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Abstract While some old adults stay healthy and 
non-frail up to late in life, others experience mul-
timorbidity and frailty often accompanied by a pro-
inflammatory state. The underlying molecular mecha-
nisms for those differences are still obscure. Here, 
we used gene expression analysis to understand the 
molecular underpinning between non-frail and frail 
individuals in old age. Twenty-four adults (50% non-
frail and 50% frail) from InCHIANTI study were 
included. Total RNA extracted from whole blood 
was analyzed by Cap Analysis of Gene Expres-
sion (CAGE). CAGE identified transcription start 
site (TSS) and active enhancer regions. We identi-
fied a set of differentially expressed (DE) TSS and 
enhancer between non-frail and frail and male and 
female participants. Several DE TSSs were annotated 

as lncRNA (XIST and TTTY14) and antisense RNAs 
(ZFX-AS1 and OVCH1 Antisense RNA 1). The pro-
moter region chr6:366,786,54-366,787,97;+ was 
DE and overlapping the longevity CDKN1A gene. 
GWAS-LD enrichment analysis identifies overlapping 
LD-blocks with the DE regions with reported traits 
in GWAS catalog (isovolumetric relaxation time and 
urinary tract infection frequency). Furthermore, we 
used weighted gene co-expression network analysis 
(WGCNA) to identify changes of gene expression 
associated with clinical traits and identify key gene 
modules. We performed functional enrichment analy-
sis of the gene modules with significant trait/module 
correlation. One gene module is showing a very dis-
tinct pattern in hub genes. Glycogen Phosphorylase L 
(PYGL) was the top ranked hub gene between non-
frail and frail. We predicted transcription factor bind-
ing sites (TFBS) and motif activity. TF involved in 
age-related pathways (e.g., FOXO3 and MYC) shows 
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different expression patterns between non-frail and 
frail participants. Expanding the study of OVCH1 
Antisense RNA 1 and PYGL may help understand the 
mechanisms leading to loss of homeostasis that ulti-
mately causes frailty.

Keywords Frailty · CAGE · GWAS-LD 
enrichment · Transcription start site (TSS) · 
Promoters · Enhancers · Motif activities · OVCH1 
Antisense RNA 1 · Glycogen Phosphorylase L

Introduction

Increasing age is associated with increasing preva-
lence of frailty, a condition that is strongly associated 
with multimorbidity, disability and high risk of hos-
pitalization, falls, and short-term mortality [1]. How-
ever, the biological mechanisms that causes loss of 
homeostasis and ultimately frailty are not understood 
[2, 3]. Elucidating these mechanisms is essential to 
develop new diagnostic tools that allow the identi-
fication of frailty at an early stage so that interven-
tions can be implemented that reduce the risk of overt 
frailty and prevent its consequences. It has been sug-
gested that the biological mechanisms of aging are at 
the root of frailty. However, despite intense research 
and few conceptual and empirical breakthroughs, our 
understanding of the mechanisms of aging remains 
substantially limited.

In this study, we aim to contribute to the current 
research and understating of frailty in old human 
adults performing Cap Analysis of Gene Expression 
(CAGE) analysis of whole-blood samples collected 
from 12 non-frail and 12 frail individuals who were 
participants of a longitudinal study of aging. We per-
formed two sequencing assays, no-amplification non-
tagging CAGE (nAnT-iCAGE) [4] and Low Quantity 
Single Strand CAGE (LQ-ssCAGE) [5]. Both assays 
are version of the CAGE method which capture the 
5′-end of messenger RNA. CAGE provides infor-
mation on two aspects of the capped transcriptome. 
First, it provides genome-wide single base-pair reso-
lution map of transcriptional start site (TSS). Sec-
ondly, it quantifies the level of transcripts initiated at 
each TSS. CAGE profiles enable 5′-end expression 
profiling, studying promoter architecture and estima-
tion of the activity of enhancers [6]. CAGE profiles 
can also help predicting transcription factor binding 

site (TFBS) and perform motif activity analysis. To 
enhance our understanding of the CAGE data, we 
used DESeq2 [7] and weighted gene co-expression 
network analysis (WGCNA) [8] to perform differ-
ential expression analysis of the identified TSSs and 
enhancers. WGCNA creates modules (sets of genes) 
based on the CAGE expression profiles and relates 
them to clinical traits. WGCNA allows enrichment 
analysis using different databases of reference (Reac-
tome, KEGG, MSigDB, gene ontology, etc.) to make 
inference of what biological mechanisms are different 
between the pre-defined phenogroups (non-frail and 
frail).

We utilized the GWAS-LD enrichment analysis 
tool (https:// reftss. riken. jp/ reftss/ GWAS- LD_ enric 
hment) to find DE TSS and enhancer regions overlap-
ping LD blocks on the genome. GWAS-LD enrich-
ment analysis enabled us to identify GWAS traits 
overlapping the DE regions.

We hypothesized that the biological mechanisms 
of aging involve the fine turning of gene expression 
through the modulation of gene’s promoters and 
enhancers. To test this hypothesis, we analyzed 5′-end 
gene expression profiles and studied their associa-
tion with frailty and clinical phenotypes using blood 
samples and clinical data collected in the InCHIANTI 
study [9].

Methods

Participants and InCHIANTI study

The study subjects (n=24) were selected among the par-
ticipants of the InCHIANTI epidemiologic study [9]. 
InCHIANTI is a representative population-based study 
of older persons living in the Chianti geographic area 
(Tuscany, Italy). The main research focus of InCHI-
ANTI was the study of risk factors of mobility disabil-
ity in old age. All participants responded to an interview 
that focused on information on medical history, life 
habits, and level of physical activity, and most of them 
donated a blood sample that was collected in the morn-
ing after an overnight fasting. A medical exam was per-
formed within a week from the interview that included a 
full medical and functional examination, several physi-
cal performance tests, and a mini-mental state examina-
tion (MMSE). The study started in 1998 (baseline) and 
was followed by 4 follow-ups. In our current study, we 

https://reftss.riken.jp/reftss/GWAS-LD_enrichment
https://reftss.riken.jp/reftss/GWAS-LD_enrichment
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selected participants in the fourth follow-up who were 
aged > 60 years and had complete data on clinical and 
functional evaluation. Controls (non-frail group) had no 
major chronic diseases, no overt cognitive impairment 
(MMSE>24), walking speed >1.0 m/sec, and not self-
reported disability in activities of daily living. The diag-
nosis of frailty was established based on the positivity 
of at least three over 5 criteria, namely, “unintentional 
weight loss,” “weakness,” “lack of energy,” “slowness,” 
and “sedentariness” proposed by Fried and colleagues 
[1]. The assessment of the frailty criteria in the InCHI-
ANTI study has been reported elsewhere [10].

