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Abstract Shorter leukocyte telomere length (LTL)
is associated with cardiovascular dysfunction.
Whether this association differs between measured
and genetically predicted LTL is still unclear. Moreo-
ver, the molecular processes underlying the associa-
tion remain largely unknown. We used baseline data
of the Rhineland Study, an ongoing population-based
cohort study in Bonn, Germany [56.2% women, age:
55.5+14.0 years (range 30 — 95 years)]. We calcu-
lated genetically predicted LTL in 4180 participants
and measured LTL in a subset of 1828 participants
with qPCR. Using multivariable regression, we
examined the association of measured and genetically
predicted LTL, and the difference between measured
and genetically predicted LTL (ALTL), with four
vascular functional domains and the overall vascular
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health. Moreover, we performed epigenome-wide
association studies of three LTL measures. Longer
measured LTL was associated with better microvas-
cular and cardiac function. Longer predicted LTL was
associated with better cardiac function. Larger ALTL
was associated with better microvascular and car-
diac function and overall vascular health, independ-
ent of genetically predicted LTL. Several CpGs were
associated (p<1e-05) with measured LTL (n=5),
genetically predicted LTL (n=38), and ALTL (n=27).
Genes whose methylation status was associated with
ALTL were enriched in vascular endothelial signal-
ing pathways and have been linked to environmental
exposures, cardiovascular diseases, and mortality.
Our findings suggest that non-genetic causes of LTL
contribute to microvascular and cardiac function
and overall vascular health, through an effect on the

G. Pehlivan
e-mail: Goekhan.Pehlivan@dzne.de

N. A. Aziz
Department of Neurology, Faculty of Medicine, University
of Bonn, Bonn, Germany

M. M. B. Breteler

Institute for Medical Biometry, Informatics

and Epidemiology (IMBIE), Faculty of Medicine,
University of Bonn, Bonn, Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11357-023-00914-2&domain=pdf
http://orcid.org/0000-0002-6732-7433
http://orcid.org/0000-0001-6184-458X
http://orcid.org/0000-0003-2762-3227
http://orcid.org/0000-0002-8404-7652
http://orcid.org/0000-0002-0626-9305
https://doi.org/10.1007/s11357-023-00914-2
https://doi.org/10.1007/s11357-023-00914-2

1948

GeroScience (2024) 46:1947-1970

vascular endothelial signaling pathway. Interven-
tions that counteract LTL may thus improve vascular
function.

Keywords Leukocyte telomere length - Polygenic
risk score - Microvascular function - Cardiac
function - Epigenome-wide association

Introduction

Telomeres are repetitive DNA-—protein structures,
comprising thousands of tandem repeats of the TTA
GGG sequence, located at the ends of chromosomes.
They serve to maintain genomic stability and deter-
mine cellular lifespan [1, 2]. With each cell division,
telomere length progressively shortens because of the
inability of DNA polymerase to fully replicate the 3’
end of the DNA strand. When these sequences reach
a critical length, the cellular DNA damage machinery
is activated, which, in turn, triggers cellular senes-
cence [1]. Telomere length is commonly measured as
leukocyte telomere length (LTL), which is relatively
easy to obtain from blood samples and is highly cor-
related with telomere length in other tissues [3]. LTL
considerably varies across individuals [3—6], includ-
ing across those of the same chronological age [7].
LTL has been proposed as a biomarker of biological
aging as it reflects the amount of cellular turnover
within an individual.

Many epidemiological studies have evaluated
LTL in relation to a range of aging-related outcomes,
including all-cause mortality [8§—10], various types of
cancer [11, 12], neurodegenerative diseases [13—-16],
chronic kidney diseases [17, 18], diabetes [19-21],
cardiometabolic risk factors [22-24], and cardio-
vascular diseases (CVDs) [7-10, 19, 21, 25-27].
Although associations of shorter LTL with cardio-
vascular risk factors and CVDs have been repeatedly
shown, observational studies investigating the asso-
ciation between LTL with preclinical vascular phe-
notypes and markers of vascular function, including
endothelial function [28, 29], hemodynamics [30-36],
arterial stiffness [37] and blood pressure traits [23,
24, 27, 34, 38-42] have yielded inconsistent results.
Evidence from in vitro studies suggests that telomere
shortening may be part of the mechanistic pathway
leading to microvascular and hemodynamic dys-
function [4, 43, 44]. Aging and senescence induced

@ Springer

by telomere shortening reportedly cause endothelial
and hemodynamic dysfunction [45-47], and inhibi-
tion of telomere shortening has been shown to restore
endothelial function and prevent the progression of
atherosclerosis [48—-50]. A detailed assessment of the
relation between LTL and quantitative and sensitive
preclinical vascular phenotypes, especially microvas-
cular and hemodynamic function, could substantially
advance our understanding of the role of telomere
length in the pathogenesis of CVDs [4].

LTL has a strong inherited genetic component in
humans, with an estimated heritability ranging from
44 to 86% [51, 52]. Recently, a large genome-wide
association study (GWAS) found 197 independ-
ent sentinel variants associated with LTL, account-
ing for 4.54% of the variance in LTL [53]. Of note,
these variants were located in gene regions involved
in telomere regulation, maintenance, as well as cel-
lular aging and senescence. Large-scale Mendelian
Randomization studies have suggested a causal rela-
tionship between LTL and CVDs [2, 5, 26, 27, 53].
However, to what extent inherited genetic variation
influencing LTL relates to markers of vascular func-
tion remains largely unknown.

