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Abstract  Using mouse models and high-through-
put proteomics, we conducted an in-depth analy-
sis of the proteome changes induced in response to 
seven interventions known to increase mouse lifes-
pan. This included two genetic mutations, a growth 
hormone receptor knockout (GHRKO mice) and a 
mutation in the Pit-1 locus (Snell dwarf mice), four 
drug treatments (rapamycin, acarbose, canagliflozin, 
and 17α-estradiol), and caloric restriction. Each of 

the interventions studied induced variable changes 
in the concentrations of proteins across liver, kidney, 
and gastrocnemius muscle tissue samples, with the 
strongest responses in the liver and limited concord-
ance in protein responses across tissues. To the extent 
that these interventions promote longevity through 
common biological mechanisms, we anticipated that 
proteins associated with longevity could be identified 
by characterizing shared responses across all or mul-
tiple interventions. Many of the proteome alterations 
induced by each intervention were distinct, poten-
tially implicating a variety of biological pathways as 
being related to lifespan extension. While we found 
no protein that was affected similarly by every inter-
vention, we identified a set of proteins that responded 
to multiple interventions. These proteins were func-
tionally diverse but tended to be involved in peroxi-
somal oxidation and metabolism of fatty acids. These 
results provide candidate proteins and biological 
mechanisms related to enhancing longevity that can 
inform research on therapeutic approaches to promote 
healthy aging.

Keywords  Longevity · Proteomics · Mass 
spectrometry · Mouse model

Introduction

Multiple pharmaceutical, dietary, and genetic interven-
tions have been identified as having longevity-promoting 
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effects in model organisms [1], but there is limited 
understanding of the specific biological mechanisms 
by which these interventions promote longevity. This 
reflects both the multifaceted effects of these interven-
tions as well as the technical limitations involved in 
measuring biological responses at a molecular scale 
across large numbers of features, such as the entire 
suite of expressed proteins, or proteome, in an organism 
or organ. These challenges limit our ability to identify 
mechanisms and subsequently develop targets for thera-
peutic interventions aimed at promoting longevity.

Some of the best-documented longevity-promoting 
interventions in mice and other animals involve factors 
that regulate growth hormone production or response. 
This includes two genetically mutated mouse strains 
that lower mTORC1 signaling, one bearing a growth 
hormone receptor knockout (GHRKO) and another 
with a mutation in the Pit-1 locus (henceforth referred 
to as “Snell dwarf” or “SnellDW” mice) that results 
in a reduction of multiple downstream hormonal fac-
tors [2, 3]. Multiple drugs with diverse physiological 
effects and mechanisms of action have also been iden-
tified as having longevity-promoting effects, including 
rapamycin, acarbose, canagliflozin, and 17-α estradiol 
[4–7]. Finally, chronic caloric restriction has repeat-
edly been shown to promote longevity in mice and 
other animals [1]. Notably, many of these treatments, 
namely acarbose, canagliflozin, and 17-α estradiol, 
have sex-specific effects such that longevity is pro-
moted more strongly in males than females [5–7]. 
Others, such as GHRKO, Snell dwarf, calorie restric-
tion, and rapamycin, have strong longevity-promoting 
effects in both sexes [8].

The degree to which these alterations and treat-
ments affect longevity by targeting the same or differ-
ent biological pathways is still not fully understood. 
However, we have previously described biological 
alterations that were shared among several lifespan-
enhancing interventions. For example, expression of 
GPLD1 in plasma and liver and BDNF and DCX in 
brain tissues were upregulated in GHRKO and Snell 
dwarf mice, and the GPLD1 increase was also seen 
in mice treated with rapamycin, acarbose, and 17-α 
estradiol or in mice fed a calorie-restricted diet [9]. 
A set of proteins whose mRNAs are preferentially 
translated by cap-independent translation is higher 
in Snell, GHRKO, and PAPPA KO mice, as well 
as in mice treated with rapamycin, acarbose, and 
17-α estradiol [10, 11]. METTL3, an enzyme that 

promotes cap-independent translation, is higher in 
the liver and kidney of rapamycin, acarbose, and 17-α 
estradiol [10], as well as in Snell and GHRKO mice 
[11]. Rapamycin, acarbose, and 17-α estradiol also 
lead to the elevation of 4EBP1, a target of mTORC1 
that plays a role in the control of mRNA translation 
[10]. A set of acute phase proteins, including serum 
amyloid protein, hemoxygenase-2, and caspase-6, 
was decreased in the liver of mice treated with rapam-
ycin, acarbose, and 17-α estradiol [12]. A separate set 
of changes, including increases of muscle FNDC5, 
plasma irisin, and adipocyte UCP1, is seen in Snell 
and GHRKO mice [13], as well as in mice on the cal-
orie restriction diet and those treated with rapamycin, 
acarbose, and 17-α estradiol [14]. This growing col-
lection of changes in specific proteins, noted in mul-
tiple varieties of mice rendered long-lived by muta-
tions, calorie restriction, or anti-aging drugs, suggests 
that unbiased proteomic searches might produce evi-
dence for additional shared phenotypes.

Identifying the mechanisms by which such inter-
ventions affect longevity would contribute to our 
understanding of how to promote healthy aging in 
humans. While there have been studies that examined 
the changes in mRNA expression profiles in response 
to many of the interventions that extend lifespan in 
mice [8], similar studies of the changes at the pro-
tein level are not available. The use of high-through-
put mass spectrometry-based proteomics allows the 
assessment of a comprehensive library of proteins to 
enable the identification of such targets. Adopting a 
comprehensive strategy to measure proteome-wide 
effects of longevity treatments while accounting for 
these challenges will allow robust comparisons across 
treatments to identify high-value targets, at both the 
protein and pathway level.

We carried out a study to identify the reper-
toire of proteins and pathways that are affected by 
genetic, dietary, and drug interventions known to 
promote longevity in mice, including two genetic 
manipulations (GHRKO and Snell dwarf), four 
drug treatments, specifically rapamycin (“rapa”), 
acarbose (“aca”), canagliflozin (“cana”), and 17-α 
estradiol (“17aE2”), and calorie restriction (“CR”). 
We adopted a balanced experimental design sam-
pling 264 mice of both male and female mice across 
three genetic backgrounds (UM-HET3 for drug/diet 
treated mice and untreated controls, C57BL/6 for 
GHRKO mice and wildtype controls, and DW×C3H 
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for Snell dwarf mice and wildtype controls) using 
controls matched for sex, age, and genetic back-
ground (Table  1). Using high-throughput mass-
spectrometry, we measured protein abundances in 
mouse livers, kidneys, and gastrocnemius muscle to 
gain insight into proteome changes that might either 
be shared across metabolically active organs or per-
haps be organ-specific. We examined the quantita-
tive proteome responses to these interventions using 
a modeling approach specifically tailored to prot-
eomics data. While we characterized and present 
the responses of all quantifiable proteins measured, 
we specifically sought to identify responses that 
are shared across interventions under the assump-
tion that if these interventions promoted longevity 
through common mechanisms, then the proteins 
related to the longevity-promoting effects are more 
likely to respond similarly across interventions. We 
further inferred the molecular and functional path-
ways that were activated by each intervention to 
investigate whether longevity-promoting interven-
tions act through similar mechanisms even in cases 
where the individual protein responses differ.

Methods

Mouse husbandry and interventions

All the mouse samples were prepared at the Univer-
sity of Michigan in a specific pathogen-free colony. 
Genetic background and husbandry conditions for 
the Snell dwarf and GHRKO mice were described 
previously [19]. Mice used for rapamycin (encap-
sulated, used at 14 ppm), canagliflozin (180 ppm), 
17α-estradiol (14.4 ppm), acarbose (1000 ppm), and 
calorie-restricted samples were of the UM-HET3 
stock, produced as the offspring of CByB6F1/J moth-
ers and C3D2F1/J fathers, as described in [18]. This 
is the stock used by the NIA Interventions Test-
ing Program; the lifespan effects of the four drugs 
are reviewed, with references, in [20]. The calorie-
restricted diet has been shown to extend the lifespan 
in UM-HET3 mice [17]; in the current study, calorie-
restricted mice received 60% of the amount of food 
consumed by age-matched controls. The base diet 
was Purina 5LG6. All four drug treatments, as well 
as calorie restriction, were begun when mice were 4 

Table 1   Experimental design

Intervention Background Sex Number of 
mice

% increase in median 
survival

Reference

GHRKO C57BL/6 Male 9 30 Bonkowski et al. (2006) [15]
Female 9 30

Wild type (control) Male 10 -
Female 10 -

Snell DW DW×C3H Male 10 42 Flurkey et al. (2001) [16]
Female 9 42

Wild type (control) Male 12 -
Female 9 -

Calorie restriction UM-HET3 Male 14 32 Flurkey et al. (2010) [17]
Female 12 40

Rapamycin Male 14 13 Miller et al. (2014) [18]
Female 13 21

Acarbose Male 14 22 Harrison et al. (2014) [5]
Female 13 5

Canagliflozin Male 14 14 Miller et al. (2020) [7]
Female 13 1

17α-estradiol Male 14 12 Harrison et al. (2014) [5]
Female 13 0

Untreated (control) Male 26 -
Female 26 -
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months of age. To monitor specific-pathogen status, 
sentinel mice were exposed to spent bedding for 2 
weeks prior to testing for a set of anti-viral antibod-
ies and ecto-parasites; these tests were done quarterly, 
and all tests were negative for the entire aging colony 
during the experimental period. The protocols were 
reviewed and approved by the University of Michi-
gan’s Institutional Animal Care and Use Committee.