Participants’ characteristics are summarized in 
Table  1 and described in [9]. The InCHIANTI study 
protocol and consent form were approved by the local 
ethical committee of the USL 10 in Florence Piero 
Palagi Hospital, Villa Margherita Viale Michelangelo, 
41 50125 Florence, according to the principles of the 
Declaration of Helsinki, and all participants signed a 
written consent. A t-test of clinical variables in Table 1 
shows that some of the clinical traits were significantly 
different between non-frail and frail (frailty differ-
ences) and male and female (sex differences).

Total RNA extraction and RNA sequencing library 
preparation

Total RNA was extracted from whole 2.5 -L PAX-
gene tubes of whole blood following the RNeasy 
Mini kit according to the manufacturer’s instructions 
(QIAGEN). We prepared two types of sequencing 

libraries (Fig.  1A). Preparation of no-amplification 
non-tagging CAGE (nAnT-iCAGE) and Low Quan-
tity Single Strand CAGE (LQ-ssCAGE) libraries 
at RIKEN was approved by the institutional review 
board at the Yokohama Campus (approval number 
H29-4(3)). Detailed description of library preparation 
and QC, sequencing, and mapping of raw reads pro-
cedures are provided in Supplementary information.

Generation and post-processing of CAGE 
transcription start sites

To obtain single-nucleotide TSS, mapped reads in BAM 
format were postprocessed to obtain CAGE transcription 
start sites at single-nucleotide resolution [11] in a BED 
formatted file. Using in-house script, we generated BED 
files from the mapping results of both nAnT-iCAGE 
and LQ-ssCAGE libraries. The resulting BED files with 
TSS genomic coordinates were annotated, quantified, 
and analyzed as described in the Supplementary infor-
mation. The resulting CAGE dataset unique quality and 
characteristics were further checked using a published 
method that performs quality control on the CAGE pro-
files (Supplementary Fig.  1 and 2 and Supplementary 
information).

Differential expression analysis of TSS and enhancers

The R Bioconductor package DESeq2 [7] was used to 
perform differential expression analysis (DEA). Before 
we conducted the DEA, we performed visual inspection 

Table 1  Study participants’ characteristics (data presented as mean ± SD). P-value obtained using Welch’s t-test.

Variables Total sample Non-frail (5 M/7 F) Frail (6 M/6 F) P-value 
t-test
(Frailty)

P-value 
t-test
(Sex)

Age (year) 84.8 ± 3.9 83.2 ± 4.3 86.4 ± 2.8 0.04 0.04
Weight (kg) 69.4 ± 16.9 70.4 ± 18.05 68. 4± 16.4 ns 0.02
Height (cm) 154.4 ± 11.1 157.3 ± 9.21 151.5 ± 12.5 ns < 0.001
HDL cholesterol (mg/dL) 51.5 ±18.7 56.4 ±21.3 46.5 ±14.9 ns 0.06
Triglycerides (mg/dL) 135 ± 56.6 138.5 ± 56.01 131.5 ± 59.4 ns ns
Red blood cells (RBC) (n, millions/μL) 4.5 ± 0.44 4.7 ± 0.33 4.4 ± 0.51 ns ns
Hemoglobin (g/dL) 13.3 ± 1.67 12.7 ± 1.23 12.7 ± 1.86 0.06 ns
Hematocrit (%) 41.2 ± 4.39 42.8 ± 2.9 39.6 ± 5.1 ns ns
Blood glucose (mg/dL) 108.7 ± 37.2 118.1 ± 48.7 99.25 ± 18.22 ns ns
Blood urea nitrogen (mg/dL) 46.08 ± 20.3 44.2 ± 10.6 47.9 ± 27.3 ns ns
Serum creatinine (mg/dL) 0.96 ± 0.50 0.89 ± 0.28 1.03 ± 0.6 ns 0.03



2066 GeroScience (2024) 46:2063–2081

1 3
Vol:. (1234567890)

to identify outliers. A visual inspection of the expression 
matrix through the principal component analysis showed 
no outlier (Supplementary Fig. 3). A DESeq2 object with 
blank design using the function DESeqDataSet() was 
created. We used the normalization and log transform 
standard procedures in DESeq2. Using the available 
clinical data from InCHIANTI database, we added con-
trasts to compare the gene expression between non-frail 
and frail (frailty condition) and male and female (sex) 

participants. DEA provides us with a set of DE TSS and 
active enhancer regions to be used for further analysis 
and interpretation.

Genomic and functional annotation of the DE TSS 
and enhancers

Genomic annotation of the DE TSS and enhancer 
regions assign genomic feature (transcripts, genes, 

Fig. 1  Defining enhancers and TSS landscape InCHIANTI 
study (N=24). A Overview of data set. Basic demographic 
information, frailty data, global cognitive performance, medi-
cal laboratory test results, and whole-blood samples were taken 
from InCHIANTI study. Based on frailty criteria, subjects are 
classified into non-frail (N=12) and frail (N=12). For each 
subject, a CAGE library was produced (24 libraries); CAGE 
analysis enables the mapping of TSSs (45,861) and enhancer 
(20,403) regions. B Number of clusters within each annota-
tion category. The detected TSS and enhancers were merged 
and produced merged clusters (65,441) clusters. C Expres-
sion of clusters within each annotation category. D Bimodal 
distribution of interquartile ranges (IQRs) of highly expressed 
TSSs; the interquartile range (IQR) can be used to find sharp 

and broad TSSs. The top panel (zoom-in panel) highlights 
the distinction between the two classes of TSSs. Most TSSs 
are either below or above 10 bp IQR (the dashed line) which 
indicated the cutoff to classify TSSs into Sharp and Broad. E 
Sequence logos of core promoter regions of sharp and broad 
TSSs. Sharp TSSs (right) tend to have a stronger TATA-box 
(ellipse) upstream of the TSS compared to Broad TSSs (left). F 
Correlation with FANTOM5 whole-blood samples. FATOM5 
whole-blood samples profiled with CAGE to map TSS land-
scape. The top panel shows the correlation matrix of all sam-
ples from InCHIANTI (N=24) and FANTOM5 whole-blood 
samples (N=8). The bottom panel scatter plotter showing the 
correlation between library RQ0012_005 and FANTOM5 
library CNhs11949



2067GeroScience (2024) 46:2063–2081 

1 3
Vol.: (0123456789)

and proteins) to the DE regions. Functional annota-
tion tries to find matching, Gene Ontology (GO) 
terms, KEGG pathways, diseases, or hits in published 
articles about the set of genes assigned to the DE TSS 
and enhancer regions.

