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Abstract A progeroid family was found to harbor 
a pathogenic variant in the CASP5 gene that encodes 
inflammatory caspase 5. Caspase 5-depleted fibro-
blasts exhibited hyper-activation of inflammatory 
cytokines in response to pro-inflammatory stimuli. 
Long-term intermittent hyper-inflammatory response 
is likely the cause of the accelerated aging phenotype 
comprised of earlier onset of common aging diseases, 
supporting inflammaging as a potential common dis-
ease mechanism of progeroid syndromes and possibly 
normative aging.
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Segmental progeroid syndromes are groups of disor-
ders that present with features of accelerated aging 
affecting multiple organs and tissues and have pro-
vided novel biological insights into cellular mecha-
nisms of aging. Prototypical examples are adult-onset 
Werner syndrome caused by loss of WRN helicase 
function [17] and child-onset Hutchinson-Gilford pro-
geria syndrome caused by abnormal nuclear lamin, 
termed progerin [4]. During the past decades, the 
International Registry of Werner Syndrome (Seattle, 
USA) identified progeroid loci that highlight major 
roles in DNA damage repair and response: WRN 
(RecQ helicase) [17], LMNA (nuclear structure and 
chromatin interaction) [2], POLD1 (DNA polymerase 
delta) [10], SPRTN (recruitment of translational DNA 
polymerase eta) [9], ERCC4 (nucleotide excision 
repair) [13], MDM2 (an inhibitor of p53) [11], CTC1 
(telomere replication) [16], and SAMHD1 (regulation 
of dNTP pools) [8]. We and other investigators have 
observed DNA damage, accelerated telomere short-
ening, upregulation of p53, enhanced rates of somatic 
mutation, and mitochondrial dysfunction as potential 
common mechanisms of accelerated aging [12].

An Israel progeroid pedigree was referred to the 
Werner Registry. At the time of referral, the index 
individual (II:3, Registry# TL1010) is a 54-year-
old Israeli female with osteoporosis, bilateral cata-
racts diagnosed at age 47, premature graying of hair 
since age 12, short stature, thin limb, pinched facial 
features, high-pitched hoarse voice, calcinosis cutis, 
and evidence of osteoporosis (Fig. 1a, b). Parents are 
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second cousins (Fig.1b, I:1 and I:2). This satisfied the 
clinical diagnostic criteria of Werner syndrome [14]. 
The younger brother, II:4, at age 51 shared similar 
signs. The parents and two siblings, II:1 at age 59 and 
II:2 at age 59, were unaffected.

Sanger sequencing of WRN exons was negative 
for pathogenic variants and Western analysis dem-
onstrated WRN protein of the expected normal size 
and quantity (data not shown). Exome sequencing of 
the index case II:3 revealed a homozygous stop gain, 
NM_001136112.3: c.1300C>T, p.Arg434*, in exon 
9 of the CASP5 gene. The affected brother II:4 was 
also homozygous for the variant, and the mother I:2 
was heterozygous. We were unable to obtain the sam-
ple of the deceased father I:1 who was the obligate 
heterozygote. One of the unaffected sisters II:1 was 
heterozygous, and the other unaffected sister II:2 did 
not carry this alteration. Based on the haplotype, II:1 
inherited the CASP5 c.1300C>T, p.Arg434* allele 
from the mother (Fig.1b, c). This established the co-
segregation within this family.

Western analysis of the lymphoblastoid cell lines 
(LCLs) showed marked reduction of the CASP5 gene 
product, caspase 5 protein in the affected individual 
II:3 and approximately 50% reduction of caspase 5 
protein in the heterozygous individual II:1 relative to 
the normal individual II:2 (Fig.  2d). The qRT-PCR 
of CASP5 showed results similar to the Western blot-
ting, indicating that decline of CASP5 expression is 
at mRNA level, likely due to the non-sense medi-
ated decay (Fig. 2b). p.Arg434* is expected to cause 
11 amino acid truncation at the C-terminal end of 

the protein. Although there is no known functional 
domain in the deleted region, further investigation 
is needed to evaluate the effect of the trace of the 
mutant protein.