Sample harvesting and preparation

All mice were humanely euthanized at 12 months of 
age. Euthanasia occurred between 8 am and 11 am 
(lights cycled on at 6 am and off at 6 pm) by rapid 
asphyxiation in a bag containing CO2 gas. Mice 
were unconscious within 5 s and stopped breathing 
at about 10 s. The interval between removal from the 
home cage to death was less than 1 min. Mice were 
removed from the bag as soon as breathing ceased, 
and blood was harvested by closed-chest cardiac 
puncture. Tissue sections from the liver, kidney, and 
gastrocnemius muscle were then dissected, flash fro-
zen in liquid N2 immediately after removal, and then 
stored at −80°C until shipment to the proteomics 
laboratory for assessment. Tissue samples stored for 
long periods of time (≥ 9 years) at −80°C have been 
shown to provide at least the same quality of RNA 
and protein (as judged by microcapillary electropho-
resis measurements of total RNA integrity and mass 
spectrometry for proteins) and in the case of RNA 
a superior quality, as storage in vapor phase liquid 
nitrogen [21]. The integrity of proteins during stor-
age is of utmost importance and we have adhered to 
guidelines to ensure our storage conditions met inter-
nationally proposed guidelines [22]. In our experi-
ments, tissues were kept at −80°C throughout, and 
when it came time to section and lyse the tissue sam-
ples, each was then kept on a floating marble tray on 
dry ice to transmit cold and sectioned expeditiously 
before being immediately placed in lysis buffer and 
processed for deep quantitative proteomics mass 
spectrometry-based analysis.

These frozen tissue samples were then processed for 
comprehensive proteome analysis by data-independent 
analysis (DIA) liquid chromatography and tandem mass 
spectrometry (LC-MS/MS). Frozen tissue was lysed in 
50mM ammonium bicarbonate buffer pH 7.55 with 5% 
SDS and homogenized on a Precellys Evolution (Bertin 

Instruments, France) with 2.8-mm ceramic beads (Qia-
gen) for 9 rounds of 20 s at 8500rpm with 30-s rest in 
between. The protein concentration of the lysate was 
determined using the BCA protein assay (Pierce, Cat# 
23227). Lysate containing 200μg protein was aliquoted 
out and denatured for 2 min at 90°C. After denatura-
tion, samples were reduced with 5mM TCEP (Sigma 
Cat# 4706) for 30 min at 60°C and then alkylated with 
10mM α-iodoacetamide (Millipore Cat# 407710) for 
30 min at room temperature in the dark. Samples were 
acidified with phosphoric acid to a final concentration of 
1.2%, and S-Trap buffer (100mM ammonium bicarbo-
nate buffer pH 7.1 + 90% methanol) was added at a 1:7 
ratio prior to loading on a S-Trap 96-well plate (ProtiFi, 
USA). Using a positive pressure, manifold (Resolvex 
M10, Tecan, Switzerland) samples were washed twice 
with S-Trap buffer before overnight digestion at 37°C 
with Trypsin (Promega Cat# V511X) in digestion buffer 
(50mM ammonium bicarbonate pH8.0) at 1:50 ratio. 
Digested peptides were eluted as per the manufacturer’s 
instructions (S-Trap™ 96-well plate protocol version 
1.4). Importantly for normalization, all plates contained 
an even mix of samples from all tissues, arranged sys-
tematically to avoid bias across either rows or columns, 
and in nearly all cases, all three tissue samples from the 
same donor were loaded onto the same plate.

Liquid chromatography and mass spectrometry

Digested peptides were lyophilized and resuspended 
in 0.1% formic acid (FA). Each sample was spiked 
with iRT standard peptides [23, 24] (Biognosys AG, 
Schlieren, Switzerland) and loaded on individual 
Evotips for desalting and washing as per the instruc-
tions (Evosep, Odense, Denmark). Peptides were frac-
tionated by RP-HPLC on a PepSep column, (200 μm 
internal diameter (ID) × 25 cm) packed with ReproSil 
C18 1.5 μm, 120Å resin using a predefined 30 samples 
per day method (~48 min) (Evosep RC.Net 1.3 plugin). 
Mobile phases A and B were 0.1% FA in Milli-Q water 
(Millipore USA) and 0.1% FA in HPLC grade Ace-
tonitrile (ACN) (Aventor, USA), respectively, and cou-
pled to a timsTOF Pro ion mobility time-of-flight mass 
spectrometer (Bruker Daltonics, Bremen, Germany) 
via a CaptiveSpray nano-electrospray ion source. Mass 
spectrometry measurements were acquired in data-
independent acquisition Parallel Accumulation Serial 
Fragmentation (DIA-PASEF) mode. For ion mobility 
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settings, the inversed mobilities from 1/K0 0.57 to 
1.47 Vs/cm2 were analyzed with ion accumulation and 
ramp time of 100 ms, respectively. One survey TIMS-
MS scan was followed by 32 DIA-PASEF scans of 25 
m/z isolation windows (timsControlPy5 schema) cov-
ering 400–1200 m/z precursor spectra and 100–1700 
m/z fragment ion spectra. Singly charged ions were 
excluded using the polygon filter mask.

Hybrid spectral assay library generation and quality 
control

A mouse hybrid spectra assay library was generated 
by combining the project-specific in-house DIA run 
files of three different mouse tissues (kidney, liver, and 
gastrocnemius muscle) with a published comprehen-
sive mouse reference spectral library [25] (available 
at http://​www.​swath​atlas.​org/​PASS0​1569). We imple-
mented a search archive methodology to combine the 
spectral library from multiple sources while maintain-
ing FDR control and homogeneous protein inference. 
Spectra were searched using the Spectronaut Pulsar 
search engine (version 15.4.210913.50606, Biogno-
sys AG, Schlieren, Switzerland) against the full non-
redundant, canonical mouse reference proteome from 
UniProtKB/Swiss-Prot (Proteome ID UP000000589, 
September 2021) with 16,998 reviewed proteins and 11 
iRT peptides appended. Fixed modification mass differ-
ences were included for cysteine carbamidomethylation 
(57.0214 Da) and methionine oxidation (15.9949 Da) 
set as variable modifications. Up to two missed tryptic 
cleavages were allowed. For the search identifications, 
a library-wide FDR was controlled at <1% at PSM, 
peptide, and protein level. A filter of a minimum and 
maximum of 6 fragments per precursor was applied to 
generate a T6 version of the hybrid spectral library.

Spectral assay library quality control using 
DIALib‑QC

The mouse hybrid T6 spectral assay library was eval-
uated using DIALib-QC (http://​www.​swath​atlas.​org/​
DIALi​bQC.​php), a freely available software tool by 
the authors that highlights library’s characteristics, 
completeness, and correctness across 64 parameters 
of compliance [26]. The DIALib-QC assessment 
report for the hybrid spectral library is provided in 
Supplemental Table 8.

DIA‑PASEF data analysis

All mouse tissue DIA mass spectrometry data were 
analyzed with Spectronaut (version 15.4.210913.50606, 
Biognosys AG, Schlieren, Switzerland). The hybrid 
library was used directly as generated and described 
above. The HTRMS converter was used to convert 
the raw .d folders into HTRMS files which were then 
imported into Spectronaut. A nonlinear iRT calibration 
strategy was used for both mass tolerance and XIC RT 
extraction window. Preprocessing of MS1 and MS2 
calibration strategy was enabled. Decoy assays were 
generated using the scambled decoy method with a set 
size as a fraction of the input spectral library size. For 
identification, a normal distribution estimator with 
precursor and protein identification results filtered with 
a q value of <0.01 was used. The peptide quantification 
was estimated by summing theMS2 ion peak areas.