To perform the two types of annotation for the 
DE regions, we utilized two databases. The refTSS 
is a database with 241,049 curated published TSS 
peaks on human genomes [12]. Each TSS peak in 
refTSS has a unique ID (refTSS ID). And each peak 
is defined with its genomic coordinates (chromo-
some name, start, and end position of the peak and 
the strand (+/−)). In refTSS database, TSS peak was 
annotated to the public gene and protein mode in 
two steps. First, TSS peak was assigned to the near-
est transcripts from public transcript sets (within 500 
bp for polII transcripts and 50 bp for non-polII tran-
scripts). In the second step, gene and protein annota-
tions assigned to the nearest transcripts were trans-
ferred to the TSS peaks [12].

To find overlapping genomic regions between DE 
TSS and enhancer regions and refTSS TSS peaks, we 
used intersectBed command from the BEDTools suite 
[13]. intersectBed gave the list of refTSS IDs that 
overlapped with DE TSS and enhancer regions “over-
lapped refTSS IDs.” Next, we obtained the annotation 
files from the refTSS database (https:// reftss. riken. jp/ 
datafi les/ curre nt/ human/). We used Linux grep com-
mand with -f option to pull all annotation for the list 
of “overlapped refTSS IDs.” This enabled us to find 
associated human genes with “overlapped refTSS 
IDs.” The list of associated genes used as input for 
functional annotation. We utilized GeneCards suite 
[14], The Human Protein Atlas [15], and DAVID Bio-
informatics Resources [16] for functional annotation.

In addition to the refTSS database, we used the 
Human Ageing Genomic Resources [17]. We down-
loaded the set of the GenAge (a list of all human 
aging genes from the human dataset) (n= 307) as of 
2023-08-23. We used intersectBed command from 
BEDTools suite as described above to find the over-
lap between the DE regions and GeneAge.

GWAS-LD enrichment analysis of the DE regions

The set of overlapped refTSS IDs was used as input 
for GWAS-LD analysis to find the number of DE 
TSS/enhancers overlapping with LD blocks on the 
genome. LDLink v5.1 [18], and the NHGRI-EBI 

catalog of human genome-wide association stud-
ies v1.0.2 [19] is used as the background dataset for 
the GWAS-LD enrichment analysis. The GWAS-LD 
analysis tool was explained in https:// reftss. riken. 
jp/ reftss/ Manual, in short, the tool search for TSS/
enhancer regions overlapping LD block in LDLink 
v5.1. If the number of overlapping TSSs is signifi-
cantly higher than the expected frequency by chance 
it indicates enrichment in LD blocks. GWAS-LD uti-
lizes trait information from the GWAS of SNPs asso-
ciated with LD blocks to group LD blocks using traits 
as labels. To test for the significance of the overlap-
ping TSS/enhancer result, GWAS-LD implements a 
hypergeometric test for each of GWAS-LD groups.

Weighted gene co-expression network analysis and 
PPI

To identify modules of correlated genes and find 
hub genes, we used the R package weighted correla-
tion network analysis (WGCNA) [8]. WGCNA was 
started by constructing a gene co-expression network 
[8]. To identify the hub genes in the distinct module 
from WGCNA, we utilized cytoHubba app in(v3.9) 
[20]. The computation and analysis of WGCNA is 
described in the Supplementary information. We per-
formed functional annotation for the set of a module 
eigengene, with the highest correlation and smaller 
P-value for each clinical trait. DAVID Bioinformatics 
Resources [16] was used for the functional annotation 
of the module member genes.

Enrichment of DNA-binding motifs and motif 
activity calculation and analysis

After identifying the differential expressed TSSs 
and active enhancers, we aim to predict the set of 
the transcription factors (TF) involved in the regula-
tion of the TSSs and active enhancers (Supplemen-
tary information). CAGE data enabled motif activity 
calculation and analysis. The method used to calcu-
late motif activity and analysis was elaborated in the 
Supplementary information. As described in [21], 
a (DNA) motif is a unique DNA sequence to which 
a corresponding group of TF proteins binds to, and 
motif activity “represents the time-dependent nuclear 
activity of positive and negative regulatory factors 
that bind to the sites of the motif.” We tested the kind 
of the probability distribution function that can fit the 

https://reftss.riken.jp/datafiles/current/human/
https://reftss.riken.jp/datafiles/current/human/
https://reftss.riken.jp/reftss/Manual
https://reftss.riken.jp/reftss/Manual
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distribution of motif activity values; we found that 
Weibull distribution [22] was the good fit.

Results

CAGE profiles of non-frail and frail subjects

The CAGE profiling results in 45,861 TSS and 
20,403 active enhancers (Fig. 1a and Data Availabil-
ity). The majority of the TSS clusters from the CAGE 
profiles were located within gene promoter regions 
(Fig.  1B). However, novel TSS were also found 
in other locations categories (proximal, 5′-UTR, 
3′-UTR, CDS, etc.) As could have been expected, 
most of the enhancer clusters were detected within 
the intron and intergenic regions (Fig.  1B). In addi-
tion to the cluster annotation, we looked at the expres-
sion of the clusters within each genomic annotation 
category. Fig.  1C indicates that TSS annotated pro-
moters were highly expressed compared to the other 
TSSs (novel TSSs). As expected, enhancer expres-
sion was lower than TSSs. We analyzed the shape 
of the TSS to find the sharp and broad promoters 
[23]; using the highly expressed TSSs with TPM ≥ 
10, we calculated the Interquartile Range (IQR) and 
found 9916 broad promoters and 772 sharp promoters 
(Fig. 1D). The sequence log of two types of the pro-
moters shows that sharp TSSs tend to have a stronger 
TATA-box upstream of the TSS compared to broad 
TSSs (Fig. 1E). Finally, we investigated the correla-
tion between the CAGE profiles with eight libraries 
generated from human whole-blood samples in the 
Functional ANnoTation Of the Mammalian genome 
(FANTOM5) project [11, 24]. Pearson’s correla-
tion coefficients indicate a positive correlation in the 
expression profiles of the FANTOM5 whole-blood 
samples and the 24 samples from or study as indi-
cated by the correlation heatmap matrix in (Fig.  1F 
top). Furthermore, Spearman’s correlation between 
sample from the current study and sample from FAN-
TOM5 was 0.73 (Fig. 1F bottom).

