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Abstract  Previous observations on a group of 
exceptionally healthy “Super-Seniors” showed a 
lower variance of multiple physiological measures 
relevant for health than did a less healthy group of the 
same age. The finding was interpreted as the health-
ier individuals having physiological measurement 
values closer to an optimal level, or “sweet spot.” 
Here, we tested the generalizability of the sweet-
spot hypothesis in a larger community sample, com-
paring differences in the variance between healthier 
and less healthy groups. We apply this method to 
the Canadian Longitudinal Study on Aging (CLSA) 

comprehensive cohort of 30,097 participants aged 45 
to 85 years with deep phenotype data. Data from both 
sexes and four age ranges were analyzed. Five instru-
ments were used to represent different aspects of 
health, physical, and cognitive functioning. We tested 
231 phenotypic measures for lower variance in the 
most healthy vs. least healthy quartile of each sex and 
age group, as classified by the five instruments. Seg-
mented regression was used to determine sex-specific 
optimal values. One hundred forty-two physiological 
measures (61%) showed lower variance in the healthi-
est than in the least healthy group, in at least one sex 
and age group. The difference in variance was most 
significant for hemoglobin A1c and was also signifi-
cant for many body composition measurements, but 
not for bone mineral density. Ninety-four phenotypes 
showed a nonmonotonic relationship with health, 
consistent with the idea of a sweet spot; for these, we 
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determined optimal values and 95% confidence inter-
vals that were generally narrower than the ranges of 
current clinical reference intervals. These findings for 
sweet spot discovery validate the proposed approach 
for identifying traits important for healthy aging.

Keywords  CLSA · Healthy aging · Homeostasis · 
Sweet spots · Heteroskedasticity · Physiological 
measures

Introduction

Homeostasis is the collection of mechanisms that 
living organisms use to maintain physiological con-
stancy by regulating their internal environment [1]. 
Homeostasis causes variables such as glucose level, 
body temperature, or blood pressure to be maintained 
close to optimal values that we will refer to as “sweet 
spots” [2]. Such regulation is usually associated with 
better health. For example, deviation from the optimal 
range for vitamin D, involved in calcium homeostasis, 
is associated with mortality risk [3, 4]; fasting glu-
cose levels in an optimal range are associated with a 
lower risk of mortality and cardiovascular events [5]. 
Homeostatic imbalance, or homeostenosis, occurs 
when normal physiological control is disrupted. Such 
instability can result in disease. For example, dys-
regulation of lipid metabolism leads to dyslipidemia 
and kidney injury [6], and impaired glucose tolerance 
causes diabetes and raises the risk of cardiovascular 
diseases [7]. Homeostasis is a lens through which to 
view, analyze, and understand phenotypes that are 
important for, and can be indicators of health [8, 9].

Aging is a major factor in the disruption of home-
ostatic regulation, exemplified by the loss of pro-
teostasis, increased inflammation, or compromised 
autophagy [8–10]. Manifestation, onset, and rate of 
aging processes are heterogeneous in older adults. 
Moreover, health heterogeneity tends to increase with 
age [11]. The US Census Bureau projects that one in 
five Americans will be 65 or over by 2030 [12]; this 
underlines the importance of understanding which 
measures are important for, or indicative of health, 
and the lifestyle and other factors associated with 
physiological dysregulation.

To characterize health or physiological dysregula-
tion, several research groups have constructed com-
posite indices incorporating laboratory measures or 

health histories. Allostatic load (AL) estimates physi-
ological response to stress and is associated with an 
age-related reduction in cognitive and physical func-
tion [13]. Studies over the past two decades have 
estimated the AL index using a variety of biomarker 
combinations that reflect the states of the cardiovas-
cular, metabolic, and immune systems [14]. The mul-
tivariate Mahalanobis distance from observed pheno-
types’ means was proposed to examine longitudinal 
changes suggesting a positive correlation with age 
and subsequent mortality [15]. Multidimensional fac-
tors of positive aging have also been identified using 
principal components factor analysis [16]. However, 
despite strong association with age, risk of mortal-
ity, cognitive, and physical functioning, the aggregate 
nature of multivariate indices hampers interpretabil-
ity, and illumination of the etiology and genetic basis 
of dysregulation and age-related changes. In contrast 
to previous studies focusing on constructing sum-
mary measures to access individuals’ health and fore-
cast health trajectories and adverse health outcomes 
[16–19], we concentrate on a procedure that has a 
potential to disclose novel measures related to health 
and establish optimal ranges for specific phenotypes.

Studying healthy long-lived individuals allows us 
to identify unrecognized features of healthy aging. To 
that end, the Super-Seniors Study recruited healthy 
oldest-old people to study genetic factors associ-
ated with healthy aging [20]. The Super Seniors are 
healthy individuals aged 85–110 years who at recruit-
ment had never been diagnosed with cancer (except 
non-melanoma skin cancer), cardiovascular disease, 
major pulmonary disease, dementia, or diabetes 
[20]. A key observation was that this cognitively and 
physically high-functioning group showed lower tel-
omere length variance [21]. In contrast to studies that 
examine relationships between the telomere lengths 
of individuals and their health status [22], we focused 
on the difference in telomere length variance between 
a healthy group vs. a less healthy group. We seek 
to advance the hypothesis that in healthier groups, 
measures important for health tend to be closer to 
optimal values. This provides a way to identify traits 
important for health and likely to be homeostati-
cally controlled. Understanding sweet spots and what 
affects them (and how to maintain proximity to sweet 
spots through lifestyle or medical intervention) has 
the potential to extend the healthspan of people and 
populations.
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The objective of our study is to identify physiolog-
ical measures previously lesser known to be relevant 
to healthy aging. We propose a statistical framework 
for detecting health-related phenotypes through 
examining the variance and determining sex-specific 
optimal values. We also explored the lifestyle and 
socioeconomic factors associated with deviation from 
estimated sweet spots by testing additional covariates.

