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Abstract Microbiota composition has been linked 
to physical activity, health measures, and biological 
age, but a shared profile has yet to be shown. The aim 
of this study was to examine the associations between 
microbiota composition and measures of function, 
such as a composite measure of physical capacity, and 
biological age in midlife, prior to onset of age-related 
diseases. Seventy healthy midlife individuals (age 
44.58 ± 0.18) were examined cross-sectionally, and 
their gut-microbiota profile was characterized from 
stool samples using 16SrRNA gene sequencing. Bio-
logical age was measured using the Klemera-Doubal 
method and a composition of blood and physiological 
biomarkers. Physical capacity was calculated based 

on sex-standardized functional tests. We demon-
strate that the women had significantly richer micro-
biota, p = 0.025; however, microbiota diversity was 
not linked with chronological age, biological age, 
or physical capacity for either women or men. Men 
had slightly greater β-diversity; however, β-diversity 
was positively associated with biological age and 
with physical capacity for women only (p = 0.01 and 
p = 0.04; respectively). For women, an increase in 
abundance of Roseburia faecis and Collinsella aero-
faciens, as well as genus Ruminococcus and Dorea, 
was significantly associated with higher biological 
age and lower physical capacity; an increase in abun-
dance of Akkermansia muciniphila and genera Bac-
teroides and Alistipes was associated with younger 
biological age and increased physical capacity. Dif-
ferentially abundant taxa were also associated with 
non-communicable diseases. These findings suggest 
that microbiota composition is a potential mechanism 
linking physical capacity and health status; personal-
ized probiotics may serve as a new means to support 
health-promoting interventions in midlife. Investigat-
ing additional factors underlying this link may facili-
tate the development of a more accurate method to 
estimate the rate of aging.
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Introduction

Aging is a major risk factor for chronic diseases and 
decline in function; however, the aging process is 
highly diverse [1]. This diversity is seen both inter-
personally and between sexes; women have longer 
lifespans but have a lower proportion of life expec-
tancy in good health, identified as the health-survival 
paradox [2]. In this vein, geroscientists are searching 
for an accurate and feasible set of markers to repre-
sent or estimate the rate of aging, support predic-
tions of health outcomes, and identify potential aging 
mechanisms [3].

The concept of biological age (BA), which cap-
tures aging diversity by estimating the overall state of 
the body, was found to be associated with health and 
mortality measures [4]. Accepted methods for BA 
assessment rely on physiologically-based analyses 
(e.g., level of DNA methylation [5], different cells’ 
telomere lengths [4], composition of physiological 
markers [6]), or behavioral ones (e.g., measures of 
function [7]). Each method sheds light on a unique 
representation of the aging process and offers a possi-
ble avenue to support interventions promoting health-
ier aging; thus, no single gold standard exists [8]. In 
recent years, the gut microbiota, which plays a role in 
a large variety of physiological pathways, has offered 
a new avenue to understanding aging processes [9, 
10], as it makes a unique contribution to many physi-
ological processes and is associated with both physi-
ological and behavioral markers of aging, such as 
physical capacity [11].

Engaging with physical activity on a regular basis 
leads to improved physical fitness [12] or physical 
capacity, an umbrella term for the ability to perform 
physical function [13], and it has the potential to 
attenuate many negative age-related health changes 
(e.g., skeletal muscle changes, vascular system adap-
tation, metabolic processes) [14, 15]. Physical capac-
ity can be used as a behavioral marker of aging, and 
as such, it is associated with BA based on physiologi-
cal markers of aging [6, 16]. Additionally, physical 
activity is widely investigated in the context of micro-
biota, showing its contribution to changes in micro-
biota composition [11, 17].

Our microbiota is a collection of bacteria and other 
species living in our gastrointestinal tract that changes 
as we age; these changes can be studied in the context 
of health and longevity [9]. Described as “an organ 

inside another organ,” our microbiota plays a com-
plex and intricate role in regulating human physiol-
ogy [18], and accumulation of negative alterations 
in its composition is associated with impaired health 
and can be regarded as a hallmark of aging [19, 20]. 
In contrast, improving microbiota composition (e.g., 
increasing its diversity or changing abundance of spe-
cific taxa) may serve as a means to ameliorate age-
related disease prevalence [21]. Moreover, microbiota 
composition is also associated with non-communi-
cable disease development [22], here investigated as 
age-related diseases [23], further supporting the need 
to investigate microbiota composition metrics as 
promising markers to identify negative aging tra-
jectories. One shared factor that has the potential to 
improve health and consequently both the microbiota 
composition and BA is performing regular physical 
activity [11, 15].