Data processing and normalization

To estimate protein abundances from peptide inten-
sities, we first summed intensity values across all 
charge states for each unique peptide amino acid 
sequence and then log2-transformed the totals after 
adding the constant 1 to each sum to enforce positive 
values. This transformation was done to help ensure 
near-normal distributions for subsequent model fit-
ting. After matching peptides to proteins proteotypi-
cally (i.e., discarding degenerate peptides matching 
to more than one protein), we removed proteins with 
fewer than three proteotypic peptides, as these were 
deemed insufficiently represented given the level of 
inter-peptide variation within proteins. Within each 
tissue, we fit a random, crossed-effects, peptides-by-
sample model to each remaining protein using the 
expectation–maximization (EM) algorithm. To obtain 
an abundance measure for each protein within each 
sample, we calculated the sum of the overall mean 
plus the best linear unbiased predictor (BLUP) for the 
sample based on the estimated random effects. This 
is equivalent to conditioning the sample’s abundance 
estimate on the observation from a typical peptide by 
subtracting the peptide BLUP from the model predic-
tion. In cases where the crossed-effects model could 
not be fit because of insufficient overlap in the pep-
tides that were observed for which samples, a peptide 
fixed-effects estimator (i.e., the overall mean plus 

http://www.swathatlas.org/PASS01569
http://www.swathatlas.org/DIALibQC.php
http://www.swathatlas.org/DIALibQC.php
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the average residual across peptides observed for the 
sample) was used instead.

Prior to statistical analysis, we normalized these 
protein abundance measurements to minimize tech-
nical biases across all samples and organs. We 
first log2-transformed the protein measurements to 
reduce heteroscedasticity and skew and help enforce 
near-normal distributions. Since abundance meas-
ures obtained using mass spectrometry technology 
are unitless, such transformations do not remove or 
alter any biological meaning. We then residualized 
these protein abundance measures by subtracting 
tissue-specific group-by-sex means for each protein, 
subtracted tissue-specific overall mean residuals for 
each protein, and then fit a hierarchical mixed-effects 
linear model in the log-transformed abundance. For 
this model, we entered cubic splines of run order and 
indicators for dissection batch/team as fixed effects 
and included crossed random effects of cage (~100 
levels) and plate (10 levels) in addition to a random 
effect of run position (i.e., well position) nested 
within the plate. We then fit the model on the resid-
ual abundance as described above, employing REML 
estimation (maximization of the residual quasi-likeli-
hood) by the EM algorithm. Model predictions were 
subtracted from the sample protein abundances to 
generate normalized abundances that are comparable 
between samples across proteins and tissues.

Variation in protein abundances due to tissue, sex, 
genetic background, and intervention

To measure the correlation between pairs of tissues 
within mice while accounting for repeated meas-
ures (each protein was potentially measured three 
times per mouse, once for each tissue), we calculated 
a repeated measures correlation coefficient as per 
Bland (1995) [27] using the rmcorr R package [28]. 
For measuring the correlations in protein abundances 
among genetic background or between sexes, we cal-
culated the mean abundance for each protein in the 
controls of each group in the comparison (e.g., UM-
HET3 untreated controls of both sexes for the genetic 
background comparison or male controls of all three 
backgrounds for the sex comparison) and estimated 
the correlation coefficient from a linear model fit to 
these values.

To partition variance in protein abundances among 
mouse-specific factors (sex, genetic background, and 

intervention), we fit a linear mixed effects model 
with sex, background, and intervention nested within 
the background as random effects to the abundances 
of each protein separately to obtain estimates of the 
fraction of the total variation explained by each fac-
tor. We then averaged these fractions across proteins 
to compare the overall variation in protein abun-
dances explained by sex, genetic background, and 
intervention.

Measuring the protein responses to interventions

We developed a custom differential abundance analy-
sis pipeline that we designed to account for many of 
the unique problems and challenges associated with 
proteomics data. First, because there are biases in 
quantification that may differ among peptides/pro-
teins, we applied our pipeline to each protein indi-
vidually, rather than combining information across 
proteins as is often done in pipelines developed for 
gene expression data. Second, our pipeline sepa-
rately accounts for protein detection and abundance. 
Proteomics data is characterized by a high degree 
of “missingness” or unmeasured quantities. This is 
made further problematic since due to the technol-
ogy used, a peptide may not be detected in a sam-
ple either due to biological reasons (e.g., it is either 
absent from the specimen or its abundance is below 
the detection limit) or technological reasons related 
to its specific chemistry or its lack of representation 
in a reference [29]. Misidentification also occurs 
at a very small but still nonzero rate, and stochastic 
(i.e., unexplained) dropout can occur as well, even in 
DIA pipelines [30]. The technical factors influencing 
detection likely differ from the ones that influence the 
abundance quantification.

To account for both differential missingness and 
abundance, we used an exponential hurdle model that 
separately models changes in presence/absence and 
abundance, as implemented in Stata software [31, 
32]. The hurdle model is a two-part model consisting 
of both a selection model, which models the prob-
ability of zero values, and a second that models the 
non-zero values. This model was fit to the normalized 
log2-transformed protein abundances across samples 
within each tissue using mouse intervention and sex 
as independent variables for both parts of the model 
(including an intervention-sex interaction term in the 
abundance model) for each protein that is not detected 
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in every sample in the comparison. For those proteins 
that were detected in all samples (i.e., no “missing-
ness”), we fit a standard linear model instead, also 
using intervention and sex as fully interacted inde-
pendent variables. Proteins detected in less than three 
samples in either intervention or control groups were 
dropped from the analysis.

This modeling framework was used to estimate the 
log2 fold-change and its standard error for each pro-
tein in each tissue for each contrast of interest: each 
drug/diet treatment or genetic manipulation compared 
to its relevant control in a sex-specific manner (i.e., 
within males or females). We calculated a p-value 
associated with this change from the standard errors 
assuming a normal distribution and subsequently 
approximated Bayes factors from these p-values as 
an estimate of the odds against a null effect [33]. We 
then used the log2 fold-change and Bayes factor to 
highlight proteins of large effect. Given the explora-
tory nature of the study and considering sample size 
constraints, we adopted moderately liberal criteria in 
categorizing the responses of proteins in each inter-
vention: unless otherwise noted, we considered a 
protein to be “significantly” affected if it exhibited an 
absolute log2 fold-change greater than or equal to 0.5 
associated with a Bayes factor greater than or equal to 
10. An approximate Bayes factor of 10 for a protein 
suggests at most ten to one odds that an intervention 
affected the abundance of that protein, so the selec-
tion of significant proteins based on the cutoff ≥ 10 
captures all proteins with evidence at least this good, 
while the selection of +/− 0.5 as a minimum log2 
fold-change cutoff was selected in part based on the 
observation that just under 5% of the estimated pro-
tein responses in the liver were above this threshold.

Identifying genetic and functional pathways affected 
by longevity‑promoting treatment.

To provide biological insight into the genetic path-
ways and processes that could be involved in the 
generation of the proteomic patterns observed in our 
data, we performed both a gene set over-represen-
tation analysis and a pathway impact analysis [34]. 
To identify the biological processes that were over-
represented, or enriched, among the proteins that 
exhibited shared responses across multiple longev-
ity-promoting interventions, we first assigned gene 
ontology (GO) terms to each protein in our dataset 

using the Bioconductor package org.Mm.eg.db (ver-
sion 3.17) genome-wide annotation for mouse [35]. 
We then performed a Fisher’s exact test comparing 
the GO terms in the focus set of proteins with the GO 
terms represented in all other proteins in the dataset 
using the “enrichGO” function in the clusterProfiler 
package in R [36]. To determine which pathways 
were most impacted by interventions, we performed 
a pathway impact analysis on KEGG pathways using 
the Pathway-Express algorithm [37] as implemented 
in the ROntoTools package in R [38]. This analysis 
was performed using release 105 of the KEGG data-
base [39]. We performed this analysis separately for 
each intervention-sex combination inputting all pro-
teins, regardless of effect size or Bayes factor, into the 
analysis but weighting each protein’s contribution to 
the perturbation score by the p-value of its response. 
The resulting p-values comparing the perturbation 
scores to the null were FDR-adjusted, and perturba-
tion scores were normalized by the number of down-
stream genes in the pathway.