Leveraging existing GWAS findings, we created
weighted polygenic risk scores (PRSs) of LTL as
proxies for genetically predicted LTL. This enabled
us to investigate whether and to what extent measured
and genetically predicted LTL, as well as the differ-
ence between the two measures, i.e. telomere length
independent of genetic predisposition, are associated
with vascular function phenotypes, including micro-
vascular function, hemodynamics, arterial stiffness,
and blood pressure, in the general population over
a wide age range. Furthermore, we performed epi-
genome-wide association studies of the three LTL
measures, followed by gene enrichment and pathway
analyses, to gain biological insights into the mecha-
nisms underlying the effects of LTL on vascular
function.

Methods
Study population
Our research was based on cross-sectional baseline

data from the Rhineland Study, an ongoing single-
center, population-based cohort study among people
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aged 30 years and older in Bonn, Germany. All indi-
viduals from the age of 30 years onwards living in
two pre-defined recruitment areas are invited to par-
ticipate in the study. Participants are predominantly
German of Caucasian descent. The only exclusion
criterion is an insufficient command of the Ger-
man language to provide informed consent. A pri-
mary objective of the Rhineland Study is to identify
determinants and markers of healthy aging through
a deep-phenotyping approach. At baseline, partici-
pants complete an 8-h in-depth multi-domain pheno-
typic assessment, and various types of biomaterials
(including blood, urine, stool, and hair) are collected.
Approval to undertake the study was obtained from
the ethics committee of the University of Bonn, Med-
ical Faculty. We obtained written informed consent
from all participants in accordance with the Declara-
tion of Helsinki.

Baseline data of the first 4180 participants of the
Rhineland Study with both genetic data and vascu-
lar phenotype data were used to assess the associa-
tion between genetically predicted LTL and vascular
phenotypes. In a subset of participants, both meas-
ured LTL and vascular phenotypes were available
(n=1828).

Measurement of leukocyte telomere length

LTL was manually measured using the quantitative
polymerase chain reaction (QPCR) method adapted
from the previously published original method [54].
Blood samples were collected between 7:00 to 9:45
in the morning from an antecubital or dorsal hand
vein. Genomic DNA was extracted from buffy coat
fractions of anti-coagulated blood samples using Che-
magic DNA buffy coat kit (PerkinElmer, Germany)
and stored at -80 °C before use. LTL was measured
as the relative quantities (T/S ratio) of the telomeric
TTAGGG repeat (T) and the single copy of a house-
keeping gene, albumin (S). Each reaction contained
25 ng of DNA, 400 nM of the telomere length primers
(tel-forward: ACA CTA AGG TTT GGG TTT GGG
TTT GGG TTT GGG TTA GTGT; tel-reverse: TGT
TAG GTA TCC CTA TCC CTA TCC CTA TCC
CTA TCC CTA ACA) and 200 nM of the albumin
primers (alb-forward: CGG CGG CGG GCG GCG
CGG GCT GGG CGG AAA TGC TGC ACA GAA
TCC TTG; alb-reverse: GCC CGG CCC GCC GCG
CCC GTC CCG CCG GAA AAG CAT GGT CGC

CTG TT) and 1 x SYBR Green PCR Mastermix (iTaq
Universal SYBR Green Supermix). Seven concen-
trations of a reference DNA sample spanning a 128-
fold range of DNA concentration (i.e. from 230 ng/
pl to 3.59 ng/ pl in twofold dilution steps) as well
as the negative controls, were included in every run.
The reactions were performed in triplicates for each
sample using the 7900HT machine (Applied Bio-
systems). At the end of cycling, a dissociation curve
was included to detect abnormal PCR products. A
standard curve of each primer was assessed for qual-
ity control. Primers achieving 90-110% reaction effi-
ciency and an R? across the linear range >0.99 were
considered acceptable. No amplification in negative
controls was acceptable. The Ct (cycle threshold) val-
ues that had a coefficient of variance of more than 1%
of each sample were excluded from further analysis.
The resulting T/S ratio was calculated for each well
and the mean value of the triplicates was reported.

Based on DNA methylation levels, the relative
proportion of twelve leukocyte subtypes, includ-
ing basophils, eosinophils, neutrophils, monocytes,
naive B cells, memory B cells, naive CD4T cells,
memory CDAT cells, regulatory T cells, naive CDST
cells, memory CDS8T cells and natural killer cells,
was derived using the “FlowSorted.BloodExtended.
EPIC” R package, which is based on a reference-
based deconvolution method described by Salas and
colleagues [55]. To investigate the potential effects of
cell type compositions of leukocytes on LTL, we fur-
ther assessed the correlation between measured LTL
and the twelve leukocyte subtypes.