Methods

Data source and participants

We examine data from the Canadian Longitudinal 
Study on Aging (CLSA) [23]. These data involve 
a stratified sample of 51,338 Canadian males and 
females aged 45 to 85  years. Community-dwelling 
participants were recruited from the ten Canadian 
provinces excluding individuals unable to respond 
in English or French; residents of the three Cana-
dian territories; individuals living on First Nation 
reserves or in nursing homes; full-time members of 
the armed forces; and individuals with significant 
cognitive impairment [23]. We analyzed a subsample 
of 30,097 participants included in the comprehensive 
cohort (COM) of CLSA that underwent a comprehen-
sive physical assessment including blood and urine 
specimens.

Instruments for the classification of health status

For this study, five instruments were applied, repre-
senting health status in different ways. Table  1 pro-
vides a list and characteristics of the assessment 
tools (i.e., instruments) used. To allow comparabil-
ity between instruments, all estimators were trans-
formed into the unit interval with the upper bound-
ary for health deficits representing the least healthy 
individuals.

To construct Instrument I, a deficit accumulation 
frailty index (FI), we utilized 51 CLSA measures that 
meet the standard criteria [32, 33]. Instrument II was 
defined as the normalized number of medical condi-
tions that were exclusion criteria for Super-Seniors: 
cancer (except non-melanoma skin cancer), cardio-
vascular disease, major pulmonary disease, diabetes, 
and dementia. Participants taking medication for dia-
betes or heart disease or undergoing treatment for any 
of these diseases were also considered to have a con-
firmed disease status. Instrument III was a count of 28 
self-reported clinician-diagnosed chronic conditions 
excluding those used to define Instrument II. Instru-
ment III includes phenotypes that are not associated 
with age, such as asthma, epilepsy, anxiety disorder, 
migraine, headaches, and traumatic brain injury; and 
age-related deficits used in the FI.

We also constructed two separate continuous 
instruments reflecting cognitive (Instrument IV) 
and physical (Instrument V) functioning based on 
neuropsychological and mobility assessment tests. 

Table 1   Health instruments and their characteristics

* The Rey Auditory Verbal Learning Test–Trial 1 within the memory domain [24]; the Mental Alternation Test [25], animal fluency 1 
Test [26], Controlled Oral Word Association Test [27], Stroop Test [28, 29] and Prospective Memory Test [30] within the executive 
functions domain; and choice reaction times [31] within the psychomotor speed domain
** Timed (4-m) walk test, timed get up and go test, standing balance test, chair rise test, and hand grip strength

Instrument Description Characteristics (mean; SD)

Females Males

I The frailty index as a normalized sum of 51 health deficits 0.092; 0.061 0.081; 0.055
II The normalized number of chronic conditions: cancer (except non-melanoma skin cancer), 

cardiovascular disease, major pulmonary disease, dementia, and diabetes
0.126; 0.152 0.155; 0.158

III The normalized number of 28 self-reported clinician-diagnosed conditions (except condi-
tions used for Instrument II)

0.121; 0.089 0.082; 0.067

IV Composite cognitive score as the mean of three cognitive domain scores (memory, the 
executive functions, the psychomotor speed domains) derived from rank normalizes 
scores of domain-specific tests*

0.445; 0.180 0.475; 0.185

V Physical functioning as a mean rank normalizes scores of five physical assessment tests** 0.498; 0.185 0.419; 0.177
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As a preprocessing step for these two instruments, 
we determined the direction of risk for each assess-
ment test score and inverted values if necessary to 
make test results increase with cognitive or physical 
decline. To assess cognitive capacity, we constructed 
a composite cognitive score. CLSA included assess-
ments in three cognitive domains as an alternative to 
global cognitive screening measures [34]. To calcu-
late composite cognitive scores, some studies have 
used the mean of cognitive domain z-scores derived 
from means of domain-specific tests [35]. In contrast, 
we applied rank normalization to preserve identi-
cal ranges for all instruments used for experiments, 
to allow for comparison across instruments [36]. We 
constructed a composite cognitive score using seven 
tests: the Rey Auditory Verbal Learning Test–Trial 1 
within the memory domain [24]; the Mental Alterna-
tion Test [25], animal fluency 1 test [26], Controlled 
Oral Word Association Test [27], Stroop Test [28, 
29], and Prospective Memory Test [30] within the 
executive functions domain; and choice reaction 
times [31] within the psychomotor speed domain. For 
Instrument V, physical function, we used a mean of 
rank normalized scores of the following assessments: 
timed (4-m) walk test, timed get-up-and-go test, 
standing balance test, chair rise test, and hand grip 
strength. Lists of measures used for each instrument, 
directions of risk, and methods of operationalization 
can be found in the Supplemental Materials (Supple-
mental Table S1).

Phenotypes

Phenotypes included 317 traits from the following 
categories: hematology; blood chemistry; electrocar-
diogram (ECG); body measures including BMI, hip, 
and waist circumferences; bone mineral density and 
body composition data collecting using dual energy 
X-ray scanners; vital signs; and inflammatory bio-
markers (Supplementary Table S2).

Covariates

Covariates included age group at baseline (strati-
fied according to the levels < 55, 55–64, 65–74, 
and ≥ 75  years), self-reported sex, self-reported 
ancestry, alcohol consumption (never, light/moderate, 
heavy drinker), household income (CDN < $20,000, 
$20,000–$50,000, $50,000–$100,000, 

$100,000–$150,000, > $150,000), education level 
(< secondary, secondary, post-secondary diploma/
certification, or university degree), nutritional risk 
(high/low), smoking status (never, occasional, current 
smoker, current heavy smoker), province of residence, 
living area (urban, rural), retirement status, physical 
activity level, and living alone. In CLSA, nutritional 
assessment was performed by the AB SCREEN II 
[37] and physical activity level was assessed by the 
Physical Activity Scale for Elderly [38]. High nutri-
tion risk was identified as a score below a validated 
cutoff of 38 [39]. We categorized self-reported ances-
try into Arab, Black, Asian, Latino, White, or other.

Statistical analysis

Using the five instruments, we calculated health defi-
cit scores for the CLSA COM participants. For con-
tinuous instruments (I, III, IV, and V), we assigned 
health levels according to quartiles: healthiest, good 
health, fair health, and least healthy. Cutoffs were 
applied to categorize participants by health levels 
regardless of age and sex while controlling for both 
these factors in the analysis. For Instrument II, par-
ticipants without any of the five major disorders 
(cancer, cardiovascular disease, major pulmonary 
disease, diabetes, and dementia) were considered the 
healthiest group, whereas individuals diagnosed with 
2 or more major disorders were assigned to the least 
healthy group. To avoid confounding by ethnicity, we 
restricted the primary analysis to the largest group 
which was white.