Differential expression analysis of TSSs and 
enhancers

We found a set of TSS and active enhancer regions 
differentially expressed (DE) between non-frail and 
frail (frailty) and male and female (sex) participants 

(Data Availability). The DESeq2 analysis result 
revealed 11:45,207 DE TSSs and 72:20,404 DE 
active enhancers (Padj < 0.05) (Fig.  2A left). The 
total number of DE regions is 83. When we intersect 
the 83 DE regions with refTSS database, we found 
19 overlapped regions. Likewise, between male and 
female, we found 89:45,207 DE TSS and 13:20,404 
DE active enhancers (Padj < 0.05) (Fig.  2A right). 
The total number of DE regions is 102. The intersect 
of the 102 DE regions with refTSS database gave 171 
overlapped regions.

Functional annotation and GWAS-LD enrichment 
analysis of the DE regions

Annotation of genes associated with DE regions 
between non-frail and frail (frailty differences)

The intersection of the DE TSS and active enhanc-
ers regions (non-frail vs. frail) with refTSS data-
base resulted in 19 genomic regions. We found 
four genes associated with 10 regions (9 regions 
are not associated with any genes) (Supplementary 
Table 1). OVCH1 Antisense RNA 1 (OVCH1-AS1) 
is among the associated genes. OVCH1-AS1 is a 
lncRNA and belongs to the antisense RNAs and has 
5 transcripts. Antisense RNAs were found to play 
a role in regulating gene expression during repli-
cation, transcription, and translation [25]. In the 
NHGRI-EBI Catalog of human GWAS, 10 associa-
tions (variant and risk allele) were associated with 
OVCH1-AS1. Alzheimer disease and age of onset 
are among the top traits for OVCH1-AS1. The sec-
ond gene was free fatty acid receptor 2 (FFAR2), 
a protein coding gene with 3 transcripts. Cell line 
study found that FFAR2 is expressed in neuronal 
cells [26]. The study observed that FFAR2 inhibi-
tion increases Aβ-Induced neurotoxicity. Using 
DAVID Bioinformatics tool [16], we found that the 
cAMP signaling pathway from KEGG was associ-
ated with FFAR2 as well as immunity and inflam-
matory response biological process. Diversion coli-
tis and inflammatory bowel disease (IBD) are two 
diseases associated with FFAR2 [14]. FFAR2 has 
19 associations in GWAS catalog and are related to 
immune and blood cells. The third gene was Major 
Histocompatibility Complex, Class I (HLA-K) a 
pseudogene with 12 associations in GWAS catalog; 
top trait was macrophage inflammatory protein 1b 
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levels. The fourth gene was the Late Endosomal/
Lysosomal Adaptor, MAPK And MTOR Activa-
tor 4 (LAMTOR4), a protein-coding gene associ-
ated with mTOR signaling pathway, regulation of 
cell size, and positive regulation of TOR signaling. 
LAMTOR4 has 12 transcripts and 2 GAWAS asso-
ciations in GWAS catalog related to venous throm-
boembolism and Alzheimer disease.

Annotation of genes associated with DE regions 
between male and female (sex differences)

The set of genes associated with DE regions between 
male and female is listed in Supplementary Table  1. 
Among the list of the genes is S100A8 (S100 calcium 
binding protein A8), linked to diseases of immune sys-
tem and an indicator of macrophage activation [27]. 

CD44 molecule (Indian blood group) and C-type lec-
tin domain family 2 member B are in the list of genes, 
and both are linked to innate immune system. We 
found tetratricopeptide repeat domain 9 genes associ-
ated with DE regions, and this gene is linked to mam-
mary gland development pathway. Interestingly, we 
found ring box protein-1 in the list of genes, ring box 
linked to invasive bladder transitional cell carcinoma 
and associated with a poor prognosis and tumor pro-
gression in esophageal cancer [28]. Several DE regions 
are annotated as lncRNA genes like X-inactive specific 
transcript (XIST) and Testis Expressed Transcript, 
Y-Linked 14 (TTTY14). We found the ZFX antisense 
RNA 1 (ZFX-AS1) is associated with DE TSS and 
enhancers between male and female.

In the Human Ageing Genomic Resources [17], the 
DE promoter TSS region chr6:366,786,54-366,787,97;+ 

Fig. 2  Differential expression analysis of the detected TSS 
and enhancers. A Diagnostic MA plot of the differential 
expression analysis of TSS and enhancer regions frail vs. non-
frail (left) and male vs. female (right). B Heatmap of GWAS-
LD enrichment analysis of the differentially expressed TSS 
and enhancer regions. The labels represent the GWAS trait, 
and the numbers in the cells are the FDR values. C Expression 

profile of top differentially expressed TSS frail vs. non-frail. D 
Mean expression OVCH1-AS1. Error bars represents standard 
error of the mean. E Expression profile of top differentially 
expressed enhancer frail vs. non-frail. *P < 0.05, **P < 0.01, 
***P < 0.001, and ****P < 0.0001; ns, not significant by a 
two-way ANOVA test
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overlapped all transcripts (n=8) from HGCN cyclin-
dependent kinase inhibitor 1A (CDKN1A) gene, a 
member of human CD1 gene family. CDKN1A (coding 
for P21), a protein coding gene, is involved in several 
KEGG pathways (e.g., FoxO signaling pathway, p53 
signaling pathway, cellular senescence, and different 
cancer type pathways) [29]. In response to DNA dam-
age, CDKN1A involved in TP53 mediated inhibition 
of cellular proliferation [30]. Interestingly, a SNP in 
CDKN1A was significantly associated with longevity in 
a cohort from the Bologna group in central Italy [31].

GWAS-LD enrichment analysis of DE TSS 
and enhancers for frailty

GWAS-LD enrichment of analysis of the 19 DE 
regions (overlapped with refTSS) (non-frail vs. frail) 
using the GWAS-LD tool identifies GWAS traits 
associated with the DE regions (Fig. 2B). Top GWAS 
traits in (Fig. 2B) were the plantar warts, isovolumet-
ric relaxation time, hemoglobin, and frontal fibrosing 
alopecia (FDR 0.0053). Other GWAS traits associ-
ated with the DE regions are major depressive disor-
der lifetime and urinary tract infection frequency, a 
common infection in old adults.