Results

Variation of mouse proteomes across liver, kidney, 
and gastrocnemius muscle

We first investigated the composition of mouse pro-
teomes across individuals and tissues to identify 
sources of variation and how they relate to the effects 
of longevity-promoting interventions. In total, we 
quantified 6009 proteins after quality filtering (which 
included the removal of proteins with fewer than 3 
peptides detected—see “Methods”). Of these 6009 
proteins, 4969 were detected in the liver, 5560 in the 
kidney, 4011 in muscle, and 3596 in all three tissues 
(Supplemental Fig.  1A). For those proteins detected 
in multiple tissues, relative abundances (hereafter 
referred to as “abundances” for simplicity) within 
mice were correlated most strongly between liver and 
kidney tissues (repeated measures correlation coeffi-
cient, r = 0.779, p < 0.001) and more weakly between 
muscle and either kidney (r = 0.532, p < 0.001) or 
liver (r = 0.497, p < 0.001) (Supplemental Fig. 2A-
C). Likewise, the correlation between sexes in mean 
protein abundances among control mice across 
backgrounds was high within each tissue (r = 0.98, 
0.97, and 0.96 for liver, kidney, and muscle tissue 
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respectively; Supplemental Fig.  2D-F). Consistent 
with the noisy nature of proteomics and other omics 
data in general as well as the inherent biological 
variability of the system, there was a large amount of 
variability in protein measurements across mice. The 
high correlation in abundances among backgrounds 
and between sexes left little of this variation in protein 
abundances to be explainable by these factors (Sup-
plemental Fig. 3A-C). The impact of the intervention 
was of a similar scale, explaining on average only 
about 2% of the variation in protein abundances in 
the liver and less than 1% in either kidney or muscle. 
However, there were a small handful of proteins for 
which the variation in abundances due to intervention 
was high relative to residual variation, including five 
for which the variation explained by intervention was 
greater than 60%, including acetyl-CoA carboxylase 2 
(ACACB), alpha-aminoadipic semialdehyde synthase 
(AASS), and cytochrome P450 2A5 (CP2A5) which 
were also highlighted by subsequent analyses (Sup-
plemental Fig. 3D). Overall, this resulted in a general 
pattern in which the protein abundance profiles aver-
aged by intervention-by-sex group clustered in simi-
larity first by tissue, then secondarily by background, 
sex, and intervention (Supplemental Fig. 1B).

General patterns in protein responses to 
longevity‑promoting interventions

For each protein in each tissue, we estimated the fold-
change in log2-transformed protein abundances and 
the associated approximate Bayes factor in response 
to each intervention compared to its respective con-
trol group in a sex-specific manner (see “Methods”). 
A full list of protein responses to each intervention, 
including their log2 fold-change and Bayes factor, for 
each tissue can be found in Supplemental Tables 1-3. 
We considered a protein to be significantly affected by 
an intervention if it exhibited an estimated absolute 
log2 fold-change ≥ 0.5 with a Bayes factor ≥ 10; an 
approximate Bayes factor of 10 for a protein suggests 
at most ten to one odds that an intervention affected 
the abundance of that protein, so the selection of sig-
nificant proteins based on the cutoff ≥ 10 captures all 
proteins with evidence at least this good, while the 
selection of +/− 0.5 as a minimum log2 fold-change 
cutoff was chosen in part based on the observation 
that just under 5% of the estimated protein responses 
in liver were above this threshold. Intervention-by-sex 

groups clustered in terms of the similarity of their 
protein responses first by tissue, then by genetic back-
ground followed by sex (Fig. 1). There was relatively 
low concordance in protein responses across tis-
sues for any given intervention, and responses were 
more similar within backgrounds and sexes. For the 
drug and diet interventions within UM-HET3 mice, 
the similarity in protein responses was separated by 
sex but consistent within sex; for example, protein 
changes in acarbose-treated mice were more similar 
to canagliflozin-treated mice of the same sex than 
acarbose-treated mice of the opposite sex. These pat-
terns were largely consistent across liver, kidney, and 
muscle tissues with one notable exception: in livers, 
the response of proteins to calorie restriction was 
similar in both male and female mice.

Both the number of significantly affected pro-
teins and the magnitude of the changes varied by 
intervention, both within and across tissue and sex 
(Fig. 2, Supplemental Figs. 4, 5). Within tissues, liver 
samples had a much larger number of proteins that 
responded significantly to at least one intervention (N 
= 842), followed by the kidney (N = 672) and then 
muscle samples (N = 337). GHRKO and Snell dwarf 
genetic interventions resulted in the greatest effects 
on the proteome, both in terms of the magnitude of 
overall changes and the number of affected proteins, 
while among the drug and diet treatments, the larg-
est changes were associated with caloric restriction. 
Acarbose, canagliflozin, and 17α-estradiol interven-
tions in females resulted in the lowest number of 
affected proteins, consistent with these treatments 
having either little or no longevity-promoting effect 
on females. Notably, these patterns were qualitatively 
true for liver, kidney, and muscle tissues, albeit much 
less prominent in muscle where the overall effects 
were much smaller across all interventions.

Intervention‑by‑sex interactions in protein responses

The combined observations that virgin UM-HET3 
female mice live longer than virgin UM-HET3 
male mice, and many of the drug treatments in 
our study—namely acarbose, canagliflozin, and 
17α-estradiol—are known to promote longevity 
primarily in males and not females prompted us to 
identify proteins whose response to those interven-
tions differed by sex. In each tissue, we identified a 
set of proteins that exhibited significant responses 
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that had sex interaction effects with a Bayes factor 
≥ 10 (Supplemental Fig. 6; Supplemental Tables 4-
6). These sex interactions took multiple forms. In 
most cases, the response to an intervention differed 
between sexes only in the magnitude of the response 
but not the direction. However, we were primar-
ily interested in interactions by sex in response to 
acarbose, canagliflozin, and 17α-estradiol, as these 
interventions exhibited sex-specific effects on lon-
gevity. There were 20, 8, and 15 proteins in liver, 
kidney, and muscle respectively with significant sex 
interactions in their response to these three treat-
ments (Supplemental Table  7). Notably, none of 
these proteins exhibited such a response to more 
than one of the three treatments that have sex-
specific effects on lifespan, and only one did so in 
multiple tissues (LIFR in response to 17α-estradiol 
in liver and kidney). In contrast to the other 

interventions that did not have a sex-specific effect 
on longevity, only 10 of these 42 proteins exhib-
ited sex-specific responses in the same direction but 
with different magnitudes. Over half of the proteins 
(26 out of 42) responded positively in males but 
negatively in females in acarbose, canagliflozin, or 
17α-estradiol, though not all of these responses met 
our threshold for significance.

Shared protein responses to longevity‑promoting 
interventions

We were especially interested in proteins that were 
similarly affected by multiple interventions. While 
most significant protein responses were unique to a 
single intervention, there were 242 proteins in liver, 
174 in kidney, and 33 in muscle that were signifi-
cantly affected by two or more interventions (Fig. 3). 

Fig. 1   Dendrograms of co-sine distances in protein log2 fold-
changes among intervention-sex groups (top; the suffixes “_F” 
and “_M” indicate female and male groups respectively) and 
heatmaps of protein fold-changes compared to respective con-
trols by intervention-sex group (bottom) for liver (A), kidney 

(B), and muscle samples (C). The color scale for protein fold-
changes is capped at +/- log2(1) to enhance legibility of mod-
est fold-changes. Proteins are arranged on the y-axis separately 
for each tissue based on mean fold-changes across groups
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The largest number of shared responses involved 
GHRKO and/or Snell dwarf mice of either sex. Only 
three proteins, one in each tissue, responded signifi-
cantly to at least three interventions not including 
GHRKO or Snell dwarf: glycerophosphocholine phos-
phodiesterase (GPCP1) in the liver, complement fac-
tor D (CFAD) in the kidney, and myosin-binding pro-
tein H (MYBPH) in muscle (Fig.  4A, Supplemental 

Figs. 7A & 8). In the liver, calorie restriction induced 
many protein changes in common with Snell dwarf 
and to some extent GHRKO. This pattern was quali-
tatively similar in kidney and muscle, although the 
numbers of shared protein changes were fewer in 
these tissues as were the number of pairs of interven-
tions that shared at least one significantly responding 
protein, particularly in muscle.

Fig. 2   The log2 fold-change and log10 Bayes factor for pro-
teins within each treatment compared to controls for male (A) 
and female (B) liver samples. Dashed vertical lines correspond 

to a log2 fold-change of +/- 0.5 while the dashed horizontal 
line corresponds to a Bayes factor of 10
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While there were numerous examples of proteins that 
were altered by at least two interventions, there were no 
proteins that were significantly affected by every longev-
ity-promoting intervention (i.e., all intervention-by-sex 
groups except acarbose, canagliflozin, and 17α-estradiol 
females). We expanded our focus to those proteins that 
were significantly affected in the same direction by at 

least three interventions, resulting in a total of 66 pro-
teins in the liver (Fig.  4A), 31 in the kidney (Supple-
mental Fig. 7), and 3 in muscle samples (Supplemental 
Fig. 8). Most of these exhibited responses in the same 
direction in both genetic interventions (GHRKO and 
Snell dwarf) and often calorie restriction as well. In 
the liver, protein responses to rapamycin tended to be 

Fig. 3   A–C Networks of shared protein responses across 
interventions in male and female mouse liver (A), kidney (B), 
and muscle (C) samples. Node size corresponds to the num-
ber of proteins with log-fold changes ≥ 0.5 associated with a 
Bayes factor ≥ 10 in each longevity intervention, while edge 
width represents the number of those proteins shared between 
two interventions. Nodes in yellow represent interventions 
expected to promote longevity while those in blue represent 
interventions in which the longevity-promoting effect is neg-

ligible or absent. D–F The number of proteins that are sig-
nificantly affected by multiple interventions, regardless of sex 
in mouse liver (D), kidney (E), and muscle (F) samples. The 
x-axis gives the largest number of interventions a protein is 
affected by. The blue area represents the number of proteins 
that are significantly affected by GHRKO and/or Snell dwarf, 
while the gray area quantifies proteins only affected only by 
drug/diet treatments
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the most divergent from responses that were common 
across other interventions. In the kidney, however, pro-
tein responses to rapamycin were much more likely to 
be shared with other interventions.