Genetically predicted leukocyte telomere length

DNA was extracted from buffy coat samples and
genotyped using Infinium Omni2.5Exome-8 Bead-
Chip containing 2,612,357 SNPs and processed
using GenomeStudio (version 2.0.5). Quality control
of genotypes was performed using PLINK (version
1.9). Single-nucleotide polymorphisms (SNPs) exclu-
sion criteria were Hardy—Weinberg disequilibrium
(p < 1¥107%), minor allele frequency (<0.01) and poor
genotyping rate (<99%) [56]. Samples with poor
call rate (<95%), abnormal heterozygosity, cryp-
tic relatedness and gender mismatch were excluded.
Since variation in population structure can cause
systematic differences in allele frequencies, we used
EIGENSTRAT (version 16000), which uses principal

@ Springer



1950

GeroScience (2024) 46:1947-1970

components (PCs) to detect and correct for variation
in population structure [57]. Based on the EIGEN-
STRAT estimation, we excluded cases of non-Cauca-
sian descent, retaining only participants from Cauca-
sian descent for analysis. We used the 1000 Genomes
phase 3 reference panel for the imputation of missing
genotypes using impute2 (version 2). To include only
SNPs with high imputation quality, we filtered the
SNPs based on an info score metric > 0.3 [58].
Genetically predicted leukocyte telomere length
was calculated based on two GWASs. Our primary
analyses were based on the GWAS by Codd et al.,
which included 472,174 UK Biobank participants
and identified 197 variants associated with LTL at
genome-wide significance (5*%107%) [53]. Impor-
tantly, these variants were located in gene regions
with known roles in 1) telomere regulation: genes
encoding components of the telomere SHELTRIN
complexes, alternative lengthening of telomeres path-
way and factors that post-translationally modify key
telomere proteins; 2) telomerase regulation: genes
encoding core components of proteins that regulate
the assembly and activity of telomerase and genes
involved in TERC stability, intracellular trafficking
and processing which is important before telomerase
assembly; 3) telomere maintenance: DNA replication,
recombination, and repair. Therefore, these variants
are likely to be causally associated with LTL [53].
Moreover, the 130 SNPs selected by Codd et al. for
their Mendelian Randomization study, which we used
for calculating PRSyrcqq> Were non-pleiotropic. To
remove potentially pleiotropic loci, Codd et al. inves-
tigated the identified variants for association with 558
traits using previously curated data [59]. For each
variant, evidence of pleiotropy was defined as asso-
ciations within at least three different domains, which
led to the selection of 130 conditionally independent,
uncorrelated, and non-pleiotropic genome-wide sig-
nificant instruments [53]. Thus, the identified associa-
tions between genetically predicted LTL and vascular
function are likely through only genetically deter-
mined telomere length. We calculated two weighted
PRS for LTL: PRSgwscoqq included 150 variants that
reached genome-wide significance, and PRSyrcodd
included the MR instrument variants. Individual
SNPs were coded for effect allele dosage associated
with longer LTL, ranging from zero (no effect alleles)
to two (two effect alleles). The published regres-
sion coefficient (beta) estimates representing the
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per-allele effect on normalized LTL were assigned
as weights for each SNP (Table S1). As a sensitivity
analysis, we also created PRSs based on a GWAS by
Li et al., which included 78,592 individuals of Euro-
pean descent [5]. They identified 52 variants inde-
pendently associated with LTL at a false discovery
rate (FDR) <0.05. Among these, 20 sentinel variants
reached genome-wide significance (5%107%); 47 out of
the 52 identified SNPs were available in our genetic
array. PRSppp;; was calculated using 47 variants that
were significant at FDR <0.05 and PRSgywg; was
calculated using the 20 sentinel variants that reached
genome-wide significance. These four PRSs were fur-
ther standardized to have a mean of 0 and a standard
deviation of 1 and were used in the analyses as prox-
ies for genetically predicted LTL.

Difference between measured and genetically
predicted LTL

We defined delta LTL (ALTL: ALTLyrcodd
ALTLGwscodads ALTLpprris ALTLGwsri) as the dif-
ference between measured and genetically predicted
LTL for each participant, and estimated it as the
residual remaining after regressing measured LTL
on PRS of LTL, adjusting for batch information of
measured LTL and the first 10 genetic PCs.

Assessment of microvascular function

Microvascular function was assessed as reactive
skin hyperemia (RSH) with a laser Doppler flowme-
try device (Moors, UK) using a local thermal heat-
ing protocol. Skin blood flow (SBF) was measured
on the ventral surface of the forearm for a total of
26 min. After 2 min of baseline SBF measurement,
the area of interest was heated up to 40 degrees
Celsius with an integrated heating probe, and the
temperature was kept constant until the end of the
examination. The peak in baseline SBF is followed
by a nadir and after approximately 20 min it reaches
a plateau, which is associated with the nitric oxide
production capacity of the endothelial cells [60].
RSH was calculated as the percentage increase
in SBF from baseline to the last 2 min of plateau
level ([(Plateau SBF—Baseline SBF) / Baseline
SBF)] x 100).