Observed expression variations of the top 
differentially expressed TSS and enhancers

We looked at expression variations and annota-
tion of the top differentially expressed TSS regions 
between non-frail and frail participants (Fig.  2C, 
D) and active enhancers regions (Fig.  2E). The 
TSS region chr1:207104120-207104377;+, located 
upstream of the Complement Component 4 Bind-
ing Protein Alpha (C4BPA) gene. A cancer cell line 
study [32] demonstrated that C4BPA was expressed 
intracellularly in cancer cells and interacts with the 
NF-κB family member RelA and regulates apopto-
sis. The same study found that C4BPA mutations 
are associated with improved cancer survival out-
come. The second TSS region was chr2:230927722-
230927775;−. This region overlapped Ensemble 
gene ENSG00000283164, a novel transcript of type 
lncRNA, antisense to G protein-coupled receptor 
55 (GPR55) gene. Experimental evidence [33] and 
sequence similarity analysis suggested that GPR55 
may be involved in hyperalgesia associated with 
inflammatory and neuropathic pain and may play a 

role in bone physiology. The third TSS region was 
chr11:21753419-21753559;+. This region over-
lapped 56 variants in Ensemble gene variant table. 
All variants’ consequences are intergenic variants 
associated with the ncRNA and uncharacterized 
gene LOC102723370. The fourth TSS region was 
chr10:133565532-133565621;−. This region over-
laps the protein coding gene synaptonemal complex 
central element protein 1 (SYCE1). SYCE1 belongs 
to disease-related genes in The Human Protein Atlas 
[15], and diseases associated with SYCE1 include 
spermatogenic failure and premature ovarian fail-
ure [14]. The fifth TSS region was chr21:46605059-
46605167;− overlapping protein coding gene S100 
Calcium Binding Protein B (S100B). In the Gen-
eCards database, two diseases are associated with 
S100B gene, syringoma, and neurofibroma. The 
sixth TSS region was chr22:22758650-22758750;+. 
This region overlaps the Immunoglobulin Lambda 
Variable 2-14 gene (IGLV2-14) involved in adaptive 
immunity [34].

We focused more on the locus OVCH1-AS1 of 
type long non-coding and belongs to the antisense 
(AS) RNA gene group and play a role in the regula-
tion of vascular aging. AS-lncRNA mainly affects 
the function of endothelial cells (ECs) and vascular 
smooth muscle cells (VSMCs.) [35]. The barplot in 
Fig. 2D shows significant difference in the expression 
of OVCH1-AS1 between frail and non-frail partici-
pants. In the GWAS catalog, OVCH1-AS1 overlaps 
10 variant and risk alleles. Alzheimer disease, gut 
microbiota, and alkaline phosphatase are among the 
reported traits associated with OVCH1-AS.

CAGE also enabled testing whether a gene shows 
differential TSS usage or not for genes with multiple 
TSSs. Supplementary Fig.  4 shows alternative TSS 
usage within genes, most of the genes used only a sin-
gle TSS, and only a minority of genes used 2 or more 
TSSs (up to 7 TSSs).

Analysis of the expression of age-related genes 
between non-frail and frail participants

We investigated the expression of the previously 
described age-related genes from a meta-analysis 
of the multiple age-related gene expression profiles 
[36]. We tested the correlation of the expression of 
the age-related genes between non-frail and frail 
participants; the correlation analysis shows strong 
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Spearman’s correlation for both over-expressed 
(Fig. 3A) and under-expressed genes (Fig. 3B).

Weighted gene co-expression network analysis

The weighted gene co-expression network analysis 
(WGCNA) enabled the integration of the expres-
sion matrix for each sample and their corresponding 
demographic and clinical laboratory data. The gene 
expression matrix for all participants was used as 
input for the WGCNA, and the samples were clus-
tered based on the expression matrix. This analysis 
did not show any evident outliers in the data. The 
dendrogram in Fig. 4A was annotated by the frailty 
variable (non-frail and frail)

Gene network with 22 modules identified

The gene clustering dendrogram with the assigned 
module colors is shown in Fig. 4B. For the 22 modules, 
the minimum module significance (the average abso-
lute gene significance measure for all genes in a given 
module [8]) is 0.1204, mean is 0.1889, and maximum 
module significance is 0.3959. Furthermore, we investi-
gated the module-trait associations and found significant 

associations shown by the coefficient correlation in 
(Fig.  4C and Table 2). As an example, in Fig.  4C and 
Table 2, the tan color module is significantly associated 
with age (r = 0.6), while the black color module is sig-
nificantly associated with red blood cells, hemoglobin, 
and hematocrit (r= 0.58). To find the association of indi-
vidual gene in the network and particular traits, WGCNA 
uses two measures to identify a set of genes with high 
significance with clinical traits as well the high module 
member genes in specific module(s), the gene signifi-
cance (GS), and module membership (MM) (see “Meth-
ods”). Fig.  4D shows the scatterplots of GS vs. MM 
for two modules; the light-yellow module left panel of 
Fig. 4D for the COLHDL trait shows a strong and highly 
significant correlation (r=0.66; P-value 4.9e−11). The 
black module right panel in Fig. 4D shows also strong 
and significant correlation (r=0.57; P-value 3.2e−29). 
Furthermore, blue module and royal blue module in 
Fig. 4D showed the high correlation and strong P-value 
for frailty and blood glucose, respectively.

Functional annotation of the gene modules 
with strong significance trait/module correlation

Out of the identified 22 gene modules from 
WGCNA, we selected 7 modules with significant 

Fig. 3  Correlation analysis of the expression of age-related gene between non-frail and frail. Correlation analysis of the age-related 
gene expression between non-frail and frail subjects. A Over-expressed genes and B under-expressed genes. Source of the genes [36]
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trait/module correlation (Fig.  4C) and performed 
functional annotation of their module member 
genes. The results of DAVID [16] functional anno-
tation of the genes in 7 gene modules are shown 
in Table 2. The gene module light cyan was asso-
ciated with the frailty (non-frail and frail) which 
was enriched for the KEGG pathway neutro-
phil extracellular trap (NET formation (FDR < 
0.0001). NETs are a DNA scaffold formed as a 
defense mechanism by neutrophil. NETs contrib-
ute to immobilization and neutralization of dif-
ferent microorganisms [37]. NETs play important 
detrimental and beneficial roles in inflammation, 
autoimmunity, and other pathophysiological con-
ditions [38].