The sweet spot discovery pipeline has two main 
steps: (1) identify phenotypes that are relevant for 
health by testing for the variance effect; and (2) esti-
mate the position of sweet spots. To examine phe-
notypes for associations of variance with health, a 
Brown-Forsythe (BF) test for heteroskedasticity was 
utilized due to skewness and unequal sample size 
[40]. For each 10-year age bin and self-reported sex, 
the equality of phenotype variances was pairwise 
tested between the healthiest and least healthy groups. 
According to the hypothesis, we expect to observe 
significantly lower variance in the healthiest group for 
phenotypes related to health. Analysis was restricted 
to complete cases (participants without missing val-
ues for any phenotype used to calculate deficit score 
or for a phenotype of interest) with at least 30 indi-
viduals within each group. Measures for which the 
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healthiest and least healthy groups had significantly 
different variance for at least one age and sex group, 
and for which the healthiest group had the lower 
variance were selected for further examination. Bon-
ferroni adjustment was used to account for multiple 
testing.

We characterized the relationship between each 
instrument and phenotype magnitude to identify the 
type of relationship and sweet spot value by examin-
ing breakpoints using segmented regression where 
the effect on the health deficit score changed [41–44]. 
This approach is effective in determining the value 
of a measure where the effect on the health deficit 
score changed and resulted in meaningful regression 
parameters. We applied a model with a single-free 
breakpoint assuming that a continuous phenotype 
affects the mean response of health deficit scores 
via two straight lines that are connected at a break-
point. Breakpoints are identified as optimal values, 
e.g., sweet spots, under the following conditions: 
(1) slopes of the straight lines have different signs; 
(2) 95% confidence intervals for both slopes do not 
contain zeros; and (3) the difference in slope is sig-
nificant, tested using a two-sided score test. We also 
assumed that the positions of sweet spots are fixed 
regardless of age but not sex. To avoid confounding 
by age, we regressed health deficit scores onto age 
and used the residuals for the segmented regression 
model. Analysis for males and females was done sep-
arately to determine sex-specific estimates of sweet 
spots. Results were adjusted for multiple testing using 
Bonferroni correction and adjusted P values less than 
0.05 were considered statistically significant.

To explore the effect of lifestyle and socioeco-
nomic factors, health instruments were regressed onto 
the covariates, and the residuals from these were used 
for regression analyses. We interpret a change in a 
pattern of interaction between a health deficit score 
and measures as evidence of an impact of these fac-
tors on a phenotype’s values. This implies the poten-
tial usefulness of the intervention to approach the 
optimal phenotypic value. All tests were performed 
in the R software, version 3.6, without sampling 
weights.

Replication

Given the substantially smaller sample size of other 
ethnicity groups in CLSA, the replication of the 

segmented regression results was performed only for 
the subset of phenotypes and groups for which there 
was sufficient statistical power. Similar to the primary 
analysis, the replication was performed separately 
for females and males. For a segmented regression 
model with one free breakpoint, power calculation is 
based on the score statistic [45] implemented in the R 
package segmented (v1.6–4) [46]. We used following 
assumptions for power analysis: (1) the sample size 
for each group was assumed to be given by the mean 
sample size across phenotypes and sexes; (2) the 
covariates were assumed to be normally distributed; 
(3) the estimate for the breakpoint value was the mean 
value of the phenotype; (4) the effect sizes for phe-
notypes do not vary greatly between groups. Due to 
the novelty of the analysis, effect sizes for phenotypes 
derived from the difference in slopes cannot be estab-
lished from existing literature. Hence, we used values 
for slope differences for each phenotypic model from 
the primary analysis on white group. In addition, for 
the power analysis, the type I error probability was set 
to 0.05 and the response standard deviation was set 
to the mean standard deviation across health instru-
ments. The subset of phenotypes for replication was 
selected based on the slope difference required to 
reach the desired power level of 0.8.

Results

Participant measures and characteristics of health 
scores

Of 30,097 individuals from the CLSA COM, 52.3% 
were female, and the average age was 63.1 (95%CI: 
63.0–63.2) years. Ninety-four percent of participants 
self-reported being white; the second largest ethnicity 
group was Asian with 2% of the CLSA COM cohort; 
less than 0.7% of CLSA adults identified themselves 
as belonging to the third largest ethnic group, which 
was black.

The distributions for health instruments the FI 
(I), five major diseases (II), and other chronic con-
ditions (III) were skewed to the right, while rank 
normalization used to assess cognitive and physi-
cal functioning in instruments IV and V led to nor-
mally distributed scores. The strongest correlation 
between health scores was observed for the FI (I) 
and other chronic conditions (III) (r2 = 0.68), due 
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to the partial intersection of phenotypes. All health 
deficit scores were higher for participants in the old-
est age group (> 75  years). Across all instruments, 
mean health deficit scores were strongly correlated 
with age (r > 0.90). Across all ages, males had higher 
mean scores than females for five major diseases (II) 
and cognitive functioning (IV) while lower for other 
instruments consistent with previous studies [47, 48]. 
Supplementary Fig. S1 (A–E) shows distributions for 
all health instruments and association between mean 
scores and age.

Among all CLSA measures within the eight cat-
egories considered in the analysis, 231 were selected 
for sweet spots testing after exclusion of highly cor-
related variables (r > 0.9) and measures with more 
than 24% missing values except for inflammatory bio-
markers. TNF-alpha and IL-6 measures are available 
only for a third of CLSA COM participants. Con-
sidering the reported importance of these biomark-
ers for frailty, we included these two measures even 
though they were above the missingness threshold, 
and performed testing for the subset of participants 
with available data. Instead of imputing missing phe-
notypic values, we restricted our analysis to complete 
cases. The sample size varies based on the model and 
the phenotype (missingness varies by phenotype). 
The sample sizes in each analytical model for the 
subsets of participants self-reporting as white ranged 
from 4595 to 14,524 (median 14,524) for females and 
from 4411 to 13,848 (median 13,259) for males. For 
the Asian subset, the second largest ethnic group, the 
sample size ranged from 87 to 268 (median 260) for 
females and from 117 to 360 (median 349) for males. 
For the black ethnic group, the sample size ranged 
from 28 to 111 (median 105) for females and from 26 
to 110 (median 104) for males. Detailed information 
is shown in Supplementary Table S3.