GeroScience (2024) 46:1947-1970

1951

Assessment of hemodynamic parameters

Hemodynamics was quantified as cardiac index
(CI, L/min/m?), systemic vascular resistance index
(SVRI, dynes/sec/cms/mz) and stroke index (SI,
mL/m?). Cardiovascular examinations were per-
formed in temperature-controlled rooms after the
acclimatization of the participants in the study
centers. Pulsatile, resistive and flow-related hemo-
dynamics were obtained beat-to-beat in the supine
position after 5 min of rest with an impedance car-
diography device, which registers simultaneously
electrocardiography (ECG) signals and measures
blood pressure at 2-min intervals. Briefly, car-
diac output (CO, L/min) was computed as stroke
volume (SV, mL) multiplied by heart rate (beat
per minute). CI was computed as CO divided by
body surface area (BSA, m?). SVRI was calculated
as mean arterial pressure (MAP, mmHg) divided
by CO, multiplied by 80. SI was computed as SV
divided by BSA.

Assessment of arterial stiffness

Arterial stiffness was quantified as total arte-
rial compliance index (TACI, mL/mmHg/m2),
aorta-femoral pulse wave velocity (PWV, m/s)
and Ankle-Brachial Index (ABI). TACI was deter-
mined as dividing SV with brachial pulse pressure
(PP, mmHg) and BSA. An integrated oscillomet-
ric femoral blood pressure cuff was used to deter-
mine aorta-femoral pulse wave velocity (PWYV,
m/s). The propagation time of the pulse wave was
estimated as the delay between the opening of the
aortic valve determined with impedance cardiog-
raphy (ICG) waves and the arrival of the pulse
wave to the mid-femoral cuff. PWV was calcu-
lated as the distance measured between the supra-
sternal notch and the mid-femoral cuff divided
by propagation time. Ankle-Brachial Index (ABI)
was approximated as systolic blood pressure
(SBP, mmHg) measured at the ankle divided by
SBP measured at the upper arm on the same body-
side, and measured separately for the left and
right body sides. The lower value of ABI was used
in the analyses in cases where ABI was lower than
1.40, otherwise, the higher value was used, as rec-
ommended previously [61].

Assessment of blood pressure

Systolic blood pressure (SBP, mmHg) and diastolic
blood pressure (DBP, mmHg) were measured three
times (separated by ten minutes intervals), using an
oscillometric blood pressure device (Omron 705 IT).
The measurements were performed while people
were sitting in a resting chair in a quiet environment,
and the average of the second and third measurements
was used for further calculation. Mean arterial pres-
sure (MAP) was calculated as (SBP+2xDBP)/3.
Pulse pressure (PP) was defined as the difference
between SBP and DBP.

Assessment of overall vascular health

An overall vascular health index was calculated as an
average Z-score based on nine vascular phenotypes,
including reactive skin hyperemia, cardiac index,
systemic vascular resistance index, stroke index,
total arterial compliance index, pulse wave velocity,
ankle-brachial index, mean arterial pressure and pulse
pressure.

Demographic and health variables

We included age, sex, and education level as demo-
graphic covariates. Education level was grouped as less
than high school, high school, or higher. Smoking status
was defined as current smokers or non-current smokers.
Body mass index (BMI) was calculated as weight in
kilograms divided by height in meters squared.

Statistical analysis

Data were summarized as mean =+ standard deviation
(SD) or counts with proportions, for continuous and
categorical variables, respectively. All vascular phe-
notypes and LTL measures were standardized using
z-scores before further analyses to enable a better
comparison of the effect sizes across different physi-
ological domains.

Association of measured LTL, genetically predicted
LTL, ALTL with vascular phenotypes

We used multiple linear regression analyses to

assess the association between measured LTL and
each vascular phenotype. Models were adjusted for
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age, sex (women versus men), batch information of
LTL, smoking status (current smokers versus non-
current smokers) and BMI (model: vascular pheno-
type ~measured LTL +age+sex+batch information
of LTL + BMI+smoking status). As a previous study
found that controlling for leukocyte compositions
attenuated the association between LTL and cardio-
vascular risk factors by between 10 to 20% [23], we
further adjusted for cell type proportions estimated
from the same DNA samples, using a previously
described method [55], as a sensitivity analysis.

To assess the association between measured and
genetically predicted LTL, we first evaluated whether
the previously reported genetic variants of LTL were
associated with measured LTL in our cohort. Next,
we examined the association between PRS and meas-
ured LTL. Third, we assessed the association between
PRS and each vascular phenotype. All analyses were
performed using multiple linear regression, adjusting
for age, sex (women versus men), the first 10 genetic
principal components (PCs) to account for population
stratification, smoking status (current smokers ver-
sus non-current smokers) and BMI (model: vascular
phenotype ~PRS of LTL +age + sex +first 10 genetic
PCs+BMI+smoking status). Finally, the associa-
tion between ALTL and each vascular phenotype was
assessed while adjusting for age, sex (women versus
men), PRS, smoking status (current smokers ver-
sus non-current smokers) and BMI (model: vascular
phenotype ~ ALTL 4 age 4+ sex + BMI 4+ smoking sta-
tus+PRS of LTL). Our primary analyses were based
on PRSGwscoda and PRSypeoad- AS sensitivity analy-
ses, we also perform the analyses with PRSgpr;; and
PRSGwsLi:

To assess whether age and sex modified the asso-
ciations between LTL and vascular phenotypes, we
added interaction terms for the interaction between
age and sex with vascular phenotype to the regression
models. In case of significant interaction effects, addi-
tional sex-stratified analyses were performed.