To the best of our knowledge, to date, the link 
between BA, physical capacity, and microbiota com-
position was not investigated; exploring this link in 
midlife, prior to the onset of age-related diseases, 
may help identify possible aging mechanisms and 
highlight feasible modifiable markers of aging appli-
cable for population-wide studies [24]. Thus, the aim 
of this study was to identify common microbiota 
composition characteristics linking physical capacity 
and BA, measured using a combination of physiologi-
cal biomarkers while considering possible sex-related 
differences. We hypothesized that specific microbiota 
characteristics, namely, diversity metrics and specific 
taxa, such as the genus Roseburia [25] and species 
Akkermansia muciniphila [26], will be associated 
with both younger BA and higher physical capac-
ity as well as with non-communicable diseases [22], 
as non-communicable diseases may represent age-
related negative health status. Identified characteris-
tics may support the future development of a robust 
measure for BA and facilitate potential interventions 
for healthier aging.

Study sample

This study comprises a subset of adults from the Jeru-
salem Perinatal Study (JPS), which includes all births 
between 1974 to 1976 in West Jerusalem [27]. The 
current sub-set is of individuals who participated in 
the most recent follow-up examination at age 42–45 
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(between 2016 and 2021), were willing to take part 
in this extension of the study, and were inclined to 
provide a stool sample. The Ethics Committee of 
the Faculty of Social Welfare and Health Sciences 
at the University of Haifa (#407/20) and Hadassah 
Hospital Institutional Review Board (#10–01.04.05) 
provided ethical approval for the recent extension of 
the JPS follow-up. All study participants provided 
an  informed consent prior to any study procedure. 
In short, included participants were healthy midlife 
adults with no physical or other health limitations 
prohibiting participation in leisure physical activity.

Biological age estimation and physical capacity 
measurements

We estimated BA using the Klemera-Doubal method 
(KDM) [28] and a set of fasting blood markers with 
additional physiological measures collected during 
the most recent JPS follow-up at approximate chrono-
logical age 44 (Fig. 1). This collection of biomarkers 
focuses on cardio-metabolic health, here used as an 
estimated measure of biological aging. The BioAge 
R package [29] was used to establish BA; additional 
information on the used methods is given in the sup-
plementary data, eTable 1.

We focused on physical capacity metrics to 
estimate individuals’ engagement in physical activity, 
obtaining immediate quantity estimation for objective 
function across multiple physiological systems; 
lower physical capacity reflects lower participation in 
regular physical activity. Moreover, these measures 

provide a feasible behavioral goal for positive lifestyle 
modification. Measures of physical capacity were 
based on a comprehensive testing battery of functional 
performance, including five different physical fitness 
domains associated with health as well as gait analysis 
under normal and dual-task conditions [16] (Fig.  1). 
Each domain included several tests, the results of which 
were standardized using percentiles of total  cohort 
measures to obtain a composite score ranging  from 
0 (minimum score, very low physical capacity) to 
6 (maximum score). These composite scores were 
calculated seperately for each sex group,  to avoid any 
sex-related differences in performance. A complete list 
of conducted tests is provided in the supplementary 
data, eTable 1.

Microbiome sample collection and analysis

Fixed protocols were followed for the collection and 
processing of stool samples [30] (supplementary 
data, eTable1). Briefly, following DNA extraction, 
the V4 region of the 16S rRNA gene was ampli-
fied, and amplicons were sequenced using the Illu-
mina MiSeq platform. Sequences were processed in 
the QIIME2 pipeline [31] (version qiime2-2020.8), 
and then data was exported for further analyses in R 
software. Shannon diversity [32] was used as a meas-
ure of α-diversity (within-individuals diversity), and 
the unweighted UniFrac distances [33] were used 
for β-diversity (between-individuals diversity). α- 
and β-diversity were compared between males and 
females in the context of BA, chronological age, and 

Fig. 1  Measured biomark-
ers, physical capacity 
domains, and microbiota 
variables
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physical capacity, and differential abundance analy-
sis was performed. Associations between micro-
biota composition, BA, and physical capacity were 
assessed, and correlation between BA and physical 
capacity was examined using Pearson’s correlation to 
confirm the expected association between lower BA 
and higher physical capacity [16].