Health‑related phenotype discoveries

Using the instruments, we assigned health levels to 
each participant. The first, second, and third quartiles 
of the FI (I) were 0.04, 0.07, and 0.11, respectively. 
Thus, individuals with the FI < 0.04 were considered 
to be the healthiest group, whereas those with score 
above 0.11 were considered to be the least healthy 
group. Similarly, we assign these two health levels 
for other continuous instruments, other chronic con-
ditions (III), cognitive (IV), and physical functioning 

(V) using cutoffs (< 0.04, > 0.14), (< 0.35, > 0.61), 
and (< 0.33, > 0.6) for the healthiest and the least 
healthy groups, respectively.

To identify phenotypes related to health and 
homeostasis, we tested for homogeneity of variance 
between the most and least healthy groups, for each 
phenotype-instrument pair, age category, and sex, 
which resulted in 9240 tests (#measures × #instru-
ments × #groups). Overall, the BF test detected 142 
physiological measures with significantly lower vari-
ance for the healthiest, compared to the least healthy 
adults, in at least one sex and age group after Bon-
ferroni correction. Figure 1 displays an overall sum-
mary of results for all measures, categories, instru-
ments, and groups. The most significant difference 
in variance was for the phenotype hemoglobin A1c 
(HbA1c), a diagnostic criterion for diabetes. This 
phenotype showed heteroskedasticity for all instru-
ments except other chronic conditions (III) (P = 0.16). 
Moreover, five major diseases (II) test results for 
hemoglobin A1c variance were consistently sig-
nificant across all age groups and sexes (P < 0.001). 
The second most significant measure was body mass 
index (BMI), which showed variance heterogeneity 
for both sexes by all instruments (P < 0.001) except 
for cognitive function (IV).

Among body composition phenotypes derived 
from images collected using Hologic QDR 4500 dual 
energy X-ray scanners, 91% revealed heteroskedas-
ticity. In contrast, only 16% of bone mineral density 
phenotypes showed variance heterogeneity. By body 
part, variance between the estimated fat and lean 
content of visceral, android, and gynoid regions was 
much larger for the least healthy than for the healthi-
est individuals. Significant results for ECG traits were 
detected using instruments the FI (I), five major dis-
eases (II), and physical functioning (V) across all age 
groups. T-axis, QRS duration, Q onset, and P offset 
revealed heteroskedasticity for both sexes while P 
duration showed significant difference in variance 
among 55–65-year-old men. Variance for measures of 
vital signs was marginally higher in the least healthy 
group, but only pulse rate remained significant with 
multiple testing corrections. Similarly, only Interleu-
kin-6 and high-sensitivity C-reactive protein showed 
variance heterogeneity in the inflammatory biomark-
ers category (P < 0.001). We detected heteroskedas-
ticity for all available blood chemistry measures with 
the exception of 25-hydroxyvitamin D and six of 16 
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hematology measures, after Bonferroni adjustment. 
Because levels of 25-hydroxyvitamin D of less than 
12  nmol/L or greater than 150  nmol/L are associ-
ated with higher mortality risk in the literature 3,4, 
our expectation was that this phenotype would show 
a sweet spot; however, analysis revealed equality of 
variances across all age groups. Season of blood draw 
had no effect on vitamin D level, P > 0.05.

Although heteroskedasticity was observed across 
all instruments, the number of phenotypes detected 
per instrument varied. Using the instruments the FI 
(I), five major diseases (II), other chronic conditions 
(III), and physical functioning (V), we observed sig-
nificantly lower variance among the healthiest adults 
for 105, 113, 87, and 115 measures, respectively. Sup-
plementary Fig. S2-A and Table S4 show overlapping 
results between instruments. Only two phenotypes 
showed unequal variance between health groups 
determined by cognitive functioning (IV), cognitive 
function: hemoglobin A1c (P = 0.02) and percentage 
of fat tissue to total tissue mass in the head region 
(P = 0.002).

Overall, we observed heteroscedasticity for 95 
measures in both sexes. As for the rest, 29 health-
related phenotypes were detected only in females, 
including cholesterol, ferritin, and triglycerides, and 
18 were detected only in males, including hemoglobin 
(Supplementary Fig.  S2-B and Table  S5). Detailed 
results stratified by age group, sex, and instrument 
are presented in Table 2. Physiological measures that 
revealed variance heterogeneity for at least one instru-
ment were used for relationship analysis.

Relationship investigation

Using segmented regression with a single break-
point, we determined three main types of segmented 
relationships assuming an absence of discontinuities 
between segments: increasing, decreasing, and non-
monotonic (decreased for phenotype values less than 
the breakpoint and increased otherwise) (Fig. 2). For 
the 142 variables examined, we detected 83 posi-
tive and 33 negative associations between measures 
and health deficit. For the 94 measures that revealed 

Fig. 1   Brown-Forsythe test results for all instruments and groups for all phenotypes. The x-axis indicates phenotypes ordered by cat-
egories and labels; the y-axis indicates log-transformed P-values
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Table 2   Variance 
heterogeneity between 
the least and most healthy 
groups detected in self-
reported white CLSA 
participants

* Analysis was stratified by 
sex. The final sample sizes 
in each analytical model 
range from 4595 to 14,524 
(median 14,524) for females 
and from 4411 to 13,848 
(median 13259) for males
** Instruments: I — the 
frailty index; II — the 
number of five diseases: 
cancer (except non-
melanoma skin cancer), 
cardiovascular disease, 
major pulmonary disease, 
dementia, and diabetes; 
III — the number of other 
chronic conditions; IV 
— composite cognitive 
score; and V — physical 
functioning. These are 
described in Table 1
*** Comparison of least and 
most healthy groups vari-
ance based on the Brown-
Forsythe test. P-values 
were adjusted for 9240 
tests using the Bonferroni 
correction. Only the low-
est P-value across 40 tests 
(5 instruments × 2 sexes × 4 
age groups) for each pheno-
type is reported in a table. 
Only the most significant 
results from each category 
are presented in this table