All statistical analyses were performed using R
version 3.5.2. All standardized effect estimates are
reported with their 95% confidence intervals (ClIs).
We had very specific a priori hypotheses regarding
the associations of telomere length with microvascu-
lar and hemodynamic function based on the literature
[4, 43—47], therefore, we did not correct for multiple
testing for the association between LTL measures and
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vascular phenotypes and set the level of statistical sig-
nificance at P <0.05.

Epigenome-wide association study of LTL measures
and gene enrichment analyses

We investigated the associations between LTL meas-
ures (independent variable) and DNA methyla-
tion level (dependent variable) using multiple linear
regression while adjusting for age, sex, batch effects,
blood cell proportion, and the first 10 genetic PCs.
FDR adjustment was applied to account for multiple
comparisons: FDR adjusted q<0.05 was considered
epigenome-wide significant, while p < 1e-05 was con-
sidered to indicate suggestive significance.

Cytosine-phosphate-Guaniene sites (CpGs) show-
ing associations with LTL measures at p < 1e-05 were
searched in EWAS Catalog [62] and EWAS Atlas
[63] to identify associated traits reported in previ-
ous EWAS. We also searched the known associa-
tions of the mapped gene for each CpG in previously
published GWAS using the GWAS catalog [64]. We
conducted further gene enrichment analyses using
Gorilla [65] based on a significance-ranked gene list
(i.e. from the lowest to the highest p-value of the cor-
responding CpG site) and summarized the results
using the REVIGO tool [66]. We also conducted
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis using the R missMethyl package
[67].

Results

We included 4180 participants (56.2% women) with
data on PRS of LTL and vascular phenotypes, with
a mean age of 55.5 years (SD=14.0 years, range
30 — 95 years). In the subset of 1828 participants
with additionally measured LTL data, the mean
age was 54.8 years (SD=14.1 years, range from 30
— 95 years), and 56.8% were women. The two data-
sets did not statistically significantly differ regarding
age, sex and BMI distribution. A summary of the
characteristics of the study population is provided in
Table 1.

Measured LTL was strongly associated with chron-
ological age: measured LTL decreased 0.006 SD
per year [95% CI: (-0.007, -0.005), p-value <2e-1].
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Table 1 Characteristics of the study population

Participants with
genetically predicted
LTL data (n=4180)

Participants with meas-
ured LTL data” (n=1828)

Adjusted p-value*

Age, year

Mean (SD)

Median [Min, Max]
Sex, n (%)

Women

Men

Body mass index, kg/m?,
mean (SD)

Current smoking, n (%)

Measured LTL,
mean (SD)

Vascular phenotypes, mean (SD)
Reactive skin hyperemia
Cardiac index, L/min/m?
Systemic vascular resistance index, dynes- sec/cm’/m?
Stroke index, mL/m?
Total arterial compliance index, mL/mmHg/m>
Pulse wave velocity, m/s
Ankle-Brachial index
Systolic blood pressure, mmHg
Diastolic blood pressure, mmHg
Mean arterial pressure, mmHg

Pulse pressure, mmHg

55.5 (14.0) 54.8 (14.1) 0.10
55.0 [30.0, 95.0] 54.0 [30.0, 95.0]

0.32
2349 (56.2%) 1038 (56.8%)
1831 (43.8%) 790 (43.2%)
25.8 (4.4) 25.8 (4.6) 0.50
512 (12.2%) 257 (14.1%) 0.05
- 1.0 (0.3) -
499 (492) 485 (447) 0.06
3.2(0.5) 3.2(0.5) 0.64
2120 (469) 2120 (475) 0.13
52.1(8.7) 51.7 (8.5) 0.01
1.1(0.3) 1.0 (0.3) 0.01
6.8 (2.9) 6.9 (3.6) 0.12
1.2 (0.1) 1.1(0.1) 0.25
127 (16.1) 128 (16.5) <0.01
75.4 (9.3) 76.9 (9.6) <0.01
92.6 (10.6) 93.9 (10.9) <0.01
51.6 (10.5) 51.7 (10.7) 0.14

LTL leucocyte telomere length, SD standard deviation

# Participants with measured telomere length data (n=1828) is a subset from 4180 participants with genetically predicted LTL data

* Comparison between two datasets, adjusted for age and sex

Compared to men, women’s measured LTL were 0.02
SD longer [95% CI: (0.05, 0.01), p-value=0.04] (Fig-
ure S1). Measured LTL was weakly correlated with
leukocyte subtypes (all r <0.23, Figure S2).

The association between measured LTL and vascular
phenotypes

Longer measured LTL was associated with bet-
ter microvascular function and cardiac index: each
SD increase in measured LTL was associated with
0.20 SD (95% CI: 0.03, 0.37) increase in reactive
skin hyperemia, and 0.19 SD (95% CI: 0.01, 0.37)
increase in cardiac index. Longer measured LTL was
also associated with a lower systemic vascular resist-
ance index, although this association did not reach
statistical significance [-0.13 SD change (95% CI:

-0.30, 0.04)]. Measured LTL was not significantly
associated with arterial stiffness or blood pressure
phenotypes (Fig. 1). The associations between meas-
ured LTL and microvascular and cardiac function
remained significant after further adjustment of cell
type proportions.