Distinct gene module identified by WGCNA

The constructed gene network obtained by the 
WGCNA is visualized in Fig.  5A. The heatmap in 
Fig. 5A shows the topological overlap matrix (TOM) 
of all genes. In the heatmap, the 22 modules from the 
gene network are shown diagonally with very low 
overlap between them (indicated by blocks of light 
color). The heatmap of TOM was visualized together 
with the gene module dendrogram on top and left 
side of the heatmap and the module colors at the top 
and left edge of the heatmap. In addition to the TOM 
heatmap of all gene network, we identified meta-
modules (a group of correlated eigengenes) per each 
trait. The eigengene dendrogram and the eigengene 

Fig. 4  Weighted correlation network analysis. A Clustering 
of sample expression profiles. The dendrogram based on sam-
ple Euclidean distance (top) and heatmap of the basic demo-
graphic information, frailty data, clinical variable, and BMI. In 
the heatmap, white means a low value and red means a high 
value for continuous variables (age, COLHDL, triglycerides, 
red blood cells, hemoglobin, hematocrit, blood glucose, blood 
urea nitrogen, serum creatinine, and BMI). For gender, white 
means female and red means male. For frailty, white means 
frail and red means non-frail. B Genes clustering dendrogram 
with the assigned module colors (22 modules). Genes dissimi-
larity based on topological overlap were computed by block-
wiseModules function using automatic network construction 

and module detection. C Association between module eigen-
gene and demographic and clinical data. Rows correspond to 
a module eigengene and column to demographic and clinical 
data. Cells are color-coded by correlation strength. Cell con-
tains the significance trait/module correlation (top number) 
and P-value (bottom number). Cells with the highest correla-
tion value are set in bold. D Scatterplot of gene significance 
vs. module membership. Cholesterol HDL (COLHDL) (left) 
in the light-yellow module and hemoglobin (right) in the back 
module. Both scatterplots show high significant correlation 
between the gene significance and light yellow and black mod-
ule membership
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adjacency heatmap in Supplementary Fig. 5 visualize 
the relationship among the modules and the clinical 
traits (one dendrogram and heatmap per each trait).

To find the distinct module from the 22 gene mod-
ules, we used the multi-dimensional scaling plot 
(Fig. 5B) which revelated that the blue module is the 
most distinct module with 1045 genes and module 
significance (the average absolute gene significance 
measure for all genes in a given module [8]) of 0.171. 
We analyzed the module significance for five modules 
and four clinical traits related to frailty status (serum 
creatinine, hemoglobin, BMI, and blood urea nitro-
gen) (Fig. 5C). Each panel in Fig. 5C shows the mod-
ule significance for the frail and non-frail subjects and 
p-value. The association between the dark red mod-
ule gene and serum creatinine was the highest in both 
frail and non-frail participants, and similarly, blue 
module shows highly significant association, although 
P-values are somewhat different between frail and 
non-frail. For the BMI, the blue module has higher 
gene significance in non-frail compared to frail. Simi-
lar consideration applies to blue module correlations 
within hemoglobin and blood urea nitrogen (Fig. 5C).

Immune system related pathways and GO terms are 
enriched in the identified gene modules

To understand the biological meaning and relevance 
of the identified gene modules from WGCNA, we 

performed gene set enrichment analysis (GSEA) of 
the top enriched genes in the blue module using the 
anRichment R package, which relays on enrichment 
annotations from several databases (Reactome path-
way database, Molecular Signatures Database v7.4, 
WGCNA internal collection JAM, HD Molecular 
Signatures–HDSigDB, and Gene ontology for biolog-
ical process and cellular compartment). The list of all 
enrichment terms for each module with their P-value, 
FDR, and Bonferroni’s correction is shown in Sup-
plementary Table 2. The visualization of enrichment 
terms for the blue module (distinct module) is shown 
in Fig. 6A. Most of the enriched terms are related to 
immune system, e.g., the Reactome terms neutrophil 
degranulation, immune system, and innate immune 
system and also the enriched GO BB terms myeloid 
leukocyte activation, neutrophil activation, leukocyte 
degranulation, myeloid cell activation involved in 
immune response, cell activation involved in immune 
response, and others.

Protein-protein interaction (PPI) network analysis 
of the hub genes in blue module

We export the blue module genes to Cytoscape and 
identified the hub nodes in the network (genes) 
(“Methods”). Fig.  6B shows the expression pro-
file of the 20 hub genes in the blue module, which 
indicated that non-frail subjects have higher mean 
expression of the hub genes compared to the frail 

Table 2  DAVID bioinformatics tools functional annotation results for selected WGCNA modules. Correlational coefficient values ≥ 
0.5 are set in bold. FDR values for enrichment terms are set in bold for FDR < 0.05

Trait Module Correlation coef-
ficient

Enrichment term FDR

Age Tan 0.6 Identical protein binding 0.06
Gender Dark red 0.91 Dioxygenase ns
Frailty Light cyan 0.31 Neutrophil extracellular trap formation < 0.0001
HDL Light yellow 0.68 Human papillomavirus infection ns
Triglycerides Turquoise 0.45 DNA damage < 0.0001
Red blood cells Black 0.58 Lysosome 0.004
Hemoglobin Black 0.58 Lysosome 0.004
Hematocrit Black 0.59 Lysosome 0.004
Blood glucose Royal blue 0.5 Autophagosome ns
Blood urea nitrogen Tan 0.53 Identical protein binding 0.06
Serum creatinine Dark red 0.57 Dioxygenase ns
BMI Royal blue 0.45 Autophagosome ns
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subjects. Finally, we looked at the PPI of the top 
hub gene Glycogen Phosphorylase L (PYGL) as 
shown in (Fig. 6C) with PPI enrichment P-value < 
1.0e−16 a PYGL code for protein that is involved in 
cAMP-dependent activation of PKA [14].