Phenotype* Instrument** Sex P-value***

Blood chemistry
  Hemoglobin A1c, % I, II, IV, V M, F 2.1 × 10

−131

  Free thyroxine, pmol/L I, III M, F 7.2 × 10
−13

  Cholesterol, mmol/L I, II, V M, F 3.5 × 10
−10

  Triglycerides, mmol/L I, II, III, V F 5.8 × 10
−10

  Estimated glomerular filtration rate, mL/min/1.73m2 I, II M, F 2.9 × 10
−9

  Alanine aminotransferase, U/L I, II M, F 5.8 × 10
−9

  Creatinine, µmol/L I, II, V M, F 1.4 × 10
−8

  Ferritin, µg/L I F 0.001
  Albumin, g/L II M, F 0.001

Hematology
  White blood cells, 109/L I, II, V M, F 2.7 × 10

−7

  Monocytes, 109/L I, II F 1.4 × 10
−6

  Granulocytes, 109/L I, II, V M, F 1.5 × 10
−6

  Red blood cell distribution width, % I, II, V M, F 1.9 × 10
−5

  Mean corpuscular volume, fL V F 0.0005
  Hemoglobin, g/L V M 0.03

Inflammatory biomarkers
  High sensitivity C-reactive protein, mg/L I, II, III, V M, F 9.3 × 10

−12

  Interleukin-6 (IL-6), pg/mL I, II, V M, F 2.4 × 10
−6

Electrocardiogram
  T-axis, degree I, II, V M, F 1.7 × 10

−10

  QRS duration, ms II, V M, F 5.5 × 10
−7

  Q onset, ms II M, F 9.5 × 10
−6

  P duration, ms II M 0.002
  P offset, ms II M, F 0.007

Body measures
  Body mass index I, II, III, V M, F 5.5 × 10

−39

  Hips circumference, cm I, II, III, V M, F 5.5 × 10
−36

  Average weight, kg I, II, III, V M, F 8.2 × 10
−34

  Waist circumference, cm I, II, III, V M, F 9.6 × 10
−25

Body-composition analysis
  Lean tissue in largest visceral fat region, g I, II, III, V M, F 1.5 × 10

−38

  Lean tissue in android region, g I, II, III, V M, F 4.3 × 10
−31

  Fat tissue in trunk region, g I, II, III, V M, F 1.3 × 10
−30

  Total fat mass divided by height squared, kg/m2 I, II, III, V M, F 2.7 × 10
−30

  Fat tissue in gynoid region, g I, II, III, V M, F 1.2 × 10
−28

Bone mineral density
  Bone mineral density for the right leg region I, II, III, V M, F 5.1 × 10

−11

  Total bone mineral density excluding the head region I, II, III, V M, F 8.3 × 10
−9

  Bone mineral content for the pelvic region II, III, V F 1.2 × 10
−8

  Bone area for the right rib region V M 3.5 × 10
8

Vital signs
  Average pulse rate (excluding 1st reading) II, V F 6.5 × 10

−5
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a nonmonotonic relationship, we determined opti-
mal values along with 95%CI at breakpoints by test-
ing for a non-zero difference in slope parameter and 
requiring slopes to have opposite signs. Results were 
adjusted for 1420 tests (#measures × #sexes × #instru-
ments). A summary of the results organized by cat-
egories and instruments is shown in Table 3.

Regression analysis showed diverging associa-
tions with health instruments across phenotype cat-
egories. As expected, the variance of inflammatory 
biomarkers showed a positive association with the 
level of health deficits as assessed by all instruments 
for both sexes. For vital signs measures, average 
pulse rate showed a positive relationship with health 
deficit for older males. Conversely, we observed a 

nonmonotonic relationship between average pulse 
rate and instruments the FI (I), five major diseases 
(II), and physical functioning (V) for females. The 
estimated 95%CI were [67,75], [67,73], and [63,69], 
respectively. For body measures, waist, and hips cir-
cumference increased with health deficit measured by 
the FI (I) and five major diseases (II) for both sexes. 
Types of relationships for BMI varied by sex and 
instruments. For instance, we detected a breakpoint 
for males using physical functioning (V), 95%CI 
[23,25]. However, BMI increased with health decline 
for other instruments and for older females. For ECG 
measures, our segmented regression model estimated 
breakpoints for 5 out of 7 traits. For example, for 
T-axis, we found a nonmonotonic relationship across 

Fig. 2   Types of segmented relationships: A Decreasing for 
high-density lipoprotein; B increasing for HbA1c; C non-
monotonic for albumin with sweet spot estimated at 38.3 g/L 
(95%CI [37.7, 38.8]) in males using Instrument II; and D 
nonmonotonic for free thyroxine with sweet spot estimated at 

14.6 pmol/L (95%CI [14.1, 15.1]) in females using Instrument 
I. Instruments: I — the frailty index; II — the number of five 
diseases: cancer (except non-melanoma skin cancer), cardio-
vascular disease, major pulmonary disease, dementia, and dia-
betes
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Table 3   Breakpoints estimates using segmented regression analysis on phenotypes detected in self-reported white CLSA partici-
pants