The CASP5 gene encodes a member of a protease 
family, caspase 5 [1, 3]. Caspase 5 is known to be 
involved in the activation of inflammation. We exam-
ined the inflammatory cytokines in the LCLs derived 
from this pedigree. We did not, however, observe con-
sistent changes of cytokines among different CASP5 
genotypes, possibly due to the secondary effect of 
Epstein-Barr virus transformation as well as indi-
vidual or clonal differences among the LCLs (data 
not shown). In order to obtain the isogenic model, we 
established CASP5 knockdown fibroblasts using dox-
ycycline-inducible lentiviral shRNAs against CASP5 
[18]. Three CASP5 shRNA were tested all of which 
showed nominal decreases of CASP5 expression as 
assessed by q-PCR (Fig. 2a).

When CASP5 knocked down fibroblasts were 
further treated with pro-inflammatory stimulus, 
lipopolysaccharide (LPS), IL-6, and IL-1β were 
induced approximately 60% more in CASP5-knocked 
down fibroblasts, compared to the control cultures 
(Fig.  2a). Another pro-inflammatory agent, TNF-α, 
also resulted in approximately 2-fold higher induction 
of inflammatory factors, (IL-6, IL-1A, and IL-1β), 
increased expression of STAT1and inflammasome 
components (NLRP3, and CASP1) in CASP5 com-
pared to the control culture in dose-dependent man-
ner (Fig.  2c, d). It is conceivable that the absence 
of caspase 5 may have little effect on inflammatory 

Fig. 1  CASP5 variant and expression in a progeroid pedigree. 
a Proband II:3 at age 54 and the affected brother II:4 at age 51. 
Patients provided written consent to use these photographs. b 
Family pedigree with the proband ( ), affected (•■), and car-

riers ( ). c CASP5 sequencing showing the familial variant. d 
Western analysis of caspase 5 in individuals with 3 genotypes. 
The nonspecific band is shown as a reference. e qRT-PCR 
analysis of CASP5 mRNA in the same individuals as in c 
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response under baseline, unstressed conditions, but 
the presence of pro-inflammatory stimuli could result 
in the transient hyperactivation of the inflamma-
tory response. In addition, upregulation of caspase 
1 reflects inflammasome activation and increased 
inflammation, which can, in turn, lead to a self-
sustaining/positive inflammatory feedback cascade. 
Our recent study showed that both dysregulated 
inflammasome and continual secretion of inflamma-
tory cytokines can further amplify the inflammatory 
response and contribute to hyperinflammatory pheno-
type [7].

In our previous observation, a progeroid patient 
with a heterozygous p.Arg496Cys variant of the 
SMAD4 was associated with increased senescent 
makers and the accumulation of DNA damage [6]. 

The SMAD4 gene is known to regulate the signaling 
pathway of TGF-β, a member of SASP. To our knowl-
edge, CASP5-associated accelerated syndrome has 
not been previously reported. Increased inflamma-
tory response and genomic instability were also seen 
in the classical Werner syndrome [6]. In the caspase 
5-depleted fibroblasts, we did not observe evidence 
of accumulation of DNA damage in response to LPS 
or TNF-α as assessed by p53 induction or 53BP1 or 
γH2AX double strand damage foci (data not shown). 
This, however, does not exclude the possibility of a 
transient increase of DNA damage whose detection 
is dependent on exact timing and conditions. Another 
possibility is that chronic inflammation might cause 
accelerated aging without an apparent increase of 
DNA damage.