Members of ETS (erythroblast 
transformation-specific) family TF enrichment

We looked at the enrichment of DNA-binding 
motifs for the differentially expressed TSSs and 
active enhancers (see “Methods”). Based on motif 

enrichment scores, the top 20 ranked motifs are 
shown in Fig. 7A. Among the top ranked motifs, we 
identified 3 gene members of the ETS transcription 
factor family [39]. Those are the ETS-related gene 
subfamily (ERG and FLI1) and prostate-derived Ets 
transcription factor subfamily (SPDEF) which play 
key roles as differentiation regulators and tumo-
rigenesis in endocrine organs and target tissues [39]. 
ERG (ETS Transcription Factor ERG), FLI1 (Fli-1 
proto-oncogene), and SPDEF (SAM Pointed Domain 
Containing Ets Transcription Factor) are all pro-
tein coding genes that play a role as a DNA-binding 

Fig. 5  Topological overlap matrix (TOM) analysis. A Heat-
map of the topological overlap matrix on the top and left side 
gene dendrogram tree and module assignment (colored). In the 
heatmap, light color represents low overlap genes and darker 
red color represents higher overlap between genes. Each row 
and column in the heatmap correspond to a single genes. B 
Multi-dimensional scaling plot of module members. C Bar-

plot of module significance (black, blue, cyan, red, and dark 
red (five modules)). The module significance is defined as the 
mean gene significance across all genes in specific module. 
For each clinical test (serum creatinine, hemoglobin, BMI, and 
blood urea nitrogen), two barplots are shown for frail (left) and 
non-frail (right)
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Fig. 6  Gene set enrichment analysis of blue module and hub 
genes identification. A Gene set enrichment analysis of blue 
module for the top enriched term from Reactome pathway 
database (red labels), Molecular Signatures Database v7.4 
(blue labels), WGCNA internal collection JAM (black label), 
HD Molecular Signatures–HDSigDB (magenta labels), and 

Gene ontology BP|CC (yellow labels). B Expression profile 
of the 20 hub genes in the blue module (non-frail vs. frail); 
data in the bar chart are represented as expression ± SEM. C 
Protein-protein-interaction network (PPI) for the PYGL (Gly-
cogen Phosphorylase L) protein coding gene and blue module 
hub gene



2076 GeroScience (2024) 46:2063–2081

1 3
Vol:. (1234567890)

transcription activator. Also, we found that two mem-
bers of the basic helix-loop-helix proteins (BHLH) 
were enriched, the Basic Helix-Loop-Helix Fam-
ily Member E23 (BHLHE23) and myogenic factor 5 
(myf) which is a transcriptional repressor. Among the 
top 20 ranked motifs, we found the Forkhead box pro-
tein O1 (FOXO1) a member of the forkhead family 

of transcription factors known as longevity associ-
ated genes by alterations in the insulin/IGF pathway. 
The enriched FOXO1 TF is a prolog of FOXO3, 
a gene that carries polymorphisms that have been 
strongly associated with longevity in genome-wide 
association studies [14]. Among the top ranked TF 
was the nuclear factor I X (NFIX) and nuclear factor 

Fig. 7  Transcription factors biding site prediction and motifs 
activity analysis. A 20 predicted transcription factor binding 
sites (TFBS). Each TFBS was ranked based on the P-value 
and the target colored by the TF family. The first column is 
the rank, and the second shows the target name, which is 
either a gene name, an isoform name, or a dimer name. The 
next column in the plot is the PWM logo, following the motif 
ID. This ID comes from the MotifDb package. The next-to-
last column is the raw affinity score, and the last column is 

the P-value of motif enrichment. B Venn diagram of the pro-
moter vs. enhancer transcription factors. C Cumulative distri-
bution (cd) of Pearson’s correlation r for the promoters (left) 
and enhancers (right) between non-frail and frail. The median 
value of persons’ correlation r on the horizontal axis of each 
graph. D  log2 expression of the selected transcription factors 
(TF) involved in age-related pathways between non-frail and 
frail subjects
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I B (NFIB) both belonging to nuclear factor I family 
(NFI). Both NFIX and NFIB play a key role in devel-
opment and cancer [40]. The SRY-Box Transcription 
Factor 9 (SOX9) a member of SRY-box transcription 
factors (SOX) was enriched as well. SOX9 is a pro-
tein coding gene and transcription activator which 
plays a key role in chondrocytes differentiation and 
skeletal development [41].

Motif activity analysis and aging-regulatory signaling 
pathway analysis

Motif activity of promoter and enhancer TF 
between non-frail and frail

To investigate the motif activity of promoter and 
enhancer TF between non-frail and frail, we first 
estimated TF using the identified TSS and enhancers 
(“Methods”). Overall, we predicted 159 TFs. 125 of 
them are common for both promoters and enhancers, 
24 are promoter specific TF, and 10 are enhancer spe-
cific TF as shown in Venn diagram (Fig. 7B).

We calculated the motif activity for promoter and 
enhancer (“Methods”). The raw calculated motif 
activity is shown in Supplementary Tables  3 and 4. 
The motif activity values for promoters and enhanc-
ers are plotted with quantile-quantile (Q-Q) plot in 
Supplementary Fig. 6. We started by estimating Pear-
son’s pairwise correlation between non-frail and frail 
for 149 promoter activity and next we repeat the same 
procedure and tested Pearson’s correlation between 
non-frail and frail for 135 enhancer activities (Sup-
plementary Table  5). To test the difference in Pear-
son’s pairwise correlations between non-frail and 
frail (promoter and enhancer TF), we computed and 
plotted the empirical cumulative distribution (CDF) 
(Fig.  7C). The median value of persons’ correlation 
r on the horizontal axis of each graph in (Fig.  7C) 
indicates that more than half of the promoter activ-
ity of frail subjects negatively correlated (inverse 
relationship) with the promoter activity of non-frail 
subjects (mean r = −0.01). Interestingly, among the 
top ranked promoters, we found that the Engrailed 
Homeobox 1 and 2 (EN1,2). EN1,2 a protein coding 
gene has been implicated in pattern formation dur-
ing development of the central nervous system and 
among its enriched pathway dopaminergic neurogen-
esis [42]. Likewise, for the half of the enhancers, the 
activity in frail subjects is negatively correlated with 

the enhancer activity of non-frail subjects (mean r = 
0.01) of all enhancers.

CAGE expression of the major aging-regulatory 
signaling pathways

After defining the set of TFs, we looked at the CAGE 
expression of the major aging-regulatory signaling 
pathways and their downstream transcription factors 
which was curated from [43]. The Box-and-whisker 
plot in Fig.7D shows the variation in CAGE expres-
sion for each category of major aging-regulatory 
signaling pathways between non-frail and frail.

Discussion

The aim of this study was to integrate information 
from whole-blood gene expression and clinical data 
(traits) to shed light on the biological mechanisms 
that distinguish non-frail versus frail individuals in 
a subset of participants from the InCHIANTI study. 
The analysis of the gene expression from CAGE 
shows that TSS annotated promoters are highly 
expressed compared to unannotated TSSs (novel 
TSSs) and enhancer expression is lower than that of 
TSSs as reported before [44–46].