A single protein, serine protease inhibitor A3K 
(SPA3K), was altered by three interventions in all 

tissues (liver, kidney, and muscle). SPA3K exhibited a 
significant negative response to GHRKO, Snell dwarf, 
and calorie restriction interventions in both sexes and 
no significant response to any other intervention. In 
addition to SPA3K, 4 more proteins met the shared 
response criteria in both liver and kidney (but not 

Fig. 4   A Changes in protein abundances across multiple lon-
gevity treatments in liver. Proteins shown are limited to those 
with an absolute log2 fold-change ≥ 0.5 and a Bayes factor ≥ 
10 in GHRKO, Snell dwarf, and at least one other drug or diet 
treatment contrasts of either sex. The color of the points indi-
cates the associated Bayes factor and the size is proportional to 

the magnitude of the fold-change with closed points indicating 
a positive change and open points indicating a negative change. 
B GO-Terms that are enriched (with an associated adjusted 
p-value ≤ 0.01) among proteins with shared responses across 
longevity-promoting interventions in liver (shown in A)
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muscle): alpha-aminoadipic semialdehyde synthase 
(AASS), beta-ureidopropionase (BUP1), cytochrome 
P450 2A5 (CP2A5), and glutathione S-transferase 
A2 (GSTA2). In both the liver and kidney, each of 
these proteins responded positively to GHRKO, Snell 
dwarf, and calorie restriction in at least one sex. They 
also responded positively to acarbose and canagli-
flozin in males in the liver but not the kidney, while 
AASS also responded positively to rapamycin in the 
kidney but not the liver.

The protein with the highest degree of overlap in 
response to longevity-promoting intervention-by-sex 
groups was the aforementioned CP2A5, which exhib-
ited a significant, positive response in both male and 
female GHRKO, Snell dwarf, and calorie-restricted 
mice as well as in male acarbose and canagliflo-
zin–treated mice, and also responded significantly to 
multiple interventions in the kidney. In the opposite 
direction, acetyl-CoA carboxylase 2 (ACACB) and 
pyruvate kinase (PKLR) both exhibited significant 
and negative responses to seven intervention-by-
sex groups in liver: male and female GHRKO, Snell 
dwarf, and calorie-restricted mice as well as male 
acarbose and canagliflozin–treated mice with rapa-
mycin males trending in the same direction. Siali-
dase-1 (NEUR1), a protein involved in carbohydrate 
and lipid metabolism, was also notable in that it was 
one of the few proteins that responded positively to a 
relatively high number of interventions (six), includ-
ing rapamycin in males, whereas most other proteins 
that shared a response across interventions did not 
respond similarly to rapamycin.

Proteins affected by multiple interventions implicate 
shared functional pathways

The proteins that significantly responded to multiple 
interventions tended to belong to similar metabolic 
pathways and functional groups. Among all the pro-
teins that exhibited a shared response across at least 
three interventions the biological processes most 
enriched compared to all other proteins measured 
in the dataset were those relating to metabolism and 
oxidation, especially of fatty acids, lipids, and other 
exogenous molecules (Fig. 4)B. This enrichment was 
largely driven by the multitude of cytochrome p450 
proteins. For example, 11 of the 66 proteins that 
responded significantly to at least three interventions 
in the liver, including the protein that exhibited a 

significant response to the largest number of interven-
tion-sex groups (CP2A5), belonged to the cytochrome 
p450 family of proteins. These proteins are involved 
in the oxidation and metabolism of xenobiotics, fatty 
acids, steroids, and other exogenous compounds in 
the liver. They have also been shown to be controlled 
by growth-hormone pulses [40, 41] and thus are 
expected to be altered by mutations that alter growth 
hormone production or response. Many of the other 
proteins with a shared response are involved in fatty 
acid transport and regulating the balance between 
fatty acid synthesis and metabolism, such as acetyl-
CoA carboxylases ACACA and ACACB, which act 
as major rate-limiting steps in fatty acid synthesis 
and oxidation, fatty acid synthase (FAS), fatty acid 
binding protein (FABPL), acetyl-CoA acyltransferase 
(THIKB), ATP citrate synthase (ACLY), and acyl-
CoA and acyl-CoA thioesterase (AACS and ACOT3).

Functional pathways predicted to be broadly affected 
by longevity‑promoting interventions

The previous observations represent the processes 
enriched among the relatively limited number of 
proteins that exhibit shared responses to multiple 
longevity-promoting interventions, but they do not 
account for common pathways enriched through 
increased expression of different proteins. This 
prompted us to investigate whether there was a 
more consistent response across interventions at the 
pathway level. To do so, we performed a pathway 
impact analysis to infer which biological pathways 
were most perturbed by the longevity-promoting 
interventions from the observed protein abundances 
and changes. The differential abundance results for 
all proteins in response to all interventions were 
included in this analysis, but the relative impact 
of proteins to each pathway was weighted by the 
p-values associated with their fold-changes. Doing 
so enables a whole-proteome view of the pathways 
affected by each intervention and helps ensure that 
arbitrary cutoffs for assigning significance to pro-
tein responses do not influence our ability to char-
acterize patterns emerging from many proteins of 
small effect across the proteome.

There was no pathway that was predicted to be sig-
nificantly affected (with an adjusted p-value ≤ to 0.01) 
consistently by all the longevity-promoting interven-
tions (Fig.  5). Furthermore, even for pathways that 
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were most perturbed by an intervention, there was 
often a lack of consistency in the predicted changes to 
different components of a pathway. However, a hand-
ful of pathways showed a consistent response across 
multiple interventions. In particular, the peroxisome 
proliferator-activated receptor (PPAR) signaling and 
peroxisome KEGG pathways exhibited the highest 
total normalized perturbation scores across interven-
tions in the liver and kidney, both showing evidence 
of upregulation (Fig. 5). A similar increase in peroxi-
somal proteins was previously shown in the hearts of 
mice upon acarbose intervention [42]. These patterns 
were driven by many of the same proteins that exhib-
ited strong responses across interventions (as shown 
in Fig.  4A) and related proteins, including multiple 
proteins from the cytochrome p450 family, proteins 
involved in fatty acid transport, FABPL and FABPH, 
and numerous proteins involved in fatty acid oxida-
tion (e.g., THIKA, THIKB). The AMPK and PI3K-
akt signaling pathways, both of which play large roles 
in regulating metabolism and cell growth [43], as 
well as the complement and coagulation cascade (pri-
marily in the kidney) also showed evidence of being 
modulated by multiple interventions.

Discussion

By characterizing the responses of thousands of pro-
teins to multiple longevity-promoting interventions 
in three different mouse tissues, this study not only 
provides a comprehensive description of the effect of 

each intervention on mouse proteomes but also iden-
tifies unique and shared alterations that call attention 
to mechanisms by which they might promote longev-
ity. A motivating hypothesis for these experiments 
was that there are shared biological bases for the lon-
gevity-promoting effects of the interventions studied 
and that the discovery of common mechanisms could 
underlie the development of therapeutic approaches 
to extend health span in humans. However, our inter-
rogation of 6009 proteins in mouse liver, kidney, and 
muscle revealed that most of the protein and pathway 
alterations induced by each intervention were either 
unique to that invention or shared by only one or two 
others. Furthermore, we did not detect any proteins 
that were commonly affected by all longevity-pro-
moting interventions, including those related to the 
shared mechanisms previously reported to be com-
mon to several interventions (see “Introduction”). It is 
possible that shared mechanisms may be identified by 
studying additional tissues [13, 44], larger numbers of 
experimental animals, or by utilizing alternative pro-
teomic methods or experimental designs. Addition-
ally, shared pathways that involve differences in post-
translational modifications, including, for example, 
the altered phosphorylation state of specific proteins 
[12] or proteolytic cleavage of proteins to produce 
signaling peptides [13], were beyond the scope of the 
methods we used in this study. Thus, our findings do 
not preclude the possibility that there are core mecha-
nisms that are related to lifespan extension in mice.