To further investigate the association between 
identified bacteria and aging, we focused on the link 
between specific microbial taxa and non-communica-
ble diseases or risk factors associated with non-com-
municable diseases, as those are recognized as being 
linked with aging. We then conducted a focused lit-
erature search (https:// disbi ome. ugent. be/ home and 
https:// schol ar. google. com) to highlight possible 
pathways linking these taxa to health.

Results

Seventy midlife individuals provided samples and 
were included in the analysis (mean age 44.58 ± 0.18, 
see Table 1). One participant did not provide a blood 
sample, and four participants did not complete the 
physical capacity testing phase. For included par-
ticipants, physical capacity was negatively associated 
with BA adjusting for chronological age (partial Pear-
son correlation r =  − 0.42, p = 0.001), demonstrating 
that higher physical capacity was linked with better 
health represented by lower BA.

Within-person and between-person microbiome 
composition comparisons (α-diversity, β-diversity)

No significant links between α-diversity and chrono-
logical age, BA, or physical capacity were found. A 

comparison of α-diversity between men and women 
revealed that the women had significantly richer 
microbiota (Shannon α-diversity, Kruskal − Wallis 
test, p = 0.025, see supplementary eTable 2: Results—
figures). However, no sex-specific links with chrono-
logical age, BA, or physical capacity were found.

Similarly, no associations between β-diversity 
(unweighted UniFrac distances) and chronological 
age, BA, or physical capacity were found when using 
PERMANOVA for the entire cohort. Again, there 
was a marginal effect of sex on microbiota diversity 
(PERMANOVA, p = 0.085) showing that men have 
slightly greater β-diversity. Examination of micro-
biota in the context of chronological age, BA, and 
physical capacity in men only revealed a trend toward 
a significant positive association between microbiota 
β-diversity  and chronological age (PERMANOVA, 
p = 0.052). However, the associations between their 
β-diversity and BA and physical capacity were sta-
tistically insignificant. For women, no significant 
association was found for chronological age; there 
was a positive association of β-diversity with BA 
(PERMANOVA, p = 0.01) and with physical capacity 
(PERMANOVA, p = 0.04).

Differentially abundant taxa

We identified specific taxa significantly associated 
with BA and physical capacity, linking microbiota 
composition to early manifestation of aging. Table 2 
lists taxa that were significantly differentially abun-
dant across BA, and physical capacity measures and 
presents possible associated non-communicable dis-
eases or risk factors reported in previous publications. 
Figure  2 provides a graphic summary of the main 
findings; the full list of taxa significantly differentially 

Table 1  Main variables

1 Differences between men and women were examined using T-test and found to be insignificant for all reported measures (p = 0.1 to 
0.97)
2 Composite score based on various tests, range 0–6; higher score is considered better physical capacity
3 BMI was used as a biomarker for calculating BA and provided here as a measure for describing the cohort population

Men Women

Chronological  age1 (N = 70, 38 men) 44.55 ± 0.25 (41.78–46.82) 44.62 ± 0.26 (41.83–46.49)
BA1 (N = 69, 38 men) 44.71 ± 1.37 (30.06–71.41) 42.53 ± 1.19 (26.27–56.52)
Physical  capacity1,2 (N = 66, 34 men) 3.18 ± 0.22 (0.85–5.05) 3.16 ± 0.19 (1–5.05)
BMI1,3 (N = 70, 38 men) 27.82 ± 0.69 (21.33–41.83) 26.03 ± 0.72 (17.93–35.19)

https://disbiome.ugent.be/home
https://scholar.google.com
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Table 2  Taxa, linked variables, and non-communicable diseases

Iden�fied taxa Current findings
Possible link to non-communicable 
disease or risk factors

↑BA
↑BA (women)