The associations of the previously reported variants
and PRS of LTL with measured LTL

When evaluating individual SNPs that had previ-
ously been associated with LTL by Codd et. al [53],
we could replicate the genes (loci) with established
roles in telomere biology: TERC (rs2293607) and
TERT (rs2853677, rs138895564, 1s79717857) regu-
late the formation and activity of telomerase; STN1/
OBFC (rs9419958, rs10748858), RTEL1 (rs2259797,
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Fig. 1 The association between leukocyte telomere length
measurements and vascular phenotypes. Abbreviation: LTL,
leukocyte telomere length; ALTL, difference between meas-
ured LTL and genetically predicted LTL; PRS, polygenetic
risk score; FDR, false discovery rate; GWAS, genome-wide
association study; CI, confidence interval; SD, standard devia-
tion. PRSGwscoaq includes 150 variants at the genome-wide
significance level (5%107%) and PRSyrcoqq includes 100 con-
ditionally independent, uncorrelated and non-pleiotropic vari-
ants used as instruments for Mendelian Randomization (MR)
in a previously study by Codd et al. [53]. PRSgpg;; includes

rs8114049, rs187577818) and CTC1 (rs75664430)
regulate the telomere structure; SAMHDI
(rs6030416) and TYMS (rs111811424) regulate
the nucleotide metabolism (Table Sla). Regarding
other variants, although the p-values did not reach
statistical significance, the direction of the associa-
tions and the magnitude of the estimates were quite
similar to those reported previously. The replication
results on prior GWAS by Li et al. [5] were quite
similar: we replicated the previously reported top
variants, including rs10936600 (TERC), rs2853677
(TERT), 159419958 (OBFC1), 1575691080 (STMN?3),
with the same direction and even larger effect sizes
(Table S1b).

All PRSs were associated with longer measured
LTL in our cohort: each SD increase in PRSs was
associated with around 0.14 SD increase (95% CI:

@ Springer

dLTLgwsLi ¢

dLTLrpRi

47 variants at false-discovery rate<0.05 and PRSgysp; of
LTL includes 20 variants at genome-wide significance level
(5*107®). Models for each LTL measurement: Vascular phe-
notype ~measured LTL+age+sex +batch information of
LTL+body mass index+smoking status; Vascular phe-
notype~PRS of LTL (PRSyrcoad/PRSawscoad! PRSeprri/
PRSGwsi;) +age+sex+first 10 genetic principal compo-
nents +body mass index +smoking status; Vascular pheno-
type~ALTL (dLTLygrcoad!  9LTLGwscoad/ dLTLgpRy /dLTL-
Gwst) +age+sex+body mass index +smoking status+PRS
of LTL

0.10, 0.19) in measured LTL. Taken together, these
findings support the reliability of our LTL meas-
urements and further validate the derived genetic
instruments.

The association between genetically predicted LTL
and vascular phenotypes

Longer genetically predicted LTL was associated
with a better cardiac function (0.04 SD increase (95%
CI: 0.01, 0.07) in cardiac index per SD increase in
PRSGwscoda ad PRSyrcoqe)- In the sensitivity analy-
sis, an increase in PRSgysgp; but not PRSgpp;; was
associated with a better cardiac index, indicating that
the PRS calculated using the genome-wide significant
sentinel variants associated with LTL was informa-
tive and included less noise. There was no significant
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association of genetically predicted LTL with arterial
stiffness traits and blood pressure (Fig. 1). The asso-
ciations between genetically predicted LTL and vas-
cular phenotypes were virtually identical in the subset
of 1828 participants with measured LTL data.

To explore which variants drove the associations
between PRS and cardiac index, we further inves-
tigated the associations of the individual genetic
variants with cardiac index. Alleles mapping to
distinct genes, including CDA, SLC16A4, ACYP2,
LINC01122, SMC4, POTI and STNI (OBFCI), were
associated with cardiac index (Figure S3). These
genes are involved in DNA damage repair and nucle-
otide metabolism, which both play a vital role in cel-
lular senescence [2, 5].

The association between ALTL and vascular
phenotypes

Longer measured than genetically predicted LTL
(higher ALTL) was associated with better microvascu-
lar and cardiac function independent of genetically pre-
dicted LTL: each SD increase in ALTL was associated
with 0.07 SD increase (95% CI: 0.02, 0.12) in reactive
skin hyperemia, 0.08 SD increase (95% CI: 0.02, 0.13)
in cardiac index, and 0.06 SD decrease (95% CI: -0.12,
-0.01) in systemic vascular resistance index. ALTL was
not associated with arterial stiffness and blood pressure
traits. Age and sex did not significantly modify the asso-
ciation of LTL measures with endothelial function and
cardiac index (all interaction P values>0.10). Overall,
both the magnitudes and directions of the associations
with vascular phenotypes were consistent in measured,
genetically predicted LTL and ALTL (Fig. 1).

In addition, we found that ALTL was associated
with the overall vascular health index (Fig. 1). How-
ever, measured LTL and genetically predicted LTL
were not associated with the overall vascular health
index, which indicates that primarily the non-geneti-
cally determined LTL contributes to overall vascular
health.