Our findings are most consistent with the idea that 
there are multiple mechanisms that underlie longevity, 

Fig. 5   Normalized perturbation scores for KEGG pathways 
from a pathway impact analysis per intervention-by-sex group. 
Shown are pathways that were significantly (adjusted p ≤ 0.05; 

indicated by an asterisk) predicted to be impacted by at least 
three interventions regardless of sex in A liver and B kidney 
tissues (no pathways met these criteria in muscle samples)
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and that the various interventions act, at least in part, 
through different means. Specifically, the shared pro-
tein responses we observed hint at potentially three 
broad groups of mechanisms, one common to the 
GHRKO, Snell dwarf, and calorie restriction, another 
that additionally includes acarbose, canagliflozin, 
and—to a lesser extent—17α-estradiol treatment in 
males, and a third more specific to rapamycin treat-
ment in both sexes. Patterns of protein changes impli-
cate peroxisomal oxidation metabolism of fatty acids 
and xenobiotic metabolism as common processes 
increased by multiple interventions. These pathways 
have previously been implicated as having important 
roles in aging and longevity primarily at the level of 
gene expression, and our results identify them at the 
protein level [8, 40, 41, 45]. We highlight several 
cytochrome P450, acetyl-CoA carboxylase, and glu-
tathione S-transferase proteins that exhibited shared 
responses across multiple interventions. For the most 
part, these proteins responded similarly to the two 
genetic modifications and calorie restriction with acar-
bose and canagliflozin treatment in males often elicit-
ing concordant behavior. The responses of these pro-
teins to 17α-estradiol treatment in males were weaker 
in magnitude and less certain but otherwise tended 
to be in the same direction as the other interventions. 
In contrast, rapamycin treatment often significantly 
affected these proteins in the opposite direction of the 
other interventions. This discrepancy was evident in 
the liver but not observed in the kidney, supporting the 
likelihood that longevity-promoting mechanisms of 
some interventions are tissue specific.

There are some notable similarities between the 
findings in these experiments and some other attempts 
to identify shared longevity-associated mechanisms. 
Tyshkovskiy et al. (2019) examined the transcriptional 
changes induced by most of the same interventions 
studied here (excluding canagliflozin) and observed 
qualitatively similar results [8]. Like our observa-
tions at the protein level, they did not observe any 
gene whose expression was commonly affected by 
all interventions. Nevertheless, several did respond to 
multiple interventions, and the pathways commonly 
affected included those involved in fatty acid oxida-
tion and metabolism by cytochrome P450 proteins and 
glutathione. Furthermore, they also found that changes 
in gene expression in response to rapamycin showed 
limited overlap with responses to other longevity-pro-
moting treatments, a pattern observed both here and 

elsewhere [8, 18]. Despite the similarity of findings at 
the pathway level, the specific genes whose expression 
Tyshkovskiy et al. identified as commonly affected by 
multiple interventions did not necessarily match the 
proteins we identified as exhibiting shared responses. 
This discrepancy may be the result of differences in 
the sensitivity and bias of the different technologies 
used to measure transcriptomes and proteomes, but it 
may also reflect differences in the biological mecha-
nisms that regulate mRNA levels and those that are 
responsible for protein homeostasis [46, 47].

We also identified multiple proteins involved in the 
immune response that, though they only responded 
to a small number of interventions in mice, have 
orthologs that have been associated with longevity-
related phenotypes in humans. The immunoglobu-
lin proteins IGHM, IGHG3, complement C9 (CO9), 
and C-reactive protein (CRP) responded negatively 
to GHRKO, Snell dwarf, calorie restriction, and/or 
rapamycin in mice while their human orthologs dis-
criminated older (over 65 years old) males destined 
to live to the 90th percentile age of their birth cohort 
[48] (Supplemental Fig.  9). Additionally, CFAD 
responded positively to acarbose, canagliflozin, and 
17α-estradiol in male mice, while human orthologs 
exhibited increased abundance in centenarian humans 
over 100 years old compared to controls [49] (Supple-
mental Fig. 10). This implication of immune-related 
pathways is further supported by the shared impact 
of multiple interventions, notably rapamycin, on the 
complement and coagulation cascades in the liver and 
kidney. While the substantial differences both among 
the human studies and between the human studies 
and our mouse experiment (e.g., species differences, 
human serum or plasma compared to mouse liver, 
kidney, or muscle, human subjects were individu-
als of widely differing degrees of advanced age with 
uncontrolled drug and diet exposures, while the mice 
in our study were experimentally manipulated young 
adults, etc.) mean that the overlap in proteins asso-
ciated with longevity-related phenotypes should be 
interpreted cautiously, they also mean that any such 
overlaps are surprising and, as such, worthy of note.

Our ability to characterize the shared effects of 
these interventions across the mouse proteome was 
facilitated by combining a broad experimental design 
with novel technological and analytical approaches. 
Simultaneously characterizing the effects of multiple 
interventions within the same experiment enabled 
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us to identify shared responses that would otherwise 
be obfuscated by differences across separate experi-
ments. The scale of this design was made possible by 
exploiting advances in mass spectrometry proteomics 
to quantify the abundances of thousands of proteins 
in three tissues across nearly three hundred mice. 
This further required developing a comprehensive 
statistical pipeline to address the analytical challenges 
related to the nature of protein quantification. How-
ever, there remain important limitations. While the 
number of proteins quantified was large, it was not 
exhaustive and does not include a full complement of 
protein post-translational modifications. Therefore, it 
would not be expected to represent a complete char-
acterization of the mouse proteome. Thus, impor-
tant effects of the interventions may not have been 
detected. Furthermore, despite characterizing the 
proteomes of nearly three hundred mice, they were 
divided across seven interventions, their respective 
controls, and two sexes, potentially limiting the sta-
tistical power to detect small but meaningful changes 
in protein abundances. In addition, each of the inter-
ventions imposes numerous physiological effects, 
complicating the identification of protein responses 
that are associated with longevity. Our strategy of 
focusing on shared protein responses was meant to 
circumvent this issue, but it is possible that some of 
the shared responses represent common physiologi-
cal effects of the interventions unrelated to longevity. 
Given these limitations, the proteins and pathways 
implicated in this study require further validation 
before any confident conclusions can be made regard-
ing their role in longevity. Longitudinal study designs 
may offer more opportunities to evaluate the biologi-
cal effects of antiaging interventions. Using mouse 
plasma may allow for longitudinal sampling of mice 
as they age at the cost of a loss in the information pro-
vided from metabolically active tissues like the liver 
and kidney. While the present study was explicitly 
focused on identifying proteins in early adulthood 
that are associated with anticipated longevity exten-
sion in later life, additional mechanisms may be iden-
tified by repeating the analysis as mice age.

A major goal of longevity research has been to 
identify specific proteins or pathways as targets for 
therapeutical interventions. From this perspective, 
the findings of this study highlight a narrowed list of 
potential candidates and contribute a better mechanis-
tic understanding of the effects of various individual 

longevity-promoting interventions on vertebrate pro-
teomes. Though we predicted that these experiments 
would uncover protein alterations that were com-
mon across all interventions, thus revealing essential 
underlying biological bases for longevity, we found 
limited universally shared effects. These results do 
not eliminate the possibility that there are common 
underpinnings of interventions that extend lifespan, 
but they suggest that it is equally plausible that there 
are multiple mechanisms by which these interven-
tions promote longevity. Overall, the changes in pro-
tein abundance we found to be associated with inter-
ventions known to extend lifespan should form the 
basis for more extended investigation.

Acknowledgements  We thank Kelly Crebs for excellent 
technical assistance.

Funding  This work was funded in part by the National 
Institutes of Health grants, from the National Institute of 
General Medical Sciences R01 GM087221, the Office of 
the Director S10OD026936, the National Institute on Aging 
U19AG023122, and the National Science Foundation award 
1920268.

Data availability  All sample analysis run order files, mass 
spectrometry dia-PASEF raw folders corresponding to mouse 
tissue experiments (.d), FASTA database used to generate the 
assay libraries (.fasta), mouse hybrid spectral assay library 
(.txt) and its DIALib-QC report (.tsv), and three unnormal-
ized peptide quantitation data files (.csv) for each tissue have 
been deposited with the ProteomeXchange Consortium via the 
PRIDE partner repository [50, 51] with the data set identifier 
PXD040497 (http://​www.​ebi.​ac.​uk/​pride). Code describing our 
statistical data analysis that can be used to reproduce our main 
results can be found at https://​github.​com/​longe​vity-​conso​
rtium/​M005M​ouseL​ongev​ityPa​per20​23.

Declarations 

Conflict of interest  The authors declare no competing interests.