Roseburia_faecis
↓Physical capacity 
(women)

1. Decreased with liver cirrhosis34

2. Decreased with rheumatoid 
arthri�s35

3. Decreased with obesity36

4. Decreased with cardiovascular 
diseases25

5. Decreased with lung cancer37

↑BA (women)
Ruminococcus ↓Physical capacity 

(women)

1. Increased with non-alcoholic fa�y 
liver disease38,39

2. Increased with breast cancer40

↓BA (women)

Bacteroides

↑Physical capacity 
(women)

1. Decreased with coronary artery 
disease41,42

2. Decreased with atherosclerosis43

3. Decreased with non-alcoholic fa�y 
liver disease38,39

4. Decreased with colorectal cancer44

↑BA (women)

Collinsella_aerofaciens
↓Physical capacity 
(women)

1. Increased with coronary artery 
disease41,42

2. Increased with pulmonary 
hypertension45

↓BA (women)
Akkermansia_muciniphila ↑Physical capacity

1. Decreased with type 2 diabetes 
melitus26

2. Decreased with obesity46

↓BA (women)

Alis�pes
↑Physical capacity 
(women)

1. Decreased with obesisy47

2. Decreased with non-alcoholic fa�y 
liver disease48

3. Decreased with colorectal cancer49

↑BA (women)

Dorea
↓Physical capacity 
(women)

1. Increased with hypertension50

2. Increased with non-alcoholic fa�y 
liver disease51

3. Increased with type 2 diabetes 
melitus52
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abundant with the study variables (i.e., chronological 
age, BA, and physical capacity) is in the supplemen-
tary data, eTable 2. Figures 3 and 4 present the top 20 

abundant genera and observed correlations with BA 
and physical capacity.

Discussion

In line with our hypothesis, the findings demon-
strated that physical capacity and estimated BA share 
microbial characteristics; however, these results were 
mainly significant for women. In contrast to our 
expectation, α-diversity was not correlated with either 
BA or physical capacity; between-person diversity 
was positively correlated with physical capacity and 
BA for women only; thus, increased between-person 
diversity (β-diversity) was associated with acceler-
ated aging status as well as with higher physical func-
tion levels. An increase in abundance of Roseburia 
faecis and Collinsella aerofaciens, as well as genus 
Ruminococcus and Dorea, was significantly associ-
ated with higher BA and lower physical capacity. An 
increase in abundance of Akkermansia muciniphila, 
as well as genus Bacteroides and Alistipes, was asso-
ciated with lower BA and increased physical capac-
ity (see Fig.  2). Additionally, a composite physical 
capacity score, as a quantitative measure of function, 
was negatively associated with BA in midlife healthy 
adults, supporting the link between increased physi-
cal capacity and a  positive health status represented 
by younger BA.

Microbiota diversity in midlife

For the entire cohort of healthy midlife individu-
als, we did not find an increase in microbiota α- or 
β-diversity in participants evaluated as biologically 
younger or with better physical capacity. Considering 

Fig. 3  Top 20 abundant genera correlations with physical 
capacity and BA

Fig. 2  Significant micro-
biota composition variables 
associated with both physi-
cal capacity and BA
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previous reports [53], increased α-diversity was 
expected to be linked with higher physical capacity 
and lower BA, representing healthier, younger physi-
ological status [9]. Microbial α-diversity measures 
the richness of our gut ecosystem [54]; in general, 
increased α-diversity contributes to higher resilience 
of the microbiota, supporting its ability to withstand 
dietary challenges, alcohol, or pathogens [55]. Higher 
microbial α-diversity may be linked with increased 
physical activity levels [56] and is widely reported 
for its association with better health metrics [55, 57]. 
Physical activity leads to widespread perturbations 
in numerous cells, tissues, and organs, resulting in 
multiple health-promoting benefits [58] as well as the 
mainly positive alteration in microbial α-diversity. 
Although differences in β-diversity between indi-
viduals with different lifestyles or chronological age 
may be observed [9], and a previous report linked 
β-diversity to higher levels of physical activity [59], 
we identified a significant, positive association 
between β-diversity and physical capacity as well as 
with BA in the women sub-cohort only. This finding 
opposes our hypothesis linking microbiota to both 
slower aging state and higher physical ability.