EWAS of LTL measures and gene enrichment
analyses

We identified 5 CpGs associated with measured LTL
(Fig. 2a), 8 CpGs associated with genetically pre-
dicted LTL (Fig. 2b), and 27 CpGs associated with
ALTL (Fig. 2¢) at p < 1e-05 level.

The CpGs we found associated with measured
LTL have previously been linked to cardiac function
(i.e. electrocardiogram morphology, QT interval, QT
dynamics), and the CpGs associated with genetically
predicted LTL have been linked to blood pressure
traits (Table 2a and 2b). The CpGs associated with
ALTL have been linked to environmental exposure
(i.e. air pollution, nitrogen dioxide exposure, HIV
infection), lifestyle factors (i.e. alcohol consumption,
vitamin B12 supplement) and mortality in previous
EWAS. Moreover, the mapped genes have been pre-
viously associated with CVDs (i.e. coronary artery
disease, myocardial infarction, ischemic stroke) and
other aging-related phenotypes (i.e. cancer, chronic
kidney disease, type 2 diabetes, Alzheimer’s diseases,
hand grip strength, cognition, neurofibrillary tangles,
and cortical thickness) (Table 2c).

Genes, whose methylation status was associated
with ALTL, were enriched in gene sets involved in
the vascular endothelial signaling pathway (i.e. regu-
lation of vascular endothelial growth factor receptor
signaling pathway, cell response to vascular endothe-
lial growth factor stimulus and regulation of Wnt
signaling pathway), regulation of phospholipid meta-
bolic process and regulation of toll-like receptor 4
signaling pathway (Fig. 3 and Table S2). Gene set was
only enriched in the regulation of peptidase activity
for measured LTL and regulation of membrane lipid
distribution for genetically predicted LTL (Table S2).
KEGG pathway analysis revealed that genes linked to
ALTL were related to vascular smooth muscle con-
traction. However, all the pathways did not survive
after multiple comparison corrections (Table S3).

Discussion

Using a hypothesis-driven approach, we systematically
examined the associations of three LTL measures [i.e.
measured LTL, genetically predicted LTL, and the dif-
ference between the two (ALTL)] with sensitive quan-
titative markers of vascular function in the general
population. We found that genetically predicted LTL
was only associated with the cardiac index. Measured
LTL and ALTL were consistently associated with
microvascular function and hemodynamic traits, but
not with markers of arterial stiffness or blood pressure.
The consistent associations of measured and geneti-
cally predicted LTL with cardiac index indicate that

@ Springer
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«Fig. 2 Epigenome-wide association results of leukocyte tel-
omere length measurements. Manhattan plots of the epige-
nome-wide association study (EWAS) results for (a) meas-
ured leukocyte telomere length and (b) genetically predicted
leukocyte telomere length and (c¢) delta leukocyte telomere
length. The x-axis depicts sites ordered by chromosomal posi-
tion with the respective -log;, p-value on the y-axis. The red
dash horizontal line represents the level of significance at
p-value < 1le-05

longer LTL is likely to be causally related to better car-
diac function. Importantly, ALTL was associated with
microvascular function and cardiac index independ-
ent of genetically predicted LTL. Of note, ALTL was
more strongly associated with microvascular function
and cardiac index than genetically predicted LTL. This
suggests that telomere shortening itself, independent
of genetic predisposition, contributes to cardiovascu-
lar dysfunction [68, 69]. Additionally, genes, whose
methylation levels were associated with ALTL, were
enriched in pathways related to vascular endothelial
growth factor function and have been linked to envi-
ronmental exposure, CVDs as well as mortality.

We found that both longer measured LTL as well as
higher ALTL, were associated with better microvas-
cular function. These findings support the notion that
telomere shortening could potentially cause microvas-
cular dysfunction, which is an early feature of athero-
sclerosis and vascular diseases [70]. Although experi-
mental studies have suggested that telomere function
is a crucial determinant of microvascular function [44,
49, 71-74], and some studies have shown that telomere
length is related to other subclinical markers of ather-
osclerosis [35, 75, 76], only a few clinical and epide-
miological studies have investigated the association of
telomere length with microvascular function [28, 29].
One cross-sectional study in 102 patients with a history
of cerebrovascular diseases found shortened telomeric
3’-overhang (G-tail), but not telomere length, to be
associated with microvascular function [29]. Another
cross-sectional study from the LIPGENE cohort
including 88 patients with metabolic syndrome also
found that microvascular function, through high oxida-
tive stress, was associated with shorter telomere length
[28]. Our study, with a larger sample size and a wide
age range among community-dwelling adults, not only
confirms and substantially extends these previous find-
ings but also provides evidence for a causal connection
between shorter telomere length and microvascular
dysfunction at the population level.