Phenotype* Instrument** Sex Breakpoint 95%CI P-value***

Blood chemistry

  Free thyroxine, pmol/L I M 14.6 [13.8, 15.4] 0.002

I F 14.6 [14.1, 15.1] 0.002

  Low-density lipoprotein, mmol/L IV F 2.5 [2.3, 2.7] 1.5 × 10
−5

  Estimated glomerular filtration rate, mL/min/1.73m2 I M 75 [73, 77] 3.6 × 10
−50

I F 70 [67, 72] 2.3 × 10
−32

  Alanine aminotransferase, U/L II M 9.7 [8.4, 11.1] 5.9 × 10
−4

I F 9.7 [8.6, 10.8] 0.003

  Creatinine, µmol/L II F 70.8 [68.6, 72.0] 1.7 × 10
−4

V F 69.9 [67.9, 71.9] 0.02

  Ferritin, µg/L I M 262 [210, 313] 5.0 × 10
−5

  Albumin, g/L II M 38.3 [37.7, 38.8] 2.2 × 10
−14

IV M 38.7 [37.6, 39.8] 1.6 × 10
−4

Hematology

  Mean corpuscular volume, fL V M 95.2 [93.9, 96.4] 0.007

V F 93.3 [92.16, 94.4] 3.4 × 10
−6

  Hemoglobin, g/L V M 130 [127, 133] 8.5 × 10
−5

II F 149 [145, 153] 5.8 × 10
−6

Electrocardiogram

  T-axis, degree II M 46 [39, 51] 3.6 × 10
−10

II F 52 [45, 57] 6.0 × 10
−7

  QRS duration, ms V M 84.74 [80.7, 88.8] 0.015

V F 91.8 [86.8, 96.6] 1.7 × 10
−4

  Q onset, ms V F 438 [435, 441] 0.01

  P duration, ms I M 109.3 [104.5, 114.1] 8.7 × 10
−4

I F 91.6 [85.5, 97.7] 7.8 × 10
−5

Body measures

  Body mass index V M 24.2 [23.7, 24.7] 8.4 × 10
−10

  Average weight, kg I M 73.5 [70.8, 76.2] 4.8 × 10
−5

I F 58.4 [56.5, 61.0] 6.7 × 10
−4

Body-composition analysis

  Lean tissue in largest visceral fat region, g V M 2306 [2244, 2368] 1.0 × 10
−18

  Lean tissue in android region, g V M 4412 [4272, 4553] 1.4 × 10
−17

  Lean mass in limbs divided by height squared, kg/m2 V M 8.4 [8.2, 8.5] 1.8 × 10
−43

V F 6.9 [6.8, 7.0] 5.1 × 10
−39

Bone mineral density

  Bone mineral density for the right leg region V M 1.39 [1.36, 1.42] 1.3 × 10
−25

V F 1.19 [1.15, 1.23] 1.5 × 10
−12

  Total bone mineral density excluding the head region V F 1.03 [1.00, 1.07] 1.1 × 10
−9

Vital signs

  Average pulse rate (excluding 1st reading) I F 71 [68, 75] 8.8 × 10
−5
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both sexes for instruments the FI (I), five major dis-
eases (II), and physical functioning (V). Breakpoints 
for the model with the five major diseases were esti-
mated at 46 degrees (95%CI: 40, 52) for males and 
52 degrees (95%CI: 46, 58) for females. Health defi-
cit increased with a decline in bone mineral content 
and lean mass. For blood chemistry measures, phe-
notypes showed diverging associations with differ-
ent instruments. We observed a positive association 
between HbA1c and all instruments for both sexes. 
However, after exclusion of participants with either 
type1 or type 2 diabetes, a post hoc analysis provided 
an estimation of an optimal HbA1c level at 4.9% 
(95%CI [4.8, 5.1], P = 0.02) for older males using 
the FI (I). Aspartate aminotransferase (AST), creati-
nine, estimated glomerular filtration rate (eGFR), fer-
ritin, albumin, and free thyroxine showed non-linear 
relationships. For example, we observed breakpoints 
for AST at 9.7 U/L (95%CI [8.4, 11.1]) and 9.7 U/L 
(95%CI [8.6, 10.8]) for males using five major dis-
eases (II) and the FI (I), respectively.

Interestingly, for low-density lipoprotein (LDL), 
we detected optimal values for females at 2.6 mmol/L 
(95%CI [2.3, 2.9]) using cognitive functioning (IV) 
and at 2.5 mmol/L (95%CI [2.3, 2.7]) using physical 
functioning (V). In contrast, only negative associa-
tions were identified for males in models with instru-
ments the FI (I), five major diseases (II), or physical 
functioning (V). To investigate whether medicine 
that lowers LDL altered the relationship type, we 
scanned self-reported medication data for CLSA 
COM participants and identified 7789 older adults 
taking statins, PCSK9 inhibitors, niacin, fibrates, and 
ATP citrate lyase (ACL) inhibitors. However, restrict-
ing regression analysis to participants who did not 
report using any of these medications revealed similar 
relationships.

We detected breakpoints for only two out of six 
hematology phenotypes that revealed heteroskedas-
ticity. Particularly, optimal points for mean corpuscu-
lar volume were estimated at 93.3 fL (95%CI [92.16, 
94.4]) for females and at 95.2 fL (95%CI [93.9, 96.4]) 
for males using physical functioning (V). Our esti-
mates for hemoglobin were 130  g/L (95%CI [127, 
133]) for older females using five major diseases (II) 
and 149 g/L (95%CI [145, 153]) for older males using 
physical functioning (V).

Stratified by instrument, the most optimal values 
were detected using the FI (I). Specifically, we identi-
fied 125 breakpoints for 73 measures across all cat-
egories except inflammatory biomarkers. For five 
major diseases (II), other chronic conditions (III), 
cognitive (IV), and physical (V) functioning, the seg-
mented regression model revealed 20, 55, 14, and 124 
breakpoints, respectively.

Replication of sweet spots across ethnicities

We sought to repeat sweet spot estimation in ethnic 
groups other than white. Due to substantially smaller 
sample sizes, we calculated power and identified a 
subset of phenotypes to test for replication. We used 
the following parameters derived from the primary 
analysis on the white group: (1) mean sweet spot 
estimate was −0.24 (Fig. S3-A); (2) the health instru-
ment’s standard deviation was 0.07; (3) the slope 
differences across phenotypes that showed optimal 
values ranged from 0.008 to 0.605 with mean 0.034 
(Fig.  S3-B). The mean sample sizes across pheno-
types and sexes for the Asian and black groups were 
282 and 95, respectively. For each difference in slopes 
within the range, we calculated power to detect break-
points with a type-I error probability of 0.05. Fig-
ure S4 shows obtained power vs. slope difference for 

* Analysis was stratified by sex. The final sample sizes in each analytical model range from 4595 to 14,524 (median 14,524) for 
females and from 4411 to 13,848 (median 13,259) for males. Health instruments were regressed against age. Residuals were used in 
the segmented regression model as outcome, phenotypic values as a covariate
** Instruments: I — the frailty index; II — the number of five diseases: cancer (except non-melanoma skin cancer), cardiovascular 
disease, major pulmonary disease, dementia, and diabetes; III — the number of other chronic conditions; IV — composite cognitive 
score; V — physical functioning. These are described in Table 1
*** A non-zero difference-in-slope parameter of a segmented relationship is tested using a two-sided score test for a single change in 
the slope. P-values were adjusted for 1420 tests using the Bonferroni correction (5 instruments × 2 sexes × 142 phenotypes)

Table 3   (continued)
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a given sample size. The power calculation revealed 
that replication could be done for phenotypes with 
a difference in slopes greater than 0.042 (62 pheno-
types) for Asian and 0.068 (20 phenotypes) for black 
groups.