References

	 1.	 Bartke A, Wright JC, Mattison JA, et  al. Extending the 
lifespan of long-lived mice. Nature. 2001;414:412. https://​
doi.​org/​10.​1038/​35106​646

	 2.	 Drake JC, Bruns DR, Peelor FF, et  al. Long-lived Snell 
dwarf mice display increased proteostatic mechanisms 
that are not dependent on decreased mTORC1 activity. 
Aging Cell. 2015;14:474–82. https://​doi.​org/​10.​1111/​acel.​
12329

	 3.	 Gesing A, Masternak MM, Lewinski A, et al. Decreased 
levels of proapoptotic factors and increased key regula-
tors of mitochondrial biogenesis constitute new potential 

http://www.ebi.ac.uk/pride
https://github.com/longevity-consortium/M005MouseLongevityPaper2023
https://github.com/longevity-consortium/M005MouseLongevityPaper2023
https://doi.org/10.1038/35106646
https://doi.org/10.1038/35106646
https://doi.org/10.1111/acel.12329
https://doi.org/10.1111/acel.12329


1559GeroScience (2024) 46:1543–1560	

1 3
Vol.: (0123456789)

beneficial features of long-lived growth hormone receptor 
gene–disrupted mice. J Gerontol: Series A. 2013;68:639–
51. https://​doi.​org/​10.​1093/​gerona/​gls231

	 4.	 Harrison DE, Strong R, Sharp ZD, et  al. Rapamycin fed 
late in life extends lifespan in genetically heterogeneous 
mice. Nature. 2009;460:392–5. https://​doi.​org/​10.​1038/​
natur​e08221

	 5.	 Harrison DE, Strong R, Allison DB, et  al. Acarbose, 
17-α-estradiol, and nordihydroguaiaretic acid extend 
mouse lifespan preferentially in males. Aging Cell. 
2014;13:273–82. https://​doi.​org/​10.​1111/​acel.​12170

	 6.	 Harrison DE, Strong R, Alavez S, et  al. Acarbose 
improves health and lifespan in aging HET3 mice. Aging 
Cell. 2019;18:e12898. https://​doi.​org/​10.​1111/​acel.​12898

	 7.	 Miller RA, Harrison DE, Allison DB, et al. Canagliflozin 
extends life span in genetically heterogeneous male but 
not female mice. JCI Insight. 2020;5 https://​doi.​org/​10.​
1172/​jci.​insig​ht.​140019

	 8.	 Tyshkovskiy A, Bozaykut P, Borodinova AA, et  al. 
Identification and application of gene expression sig-
natures associated with lifespan extension. Cell Metab. 
2019;30:573–593.e8. https://​doi.​org/​10.​1016/j.​cmet.​2019.​
06.​018

	 9.	 Li X, Shi X, McPherson M, et al. Cap-independent trans-
lation of GPLD1 enhances markers of brain health in 
long-lived mutant and drug-treated mice. Aging Cell. 
2022;21:e13685. https://​doi.​org/​10.​1111/​acel.​13685

	10.	 Shen Z, Hinson A, Miller RA, Garcia GG. Cap-independ-
ent translation: a shared mechanism for lifespan extension 
by rapamycin, acarbose, and 17α-estradiol. Aging Cell. 
2021;20:e13345. https://​doi.​org/​10.​1111/​acel.​13345

	11.	 Ozkurede U, Kala R, Johnson C, et  al. Cap-independent 
mRNA translation is upregulated in long-lived endocrine 
mutant mice. J Mol Endocrinol. 2019;63:123–38. https://​
doi.​org/​10.​1530/​JME-​19-​0021

	12.	 Wink L, Miller RA, Garcia GG. Rapamycin, Acarbose 
and 17α-estradiol share common mechanisms regulating 
the MAPK pathways involved in intracellular signaling 
and inflammation. Immun Ageing. 2022;19:8. https://​doi.​
org/​10.​1186/​s12979-​022-​00264-1

	13.	 Li X, Frazier JA, Spahiu E, et al. Muscle-dependent regu-
lation of adipose tissue function in long-lived growth hor-
mone-mutant mice. Aging. 2020;12:8766–89. https://​doi.​
org/​10.​18632/​aging.​103380.

	14.	 Li X, McPherson M, Hager M, et  al. Four anti-aging 
drugs and calorie-restricted diet produce parallel effects 
in fat, brain, muscle, macrophages, and plasma of young 
mice. Geroscience. 2023; https://​doi.​org/​10.​1007/​
s11357-​023-​00770-0

	15.	 Bonkowski MS, Rocha JS, Masternak MM, et al. Targeted 
disruption of growth hormone receptor interferes with the 
beneficial actions of calorie restriction. Proc Natl Acad 
Sci. 2006;103:7901–5. https://​doi.​org/​10.​1073/​pnas.​06001​
61103

	16.	 Flurkey K, Papaconstantinou J, Miller RA, Harrison DE. 
Lifespan extension and delayed immune and collagen 
aging in mutant mice with defects in growth hormone 
production. Proc Natl Acad Sci. 2001;98:6736–41. https://​
doi.​org/​10.​1073/​pnas.​11115​8898

	17.	 Flurkey K, Astle CM, Harrison DE. Life extension by 
diet restriction and N-acetyl-L-cysteine in genetically 

heterogeneous mice. J Gerontol A Biol Sci Med Sci. 
2010;65:1275–84. https://​doi.​org/​10.​1093/​gerona/​glq155

	18.	 Miller RA, Harrison DE, Astle CM, et  al. Rapamycin-
mediated lifespan increase in mice is dose and sex 
dependent and metabolically distinct from dietary restric-
tion. Aging Cell. 2014;13:468–77. https://​doi.​org/​10.​
1111/​acel.​12194

	19.	 Dominick G, Berryman DE, List EO, et  al. Regulation 
of mTOR activity in Snell dwarf and GH receptor gene-
disrupted mice. Endocrinology. 2015;156:565–75. https://​
doi.​org/​10.​1210/​en.​2014-​1690

	20.	 Macchiarini F, Miller RA, Strong R, et  al. Chapter  10 
- NIA interventions testing program: a collaborative 
approach for investigating interventions to promote 
healthy aging. In: Musi N, Hornsby PJ, editors. Handbook 
of the Biology of Aging (Ninth Edition). Academic Press; 
2021. p. 219–35.

	21.	 Auer H, Mobley J, Ayers L, et  al. The effects of frozen 
tissue storage conditions on the integrity of RNA and pro-
tein. Biotech Histochem. 2014;89:518–28. https://​doi.​org/​
10.​3109/​10520​295.​2014.​904927

	22.	 LaBaer J. Improving international research with clini-
cal specimens: 5 achievable objectives. J Proteome Res. 
2012;11:5592–601. https://​doi.​org/​10.​1021/​pr300​796m

	23.	 Escher C, Reiter L, MacLean B, et al. Using iRT, a nor-
malized retention time for more targeted measurement of 
peptides. Proteomics. 2012;12:1111–21. https://​doi.​org/​
10.​1002/​pmic.​20110​0463

	24.	 Bruderer R, Bernhardt OM, Gandhi T, Reiter L. High-
precision iRT prediction in the targeted analysis of data-
independent acquisition and its impact on identification 
and quantitation. Proteomics. 2016;16:2246–56. https://​
doi.​org/​10.​1002/​pmic.​20150​0488

	25.	 Krasny L, Bland P, Burns J, et  al. A mouse SWATH-
mass spectrometry reference spectral library enables 
deconvolution of species-specific proteomic altera-
tions in human tumour xenografts. Dis Model Mech. 
2020;13:dmm044586. https://​doi.​org/​10.​1242/​dmm.​
044586

	26.	 Midha MK, Campbell DS, Kapil C, et al. DIALib-QC an 
assessment tool for spectral libraries in data-independent 
acquisition proteomics. Nat Commun. 2020;11:5251. 
https://​doi.​org/​10.​1038/​s41467-​020-​18901-y

	27.	 Bland JM, Altman DG. Statistics notes: calculating cor-
relation coefficients with repeated observations: Part 1—
correlation within subjects. BMJ. 1995;310:446. https://​
doi.​org/​10.​1136/​bmj.​310.​6977.​446

	28.	 Bakdash JZ, Marusich LR (2022) rmcorr: repeated meas-
ures correlation

	29.	 Lazar C, Gatto L, Ferro M, et al. Accounting for the mul-
tiple natures of missing values in label-free quantitative 
proteomics data sets to compare imputation strategies. J 
Proteome Res. 2016;15:1116–25. https://​doi.​org/​10.​1021/​
acs.​jprot​eome.​5b009​81

	30.	 McGurk KA, Dagliati A, Chiasserini D, et al. The use of 
missing values in proteomic data-independent acquisition 
mass spectrometry to enable disease activity discrimina-
tion. Bioinformatics. 2020;36:2217–23. https://​doi.​org/​10.​
1093/​bioin​forma​tics/​btz898