Fig. 2  Elevated inflammatory response in CASP5 knockdown 
fibroblasts. a qRT-PCR of CASP5 in cells with 3 different 
doxycycline-inducible shCASP5 (Sh1, Sh2, and Sh3), normal-
ized to GAPDH, are shown relative to non-induced culture 
(Ctrl). * indicates statistical significance. b Cytokine induc-
tion in Sh3 culture in response to 24-h exposure of 1 μg/ml 

lipopolysaccharide (LPS), normalized with GAPDH mRNA. c, 
d Cytokine induction in Sh3 culture in response to 24-h expo-
sure to TNF-α, 10 ng/ml or 20 ng/ml, normalized with GAPH 
mRNA. Sh1 and Sh2 cultures showed similar trends (data not 
shown)
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We propose that an intermittent or chronic hyper-
inflammatory response may be among a suite of com-
mon disease mechanisms of progeroid syndromes. 
The delayed onset of signs of premature aging com-
pared to Werner syndrome (e.g., cataracts in their 
40s in CASP5 homozygotes vs cataracts in their 30s 
in classical Werner patients [14]) is consistent with 
the mild but significant increase of inflammatory 
cytokines.

Imura and colleagues proposed subdividing 
patients meeting clinical diagnostic criteria for Wer-
ner syndrome [5]. They inferred there were at least 
three distinct clinical types of the disease, with type 
1 comprising classical Werner syndrome with patho-
genic WRN variants and type 2 group having an ear-
lier age of onset, resembling the LMNA mutant prog-
eroid syndrome [2]. Type 3 group with late-onset 
symptoms appears to resemble inflammatory-type 
progeroid syndrome [5]. The relationship with other 
markers of aging remains to be determined.

Methods

Patient recruitment

The proband was referred to the International Reg-
istry of Werner Syndrome (http:// www. werne rsynd 
rome. org) for molecular diagnosis of their prog-
eroid syndrome. Prior to the initiation of the study, 
written informed consent was given by all partici-
pants. Patients also provided written informed con-
sent to publish their images. The study complied 
with the ethical rules specified in the Declaration 
of Helsinki. This study is approved by the Univer-
sity of Washington Institutional Review Board (ID# 
STUDY00000233).

Exome sequencing and analysis

A library of DNA fragments was constructed and 
enriched for protein and RNA coding portions of 
the human genome using the Exome v1.0 (Inte-
grated DNA Technologies) capture system. Paired-
end sequencing of the enriched library was per-
formed using rapid run v2.0 (Illumina) chemistry on 
a HiSeq 2500 (Illumina) sequencer according to the 
manufacturer’s recommended protocol. The result-
ing sequences were aligned to the human genome 

reference (hg19) using the Burrows-Wheeler Aligner 
(BWA) and variants identified with the Genome 
Analysis Tool Kit (GATK). Variants were initially 
annotated using an in-house software tool based on 
SnpEff and subsequently reanalyzed with VEP and an 
analysis tool, Seqr [6, 13].

Cell culture

82-6 is a primary human foreskin fibroblast line 
derived from a newborn. The 88-1pBlox line was 
generated by retroviral infection of 82-6 with excis-
able hTERT, pBlox-TSH, followed by histidinol 
selection [15]. Commercially obtained lentiviral 
CASP5 shRNAs were introduced to 82-6pBlox fol-
lowing the manufacturer’s instructions: shCASP5-1, 
V3IHSHER_6488699 (Sh1), V3IHSHER_5488601 
(Sh2), and V3IHSHER_10156220 (Sh3) (Horizon 
Discovery [6, 18]). To induce shRNA expression, 1 
μM doxycycline was added to the cultural medium for 
5 days prior to the assays [18]. Cultures were main-
tained under standard culture conditions at 37 °C in 
an atmosphere of 5% CO2 and 5% O2 [6, 18].

Western blotting and qRT-PCR analyses

Western blotting and quantitative RT-PCR were per-
formed as previously described [6, 18]. Western blot-
ting analysis utilized commercial antibodies: anti-
CASP5 antibody (1:1000, clone D3G4W, #46680, 
Cell Signaling), anti-β-actin (1:4000, #A1978; 
Sigma), biotinylated anti-mouse IgG antibody (#BA-
9200, Vector Laboratories), and biotinylated anti-rab-
bit IgG antibody (#BA-1000, Vector Laboratories).
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