We repeated segmented regression on adults of 
Asian descent to estimate the sweet spot position for 
62 phenotypes. After multiple testing correction for 
620 tests (62 phenotypes × 2 sexes × 5 instruments), 
only low-density lipoprotein showed a nonmonotonic 
pattern with a significant difference in slopes. The 
optimal value was detected for males at 3.6 mmol/L 
(95%CI [3.2, 4.0]) using cognitive functioning (IV). 
Replication in the black ethnic group did not detect 
sweet spots for selected 20 phenotypes after correc-
tion for multiple testing.

In addition, we replicated results for HbA1c on 
nondiabetic Asian older adults. Particular interest 
in this measure is explained by the exceptional het-
eroskedasticity indicating high relevance to health. 
After exclusion of participants with diabetes, seg-
mented regression analysis was performed for 180 
females and 217 males of Asian descent using the 
FI (I). Similar to our primary analysis on the white 
group, we detected a breakpoint only for older non-
diabetic males at 5.5% (95%CI [5.2, 5.8], P = 0.04). 
The observed difference in HbA1c level is consistent 
with a previous study [49].

Impact of lifestyle and socioeconomic factors

To explore how sweet spots may be modulated by 
the environment, we regressed health instruments 
onto lifestyle and socioeconomic factors. We then 
performed segmented regression analysis on the 
residuals of the instruments. The CI intervals in the 
detected breakpoints and a nonmonotonic relation-
ship were identified for 52 of 94 measures. The corre-
lation between sweet spots estimates by both models 
was r2 = 0.85.

Discussion

This work presents a novel approach to detecting opti-
mal values, or sweet spots, for physiological meas-
ures. We sought to cover two main gaps in the litera-
ture. First, we established optimal values by analyzing 
associations with health deficits rather than all-cause 

mortality. This approach is more sensitive and allows 
us to detect dysregulation for particular phenotypes 
at early stages. Concentrating on severe health out-
comes may result in ranges outside of which damage 
is irreversible. Second, we applied the sweet spot dis-
covery framework to the phenotypes across multiple 
domains using a large and well-characterized cohort 
of older adults where health deficits are easy to track. 
While previous studies have reported reference inter-
vals for some physiological measures, e.g., BMI 
[50] or T-axis [51], optimal ranges are unknown for 
many other phenotypes, including body composition 
measures.

Not all measures collected by observational stud-
ies like CLSA are expected to be tightly regulated by 
the body and exhibit sweet spots; this is especially 
true when applied to variables derived from medi-
cal images, e.g., dual-energy X-ray absorptiometry 
(DXA). In our study, as a first step in the sweet spot 
discovery pipeline, we elucidated phenotypes likely 
to be regulated through analysis of variance hetero-
geneity. While the vast majority of studies of aging 
are focused on between-group differences in means, 
phenotypic heterogeneity remains neglected [52]. Our 
examination of variance in individual phenotypes 
suggests that many phenotypes are related to health 
and healthy aging. Assuming that these measures are 
likely to be homeostatically controlled and a devia-
tion in either direction from their sweet spots leads to 
adverse health outcomes, we estimated optimal values 
by testing for a nonmonotonic relationship between 
the phenotype and health deficit scores.

In terms of confounders, sex and age are two main 
covariates that must be incorporated into the mod-
els. Sex is an important factor to consider because 
the optimal values of many biomarkers are already 
known to vary between males and females [53–55]. 
In our work, we approached this by stratifying by 
sex. This allowed us to discover new sweet spots that 
were sex-specific, and also determine which sweet 
spots were the same in men and women. With regard 
to age, the outcomes we consider are the instruments 
measures of health. As health and homeostasis tend 
to deteriorate with age [9, 10], age is strongly cor-
related with our instruments. Thus, age is an impor-
tant factor to consider in our analysis. Optimal values 
themselves ideally should not depend on age for most 
of phenotypes. Although we observe changes in the 
level for some physiological measures, that does not 
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imply the shift of optimal values. For instance, creati-
nine level decreases with age. However, it is caused 
by age-related decline in kidney function. While a 
value may deviate from a sweet spot due to age, our 
definition of sweet spot assumes that the optimal 
value is constant, and our test determines if deviation 
from it is associated with poor health. Thus, we have 
considered age in two ways. For the variance analy-
sis (Table 2), we stratified our datasets by age group 
(splitting age into four levels), and for the segmented 
regression analysis (Table 3), we adjusted for age (by 
treating it as a confounder, and examining residuals 
after regression against age).

Heteroskedasticity between the least healthy and 
most healthy groups was observed for 61% of 231 
phenotypes tested. The differences in the measure-
ment value variance were observed across the phe-
notype categories, sexes, and age groups. HbA1c 
showed the most significant heteroskedasticity, con-
sistent for all instruments, sexes, and age groups. 
Observations varied by how health is defined; 
physical functioning revealed a higher variance 
with greater health deficit, for the most phenotypes 
(n = 115) and the cognitive score the least (n = 2).

A nonmonotonic relationship was seen for a subset 
(66%) of the phenotypes tested (n = 142), revealing 
optimal levels of the measurements in community-
dewing adults 45  years and older. The hematology 
and blood chemistry data with known clinical refer-
ence intervals (such as hemoglobin, aspartate ami-
notransferase, creatinine or free thyroxine levels) 
showed the breakpoint 95%CI interval estimation 
within the standardized clinical threshold but of 
a narrower range (Fig.  3). The majority of sweet 
spots were identified by the FI, that includes deficits 

covering multiple health domains. The cognitive and 
physical functional health definitions revealed sweet 
spots for measures essential to maintain cognitive and 
physical functioning.