	31.	 Cragg JG. Some statistical models for limited depend-
ent variables with application to the demand for durable 

https://doi.org/10.1093/gerona/gls231
https://doi.org/10.1038/nature08221
https://doi.org/10.1038/nature08221
https://doi.org/10.1111/acel.12170
https://doi.org/10.1111/acel.12898
https://doi.org/10.1172/jci.insight.140019
https://doi.org/10.1172/jci.insight.140019
https://doi.org/10.1016/j.cmet.2019.06.018
https://doi.org/10.1016/j.cmet.2019.06.018
https://doi.org/10.1111/acel.13685
https://doi.org/10.1111/acel.13345
https://doi.org/10.1530/JME-19-0021
https://doi.org/10.1530/JME-19-0021
https://doi.org/10.1186/s12979-022-00264-1
https://doi.org/10.1186/s12979-022-00264-1
https://doi.org/10.18632/aging.103380
https://doi.org/10.18632/aging.103380
https://doi.org/10.1007/s11357-023-00770-0
https://doi.org/10.1007/s11357-023-00770-0
https://doi.org/10.1073/pnas.0600161103
https://doi.org/10.1073/pnas.0600161103
https://doi.org/10.1073/pnas.111158898
https://doi.org/10.1073/pnas.111158898
https://doi.org/10.1093/gerona/glq155
https://doi.org/10.1111/acel.12194
https://doi.org/10.1111/acel.12194
https://doi.org/10.1210/en.2014-1690
https://doi.org/10.1210/en.2014-1690
https://doi.org/10.3109/10520295.2014.904927
https://doi.org/10.3109/10520295.2014.904927
https://doi.org/10.1021/pr300796m
https://doi.org/10.1002/pmic.201100463
https://doi.org/10.1002/pmic.201100463
https://doi.org/10.1002/pmic.201500488
https://doi.org/10.1002/pmic.201500488
https://doi.org/10.1242/dmm.044586
https://doi.org/10.1242/dmm.044586
https://doi.org/10.1038/s41467-020-18901-y
https://doi.org/10.1136/bmj.310.6977.446
https://doi.org/10.1136/bmj.310.6977.446
https://doi.org/10.1021/acs.jproteome.5b00981
https://doi.org/10.1021/acs.jproteome.5b00981
https://doi.org/10.1093/bioinformatics/btz898
https://doi.org/10.1093/bioinformatics/btz898


1560	 GeroScience (2024) 46:1543–1560

1 3
Vol:. (1234567890)

goods. Econometrica. 1971;39:829–44. https://​doi.​org/​10.​
2307/​19095​82

	32.	 StataCorp (2021) Stata statistical software
	33.	 Sellke T, Bayarri MJ, Berger JO. Calibration of ρ values 

for testing precise null hypotheses. Am Stat. 2001;55:62–
71. https://​doi.​org/​10.​1198/​00031​30013​00339​950

	34.	 Draghici S, Khatri P, Tarca AL, et  al. A systems biol-
ogy approach for pathway level analysis. Genome Res. 
2007;17:1537–45. https://​doi.​org/​10.​1101/​gr.​62026​07

	35.	 Carlson, M (2019) org.Mm.eg.db: Genome wide annota-
tion for Mouse

	36.	 Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R 
package for comparing biological themes among gene 
clusters. OMICS. 2012;16:284–7. https://​doi.​org/​10.​1089/​
omi.​2011.​0118

	37.	 Voichita C, Donato M, Draghici S. Incorporating gene 
significance in the impact analysis of signaling path-
ways. In: 2012 11th International Conference on Machine 
Learning and Applications; 2012. p. 126–31.

	38.	 Voichita C, Ansari S, Draghici S (2022) ROntoTools: R 
onto-tools suite.

	39.	 Kanehisa M, Furumichi M, Sato Y, et al. KEGG for tax-
onomy-based analysis of pathways and genomes. Nucleic 
Acids Res. 2023;51:D587–92. https://​doi.​org/​10.​1093/​nar/​
gkac9​63

	40.	 Steinbaugh MJ, Sun LY, Bartke A, Miller RA. Activation 
of genes involved in xenobiotic metabolism is a shared 
signature of mouse models with extended lifespan. Am J 
Physiol Endocrinol Metab. 2012;303:E488–95. https://​
doi.​org/​10.​1152/​ajpen​do.​00110.​2012

	41.	 Li X, Bartke A, Berryman DE, et  al. Direct and indi-
rect effects of growth hormone receptor ablation on liver 
expression of xenobiotic metabolizing genes. Am J Phys-
iol Endocrinol Metab. 2013;305:E942–50. https://​doi.​org/​
10.​1152/​ajpen​do.​00304.​2013

	42.	 Herrera JJ, Louzon S, Pifer K, et  al. Acarbose has sex-
dependent and -independent effects on age-related physi-
cal function, cardiac health, and lipid biology. JCI Insight. 
5:e137474. https://​doi.​org/​10.​1172/​jci.​insig​ht.​137474

	43.	 Mihaylova MM, Shaw RJ. The AMPK signalling path-
way coordinates cell growth, autophagy and metabolism. 
Nat Cell Biol. 2011;13:1016–23. https://​doi.​org/​10.​1038/​
ncb23​29

	44.	 Sadagurski M, Cady G, Miller RA. Anti-aging drugs 
reduce hypothalamic inflammation in a sex-specific man-
ner. Aging Cell. 2017;16:652–60. https://​doi.​org/​10.​1111/​
acel.​12590

	45.	 Mitchell SJ, Madrigal-Matute J, Scheibye-Knudsen M, 
et al. Effects of sex, strain, and energy intake on hallmarks 
of aging in mice. Cell Metab. 2016;23:1093–112. https://​
doi.​org/​10.​1016/j.​cmet.​2016.​05.​027

	46.	 Takemon Y, Chick JM, Gerdes Gyuricza I, et  al. Prot-
eomic and transcriptomic profiling reveal different aspects 
of aging in the kidney. Elife. 2021;10:e62585. https://​doi.​
org/​10.​7554/​eLife.​62585

	47.	 Gerdes Gyuricza I, Chick JM, Keele GR, et  al. Genome-
wide transcript and protein analysis highlights the role of 
protein homeostasis in the aging mouse heart. Genome Res. 
2022;32:838–52. https://​doi.​org/​10.​1101/​gr.​275672.​121

	48.	 Orwoll ES, Wiedrick J, Nielson CM, et al. Proteomic assess-
ment of serum biomarkers of longevity in older men. Aging 
Cell. 2020;19:e13253. https://​doi.​org/​10.​1111/​acel.​13253

	49.	 Sebastiani P, Federico A, Morris M, et  al. Protein sig-
natures of centenarians and their offspring suggest cen-
tenarians age slower than other humans. Aging Cell. 
2021;20:e13290. https://​doi.​org/​10.​1111/​acel.​13290

	50.	 Vizcaíno JA, Côté R, Reisinger F, et  al. A guide to the 
proteomics identifications database proteomics data repos-
itory. Proteomics. 2009;9:4276–83. https://​doi.​org/​10.​
1002/​pmic.​20090​0402

	51.	 Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE data-
base resources in 2022: a hub for mass spectrometry-based 
proteomics evidences. Nucleic Acids Res. 2022;50:D543–
52. https://​doi.​org/​10.​1093/​nar/​gkab1​038

Publisher’s note  Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) 
holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement 
and applicable law.

https://doi.org/10.2307/1909582
https://doi.org/10.2307/1909582
https://doi.org/10.1198/000313001300339950
https://doi.org/10.1101/gr.6202607
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1152/ajpendo.00110.2012
https://doi.org/10.1152/ajpendo.00110.2012
https://doi.org/10.1152/ajpendo.00304.2013
https://doi.org/10.1152/ajpendo.00304.2013
https://doi.org/10.1172/jci.insight.137474
https://doi.org/10.1038/ncb2329
https://doi.org/10.1038/ncb2329
https://doi.org/10.1111/acel.12590
https://doi.org/10.1111/acel.12590
https://doi.org/10.1016/j.cmet.2016.05.027
https://doi.org/10.1016/j.cmet.2016.05.027
https://doi.org/10.7554/eLife.62585
https://doi.org/10.7554/eLife.62585
https://doi.org/10.1101/gr.275672.121
https://doi.org/10.1111/acel.13253
https://doi.org/10.1111/acel.13290
https://doi.org/10.1002/pmic.200900402
https://doi.org/10.1002/pmic.200900402
https://doi.org/10.1093/nar/gkab1038

	Proteomic changes induced by longevity-promoting interventions in mice
	Abstract 
	Introduction
	Methods
	Mouse husbandry and interventions
	Sample harvesting and preparation
	Liquid chromatography and mass spectrometry
	Hybrid spectral assay library generation and quality control
	Spectral assay library quality control using DIALib-QC
	DIA-PASEF data analysis
	Data processing and normalization
	Variation in protein abundances due to tissue, sex, genetic background, and intervention
	Measuring the protein responses to interventions
	Identifying genetic and functional pathways affected by longevity-promoting treatment.

	Results
	Variation of mouse proteomes across liver, kidney, and gastrocnemius muscle
	General patterns in protein responses to longevity-promoting interventions
	Intervention-by-sex interactions in protein responses
	Shared protein responses to longevity-promoting interventions
	Proteins affected by multiple interventions implicate shared functional pathways
	Functional pathways predicted to be broadly affected by longevity-promoting interventions

	Discussion
	Acknowledgements 
	References