The relationship of both measured and genetically
predicted LTL with hemodynamic indices indicates that
telomere shortening may be a biologically important
factor that contributes to the age-related decline in heart
function. Experimental studies highlighted the important
role of cardiac telomere length in heart development,
function and disease [77, 78]. Decreases in telomere
length in cardiomyocytes induced apoptosis and heart
disease [79, 80]. However, there are only a few epidemi-
ological studies assessing the association between LTL
and hemodynamic traits. Of note, we found that LTL-
related genetic variant mapping to Protection of Telom-
eres 1 (POT1) was associated with cardiac index. The
POT1 protein is one of the six core proteins forming the
terminal t-loop shelterin complex of telomere and it is
essential for telomere length maintenance and regulation
[81]. Previous experimental studies have shown that dis-
ruption of POT1 function accelerates telomere shorten-
ing, increases apoptosis, and initiates an ATR-dependent
DNA damage response [81, 82], which potentially acti-
vates immune signaling and chronic inflammation [83].
Moreover, depletion of POT1 has been linked to phago-
cytosis and nitric oxide generation, which is involved
in endothelial dysfunction [84]. Applying a population-
based approach in which we leveraged new genetic find-
ings, our findings support a causal role for shorter tel-
omere length in the pathogenesis of cardiac dysfunction
across the adult life course.

The molecular processes through which telomere
length affects microvascular and cardiac function are
thus far poorly understood. Our EWAS and subsequent
gene enrichment analyses showed that genes, whose
methylation levels were associated with ALTL, were
enriched in pathways related to vascular endothelial
growth factor function. Interestingly, the methylation
status of these CpGs has been previously linked to envi-
ronmental exposures, lifestyle factors as well as mortal-
ity. Moreover, the mapped genes associated with ALTL
have been related to CVDs and other aging-related
phenotypes. These findings have profound implications
for our understanding of cardiovascular senescence
and suggest that counteracting telomere shortening via
non-genetic factors, including nutrition [85, 86], physi-
cal activity [69, 87], and sleep [88, 89], may improve
microvascular and cardiac function, preventing CVDs
independent of the genetic basis of LTL variation.

We found little evidence for an association between
LTL measures, arterial stiffness, and blood pressure
parameters. Prior studies have observed inconsistent
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Fig. 3 Gene ontology enrichment of nearest genes associated
with delta leukocyte telomere length. Red bubble corresponds
to p-value < le-5, pink bubble corresponds to p-value< le-3.
Highly similar GO terms are linked by edges in the graph,
where the line width of the edges indicates the degree of simi-

associations between measured or genetically predicted
LTL and arterial stiffness and blood pressure traits, with
several null results reported [23, 32, 38, 42, 90, 91].
Studies with a larger sample size identified associations
between measured/genetically predicted longer LTL
with higher blood pressure, but not with arterial stiff-
ness [24, 53]. Moreover, these 197 identified independ-
ent genomic variants associated with LTL increased the
amount of explained variance in LTL [53]. However,
there is an incomplete understanding of the biological
underlying mechanism of telomere length with regard to
blood pressure traits.

Our study has both strengths and limitations.
Strengths of our study include the wide coverage of the
vascular phenotypes, the inclusion of individuals across
a wide age range from the general population, as well as
the availability of estimates of both measured and geneti-
cally predicted LTL. This enabled internal validation of
the PRS of LTL in our cohort, as well as the derivation
of another metric, ALTL, which allowed estimation of
the difference between measured LTL and genetically
predicted LTL in relation to vascular phenotypes, inde-
pendent of genetically predicted LTL. Indeed, we were
able to replicate the previously identified top hits related

positive neuron

larity. The placement (position and distance) of the nodes indi-
cates the similarity of the GO terms, which is determined by
a ‘force-directed’ layout algorithm used in REVIGO tool [66]
that aims to keep the more similar nodes closer together

to LTL and were able to construct PRSs of LTL based
on SNPs with clear relevance to telomere biology, further
supporting the biological plausibility of our findings. The
availability of robust PRSs of LTL allowed us to provide
evidence for a causal role of telomere length in cardio-
vascular senescence and dysfunction. Moreover, we per-
formed an EWAS of three LTL measures (i.e. measured
LTL, genetically LTL, and ALTL), which allowed us to
further explore the mechanistic insights underlying the
role of telomere length in microvascular and cardiac
function. A limitation of our study is the lack of longitu-
dinal follow-up data, which precluded the assessment of
causality. Moreover, LTL was only measured in a subset
of participants, however, there was no significant differ-
ence between two datasets. Furthermore, some SNPs
previously identified to be associated with LTL were not
available on our genetic arrays; however, PRSs created
based on two GWAS showed similar results with vascu-
lar phenotypes.

In conclusion, both measured and ATL were consist-
ently associated with microvascular and cardiac function.
The association between validated PRSs of LTL and car-
diac index supports a causal role for telomere shortening
in the pathogenesis of cardiac dysfunction. Importantly,

@ Springer
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genes, whose methylation levels were associated with
ALTL, were involved in vascular endothelial growth fac-
tor function pathways. These findings implicate telomere
shortening in the mechanistic pathways underlying car-
diovascular dysfunction and CVDs. Combined with prior
studies, our data provide evidence that lifestyle interven-
tions may not only reduce the risk of CVDs but also other
age-related disorders [92, 93]. These findings also sug-
gest that besides lifestyle interventions that can slow tel-
omere shortening, the development of (pharmacological)
treatments that target telomere shortening [94, 95], might
improve microvascular and cardiac function independent
of the genetic basis of LTL variation, preventing CVDs,
and potentially also other age-related diseases.
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