. 
It interacts with the cytoplasmic domain of insu-
lin-like growth factor-1 receptor (IGF1R) and is 
involved in the regulation of IGF1R-mediated cell 
signaling. SOCS2 is considered a negative regula-
tor in the growth hormone/IGF1 signaling pathway 
[73, 74]. Previous findings have demonstrated that 
the absence of Socs2 expression leads to reduced 
lifespan in mice with high-growth characteristics, 

indicating the involvement of the SOCS2 gene in 
regulating aging, potentially through its impact 
on plasma IGF1 levels [74]. Additionally, SOCS2 
is known to play critical roles in fat deposition, 
skeletal muscle development, central nervous sys-
tem development, and biogenesis of mitochondria. 
Besides, the expression of fatty acid oxidation 
enzymes, such as MCAD, LCAD, and Cyt C, was 
found to be reduced in response to SOCS2. These 
reductions were consistent with a decrease in free 
fatty acids and the impairment of mitochondrial 
complexes I and III caused by SOCS2. Moreover, 
the inhibition of the JAK2/AMPK pathway, which 
is implicated in fatty acid oxidation, was shown to 
block mitochondrial fatty acid oxidation. Collec-
tively, these studies suggest that SOCS2 negatively 
influences mitochondrial fatty acid oxidation, and 
the LepR/JAK2/AMPK pathway plays a pivotal 
role in this process [75]. This information is inter-
esting because of the disclosed in this study asso-
ciation of the rs73218878 in the SOCS2 gene with 
the GrimAgeAccel, suggesting its role in longevity. 
Importantly, genetic variation in SOCS2 was found 
to be associated with exceptional human longev-
ity in a GWAS of centenarians (individuals who 
reached 100 years or more) [76], but to our knowl-
edge, the direct association of SOCS2 with Grim-
AgeAccel or other epigenetic measures of aging 
has not been reported in the literature so far.

Limitations

In this study, self-declared sociodemographic and 
lifestyle-related risk factors were obtained through 
individual questionnaires, which are associated 
with subjective assessment and are known to suf-
fer from bias and measurement inaccuracies. In 
addition, the lifestyle habits and demographic 
characteristics measured are often different in dif-
ferent  biogeographic populations. In addition, the 
effect of unknown confounders may alter the meas-
urements of the variables analyzed. These potential 
limitations may affect the effect size and consist-
ency of associations of risk factors with DNAm age 
acceleration and other measures. Due to study sam-
ple size limitations, we could not perform GWAS 
replication analyses, but this should be considered 
in the future.
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Conclusions

Here, we present a comprehensive analysis of epige-
netic clocks by examining novel DNA methylation and 
SNP genome-wide data in a well-defined cohort. Over-
all, our analysis revealed that available and emerging 
DNAm age clocks vary in their degree of association 
with different lifestyle or sociodemographic data and 
can capture various aspects of age-related biological 
changes. Reliable quantification of biological aging 
can provide a useful measure for medical research to 
integrate different biomarkers of the aging process into 
a single personalized tool, and effectively monitor the 
benefits of antiaging interventions; therefore, selection 
of the most appropriate model, taking into account the 
differences in the underlying CpG sets used to develop 
these models, is important for interpreting their out-
puts. In addition, the optimized quality control and 
preprocessing methods of methylation array data can 
influence the accuracy of chronological age estimation 
using DNAm clocks. These considerations are also 
important for the application of these algorithms in 
forensic research.

In this study, the most robust associations with 
lifestyle factors were found for FitAge, GrimAge and, 
PACE clocks, while the comparison of effect sizes 
for different lifestyle and sociodemographic factors 
showed that smoking has the greatest impact on epi-
genetic aging, followed by BMI, meat and vegetable 
consumption, and physical activity. We provide evi-
dence of an association between higher levels of edu-
cation and a biomarker of physical fitness, FitAgeAc-
cel, and other EAA measures. More importantly, we 
provide the first evidence for the beneficial effects of 
yoga practice on slowing the pace of aging (PACE), 
and we show that drinking coffee can help reduce 
epigenetic aging as measured by the Hannum and 
PhenoAge clocks. We provide new insights into the 
underlying genetic architecture of EAA by identify-
ing a genome-wide significant association between 
the SOCS2 variant and accelerated GrimAge. Given 
the known role of the SOCS2 gene in longevity, this 
finding may have significant implications for epige-
netic rejuvenation research. In addition, the provided 
summary statistics of epigenetic aging in the Polish 
population may be useful to compare the trend and 
causal risk factors of the aging process in different 
populations.
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