Performing differential expression analysis, 
between non-frail and frail and male and female par-
ticipants, we identified a set of DE TSSs and active 
enhancer region with Padj < 0.05. We performed 
genomic and functional annotation of the DE regions. 
Several DE TSS are annotated as protein coding, 
lncRNA, or antisense RNA. The GWAS-LD enrich-
ment analysis of the DE regions of frailty revealed 
a set GWAS reported traits associated with the DE 
regions. Several cardiovascular, psychiatric disorders, 
and infection related traits are found to be signifi-
cantly associated with DE regions.

We looked closely at the expression of the top 
differentially expressed promoters and enhancers 
between non-frail and frail participants. Complement 
component 4 binding protein alpha (C4BPA) was 
among the top differentially expressed promoters and 
lowly expressed in frail subjects (P < 0.01) (Fig. 2C). 
The protein encoded by this gene plays key roles in 
immunity and innate immunity and has been found 
to be enriched in immune cell (neutrophil) in The 
Human Protein Atlas [15] and highly expressed in the 
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liver, lung, and whole-blood tissue in the Genotype-
Tissue Expression (GTEx) [47]. Another gene highly 
expressed in frail subjects was G protein-coupled 
receptor 55 (GPR55) which play key role in several 
physiological and pathological processes by activat-
ing a variety of signal transduction pathways [15]. We 
also found the gene OVCH1-AS1 among the differ-
entially expressed genes. OVCH1-AS1 is a lncRNA 
and belongs to an antisense RNA gene group. Aging 
studies showed that several lncRNA genes play a role 
during aging by mediating cellular senescence in 
difference phases of cell cycle by modulating senes-
cence-associated pathways [48]. As special lncRNA, 
the antisense RNA plays a role in the regulation of 
vascular aging and mainly affects the function of 
endothelial cells (ECs) and vascular smooth muscle 
cells (VSMCs) [35]. The overexpression of OVCH1-
AS1 in non-frail participants is compared to the low 
level of the expression in frail participants, indicat-
ing that this gene could be a discriminant marker 
for frailty and could be explored as a target in future 
investigations. The correlation of the obtained gene 
expression of the list of published age-related genes 
between non-frail and frail subjects shows strong 
Spearman’s correlation for both over-expressed and 
under-expressed genes. These findings suggest that 
the differential expression of specific gene with both 
aging and frailty is modulated by similar differential 
expression of TSS and enhancers.

WGCNA analysis identifies 22 modules related to 
12 clinical traits. Among these modules, we identi-
fied the blue module as a distinct module. The gene 
significance of the blue module discriminates several 
of the clinical traits that have been associated with 
frailty (BMI, blood urea nitrogen, serum creatinine, 
and hemoglobin). We considered the blue module for 
the gene set enrichment analysis to understand the 
biological relevance of the set of gene in the module. 
Not surprisingly, we found that most of the enriched 
terms are related to immune system and innate 
immune system. The enriched GO terms are myeloid 
leukocyte activation, neutrophil activation, leukocyte 
degranulation, myeloid cell activation involved in 
immune response, cell activation involved in immune 
response, etc. We also took the set of genes in the 
blue module and performed network analysis to find 
the top hub genes. The highest top hub gene was Gly-
cogen Phosphorylase L (PYGL) which is involved in 
carbohydrate metabolism and glycogen metabolism. 

PYGL is related to activation of cAMP-dependent 
PKA pathway [14].

DAVID functional enrichment analysis of the 7 
gene modules with strong trait/module correlation 
shows that the light cyan module (frailty) enriched for 
the neutrophil extracellular trap formation, a mecha-
nism used to by neutrophil to immobilize microorgan-
isms. Neutrophil extracellular trap (NET) formation 
plays important roles in autoimmune, inflammatory, 
and different pathophysiological conditions [38]. The 
enrichment of NETs formation pathway is a drug tar-
get for several drugs, such as Mitiperstat that is used 
treat heart failure and Imiquimod an antiviral and 
immunomodulator.

The 20 top ranked target genes resulting from 
transcription factor binding site (TFBS) analysis 
included ERG, FLI1, and SPDEF genes which belong 
to erythroblast transformation-specific (ETS) family 
of TF. This is consistent with the well-known asso-
ciation between both aging and frailty with anemia. 
Members of ETS family play a key role as regulators 
of cell proliferation, differentiation, angiogenesis, 
inflammation, and apoptosis, and they are cancer-
related genes and proto-oncogene [15, 42]. In addi-
tion to ERG and FLI1, we identified Forkhead box 
protein O1 (FOXO1) member of the forkhead box 
genes associated with longevity [49] and defined as 
the main target of insulin signaling and a key regu-
lator of metabolic homeostasis in response to oxida-
tive stress [50]. We identified in the list of target gene 
SOX9, a TF which plays a key role in skeletal devel-
opment in chondrocyte differentiation [41].

The motif activity analysis shows significant dif-
ferences in motif activity between frail and non-frail. 
Finally, we analyzed the expression of the TF of the 
aging-regulatory signaling pathways which also 
shows differences in the expression profile between 
frail and non-frail.

The strengths of our study include the integration 
of gene expression profiling and clinical traits using 
network approach and statistical methods. This is the 
first study in the literature that uses a complex bio-
informatic pipeline to characterize CAGE expression 
profile of old adults in a well-characterized cohort 
and employ different statistical methods to integrate 
expression data with clinical traits.

Our findings were obtained using data and sam-
ples from participants of the InCHIANTI study, a 
well-characterized, high-quality cohort. Our study 
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also has limitations. For example, while we were able 
to identify a set of differentially expressed TSSs and 
active enhancers, we could not validate these findings 
in an independent population. In addition, because of 
the small sample size (n=24), our findings should be 
interpreted with cautions and should be validated in 
future studies.

In conclusion, the CAGE profiles enabled us to 
identify several lnRNAs and antisense RNA differ-
entially expressed between non-frail and frail par-
ticipants. WGCNA analysis identifies PYGL gene 
as a hub gene in the identified gene modules. Fur-
thermore, we found novel association between motif 
activities and frailty status. Our study will help to 
understand the regulation of longevity-related genes. 
The set of promoters and active enhancers identified 
in this study could be explored in different ways and 
can be re-used for further studies.

Statistical analysis

R statistical package version 4.1.2 (2021-11-01) was 
used for all analyses. Data are represented in box and 
whisker plot, boxplots, and bar plots (represented as 
expression ± SEM) as specified in the figure legends. 
For testing differentially expressed TSS and enhanc-
ers, F-statistic, the associated P-value, and the adj. 
P-value were corrected using the Benjamini-Hoch-
berg correction.
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