The model adjusted for the effect of lifestyle and 
socioeconomic factors identified sweet spot estimates 
for 60% of phenotypes (e.g., alanine aminotransferase 
and mean corpuscular volume), suggesting a substan-
tial effect of physical activity level or nutrition risk on 
these phenotypes. The sweet spots for ferritin and free 
thyroxine were resistant to the adjustment with break-
points highly correlated to the non-adjusted model, 
implying that these phenotypes may be less amenable 
to lifestyle modification. These initial observations 
indicate that the impact of lifestyle factors warrants 
further analysis with more advanced models in future 
work.

Although previous studies reported an association 
between low HbA1c (< 4%) and increased all-cause 
mortality [57], we did not initially detect optimal 
values for this phenotype for CLSA COM adults, yet 
post hoc analysis revealed a sweet spot estimate for 
nondiabetic males in white and Asian groups. This 
accords with earlier observations, which showed a 
J-shaped relationship between HbA1c and all-cause 
mortality in type-2 diabetic patients [58]. Our find-
ings suggest that older Canadian adults on average 
have levels of HbA1c that are higher than a healthy 
level. Including younger adults would likely allow 
the regression model to detect sweet spots. In addi-
tion, our findings imply that controlling HbA1c is 
crucial for many aspects of health, including cogni-
tive function.

Our results suggested a positive linear association 
between health decline and body measures. While it 

Fig. 3   Optimal values with CI and reference intervals for free 
thyroxine. Dashed lines indicate mean values for females and 
males. Instrument I is the frailty index; Instrument III is the 

number of other chronic conditions. Reference intervals were 
adopted from textbook of Clinical Chemistry and Molecular 
Diagnostics 5th Edition [56]
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has been suggested that both overweight and under-
weight were linked to increased all-cause mortality in 
white adults [50], our model did not reveal an opti-
mal value for hip or waist circumference for CLSA 
COM adults or for BMI for older females, potentially 
implying that too few participants were in the healthy 
range to detect a sweet spot. Our results for body 
measures serve as additional evidence of overweight 
and obesity as a health problem among older Cana-
dian adults, and imply the importance of controlling 
body composition to maintain health.

In contrast to a widely held view that low LDL 
correlates with better health, we found that health 
deficit declined with increasing LDL for older adults, 
with the exception of an optimal value estimated 
using cognitive deficit for older females. However, 
this observed negative association is consistent with 
some previous population-based studies [59, 60].

Our results for hematology measures were consist-
ent with observations in the Super-Seniors Study of 
heteroskedasticity for hemoglobin, mean corpuscular 
volume, and red blood cell distribution width, and 
the present study identified three additional hematol-
ogy phenotypes with variance effect on health (white 
blood cells, granulocytes, and monocytes). Further 
confirmatory studies are needed to replicate sweet 
spots identified in CLSA measures.

Limitations and strengths

Focusing our primary analyses on the largest eth-
nicity group (white), although it provides the great-
est statistical power, limits our ability to generalize 
results across the entire Canadian population and 
other populations. With the exception of LDL, we 
were not able to replicate our findings in other eth-
nic groups for which sample sizes were substan-
tially smaller. Due to CLSA exclusion criteria, such 
as living in long-term care institutions or cognitive 
impairment at the time of recruitment, our analy-
sis of the baseline data was limited for detection of 
variance heterogeneity in cognitive functioning (IV). 
However, we expect to identify more traits with this 
instrument using CLSA follow-up data in the future. 
We also made assumptions that might be violated for 
some phenotypes. Specifically, we assumed the exist-
ence of a single optimal value for health-related phe-
notypes while the true association with health deficit 
might be more complex. We also made a number of 

assumptions to determine a subset of phenotypes for 
replication analysis in non-white groups.

The main strengths of our work are the novelty of 
the analysis and its potential clinical utility.

Clinical implications

An important clinically relevant finding was that 
the 95% confidence intervals for the sweet spots 
of numerous phenotypes are much narrower than 
accepted clinical reference ranges. For example, for 
aspartate aminotransferase, we observed [8.4; 11.1] 
while the reference interval is reported as 8–41 
U/L [61]. The difference might be explained by the 
approach used to develop reference intervals. Such 
intervals are commonly derived from case-control 
studies that compare the level of a phenotype between 
a healthy group and those with a specific disease. In 
contrast, we examined differences in health, which 
may detect more subtle dysregulation.

Our approach has the potential to inform and 
encourage interventions at early stages of dysregu-
lation, before development of overt disease. For 
instance, viewing eGFR as a biomarker with a sweet 
spot allows a more nuanced view than the clinical 
view in which all values within the reference range 
are considered normal, and could serve to identify 
individuals who are not yet outside a clinically nor-
mal range but would benefit from earlier and indi-
vidualized intervention (for example weight loss or 
reduction of sodium and sugar intake), to preserve 
kidney function and health.

One of the possible uses of the findings is construct-
ing a per-participant representation of homeostatic dys-
regulation by summing the absolute difference of each 
phenotype from its corresponding sweet spot. In con-
trast to the deficit accumulation frailty index or allostatic 
load, such a metric would provide an unbiased score that 
reflects the overall health state and does not depend on 
diagnosis of conditions. Such a score would also be more 
accurate than physiological dysregulation, which is cal-
culated as cumulative deviation from the means [17], 
because means do not necessarily coincide with opti-
mal values, especially in a cohort of older adults.

Finally, a nuanced health report card for individu-
als based on deviation from optimal values could pre-
dict future health outcomes and be used to motivate 
individuals to take action before they are outside of 
the clinically normal ranges.
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Conclusion

Our study validates the proposed approach of using 
lower variance in healthier people as an indicator of 
health-relevant phenotypes. It also underscores the 
relevance of applying a homeostasis lens to human 
physiology. This approach, which is agnostic to prior 
understanding of the biological basis of a phenotype’s 
relevance to health, will be useful for analysis of phe-
notypes, such as diverse metabolomics measures that 
are not yet well-characterized or understood.
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