Although sex differences in BA and physical 
capacity were insignificant, we observed sex-related 
differences in microbiota diversity (women had sig-
nificantly higher α-diversity and men had higher 
β-diversity), suggesting microbiota diversity may 

not be an accurate measure for assessing the health 
status of otherwise comparable men and women. 
Although relying on microbiota diversity as a health 
marker is plausible, it is a limited measure [60] as it 
may change rapidly. Lack of significant association 
between higher microbiota diversity and better BA or 
physical capacity could partially be explained by the 
relatively small sample size or by dietary differences 
that were not accounted for [61, 62]. Future studies 
should closely monitor dietary patterns to ensure the 
accuracy of microbiota diversity measures and offer a 
more robust assessment of its association with physi-
cal capacity and BA.

Contribution of specific taxon abundance to the 
link between physical capacity, biological age, and 
non-communicable diseases

We identified seven distinct taxa (four genera: Rumi-
nococcus, Bacteroides, Dorea, and Alistipes; three 
species: Roseburia faecis, Collinsella aerofaciens, 
and Akkermansia muciniphila) associated with both 
BA and physical capacity (see Table  2 and Fig.  2). 
Identified taxa support the hypothesis that lower BA 
(being younger biologically) and higher physical 
capacity (being more physically fit), or vice versa, 
share a link with specific microbiota characteristics. 
Moreover, six taxa were also identified as being asso-
ciated with non-communicable diseases. An increase 

Fig. 4  Top 20 abundant 
genera by sex group

Women Men
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in one of the identified species (Roseburia faecis) 
was significantly associated with being biologically 
older and having lower physical capacity as expected; 
however, available findings suggest that lower abun-
dance of this species is associated with a variety of 
non-communicable diseases, such as cardiovascular 
disease [25] or health-related risk factors, such as 
obesity [36], while higher abundance is linked with 
beneficial production of short-chain fatty acids, spe-
cifically in older women [63] (therefore, colored dif-
ferently in Table  2). Keeping in mind that there are 
many other short-chain fatty acid-producing bacteria 
at play and that here we focus only on bacteria asso-
ciated with physical capacity and BA, Roseburia 
faecis could be associated with additional metabolic 
pathways that are not necessarily beneficial. All iden-
tified taxa represent one possible microbiota pheno-
type associated with an active lifestyle and a healthy 
younger physiological aging status.

Previous publications suggest that an active life-
style supports microbial changes that result in a 
health-supporting microbiota phenotype [64]; in con-
trast, a sedentary lifestyle promotes dysbiosis, loss 
of bacteria promoting positive metabolic activity, an 
increase in opportunistic species, and reduced diver-
sity [65], thus contributing to accelerated aging state 
and non-communicable disease development [66] 
(see Fig. 5). As presented in the conceptual model in 
Fig. 5, microbiota composition changes present a pos-
sible mechanism linking lifestyle with pace of aging 
and non-communicable disease prevalence. Keeping 

in mind that bacteria work as communities, interact-
ing with each other and with their host [67], these 
specific taxa represent only one possible microbi-
ota-based phenotype linked with increased physical 
capacity and better health.

The focused literature search on the identified 
taxa suggests they may also play a role in non-com-
municable diseases (e.g., non-alcoholic fatty liver 
disease, coronary artery disease, type 2 diabetes 
mellitus). Note that although all participants were 
in good health, non-communicable diseases develop 
slowly and are associated with lifestyle choices, such 
as physical inactivity [68]; thus, there may be micro-
bial precursors to these disorders prior to diagnosis of 
such conditions in this study population.

Sex difference impact on microbiota composition and 
estimated BA

Comparisons of women’s and men’s physiologi-
cal and physical traits are often significantly differ-
ent [69], especially when studying aging [2]. In this 
cohort, studied variables (i.e., chronological age, 
BA, physical capacity) across sexes were compara-
ble, as both BA and physical capacity were calcu-
lated separately for each sex and the cohort used was 
chronological age homogenous. However, we identi-
fied some differences in microbiota diversity meas-
ures, suggesting that sex-based microbiota composi-
tion differences could not be disregarded. Moreover, 
specific taxon abundance associations with study 

Fig. 5  Conceptual model 
describing the link between 
active lifestyle, microbiota 
composition, and biological 
aging
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variables were mostly observed when investigating 
women separately from men, limiting our ability to 
generalize specific taxa roles in aging-related mecha-
nisms. These findings are in-line with current litera-
ture on sex contributions to microbiota compositional 
changes [70] and can potentially explain these results. 
Sex hormones (e.g., testosterone, estradiol) are cor-
related with microbiota composition characteristics 
[71], such as diversity or specific taxon abundance. 
Presented results suggest that women could be more 
sensitive to microbiota compositional changes asso-
ciated with aging mechanisms or physical capacity 
status, explaining the main findings being observed 
only in midlife women.

Strengths and limitations

This study utilizes physical capacity, based on an 
extended testing battery for measuring physical fit-
ness as well as gait, to represent a robust estima-
tion of participants’ physical status, thus providing 
a comprehensive estimation for the physical state. 
This method offers additional insight on the role 
behavioral measures play in the aging processes. 
Additionally, investigating a midlife cohort with rel-
atively homogenous age enables us to capture pos-
sible variations in all investigated variables before 
the onset of any age-related illness. This study has 
several limitations: (1) our sample size, although 
acceptable for microbiota studies, is relatively small 
thus limiting our analysis, particularly when assess-
ing the impact of body weight or additional lifestyle 
factors. (2) The cross-sectional design does not pro-
vide an in-depth understanding of the association 
between microbiota and physical capacity; although 
it can be inferred, having a longitudinal compari-
son demonstrating the impact of changes in physi-
cal capacity on microbiota composition would have 
added another important perspective on these com-
plicated interactions. (3) 16S rRNA analysis mainly 
allowed us to characterize the microbiota composi-
tion. Whole genome shotgun sequencing and meta-
transcriptomics may bridge this gap by identifying 
specific bacterial gene involvement and allowing 
for a comprehensive understanding of the role cer-
tain bacteria play [72], supporting the idea that bet-
ter health represented by lower BA shares similar 

microbiota functions with higher physical capacity. 
To give context to our results, we characterized pos-
sible shared pathways using functional analysis of 
the 16S rRNA data and did not reveal any shared 
functional link between physical capacity and BA 
(see supplementary eTable 2: Results—figures).

Conclusions

We show that several taxa in the microbiota were 
associated with both BA and physical capacity, sug-
gesting microbiota composition plays a role in the 
association between physical capacity and our health 
status, in community dwelling midlife individu-
als. As such, altered microbiota composition may be 
regarded as an aging mechanism and specific modi-
fications to its composition could be established as a 
leverage point for interventions addressing acceler-
ated aging status. Additional dimensions of microbi-
ota composition, studied by microbiota diversity met-
rics (within-person and between-person diversity), 
were not significantly associated with study vari-
ables, possibly due to study participants being healthy 
or the limited sample size. The rising prevalence of 
sedentary lifestyle increases the risk of age-related 
disease and a negative aging trajectory; investigat-
ing additional factors underlying the link between 
physical capacity and BA may facilitate the develop-
ment of a more accurate method to estimate the rate 
of aging. Moreover, these findings may assist in the 
development of new intervention strategies. Future 
studies should account for microbiota composition as 
a possible force multiplier, enhancing physical activ-
ity interventions’ positive contribution to health with 
additional microbiota alteration methods supporting 
the same aim.

Acknowledgements We are thankful to all the participants 
for their willingness to contribute to this study.

Data availability The microbiota data used here  is publicly 
available in the  European Bioinformatics Institute (EBI) data-
base, https:// www. ebi. ac. uk/ ena/ brows er/ view/ PRJEB 63185. 

Declarations 

Competing interests The authors declare no competing 
interests.

https://www.ebi.ac.uk/ena/browser/view/PRJEB63185


1486 GeroScience (2024) 46:1477–1488

1 3
Vol:. (1234567890)

References

 1. Jazwinski SM, Kim S. Examination of the dimensions of 
biological age. Front Genet. 2019;10:263. https:// doi. org/ 
10. 3389/ fgene. 2019. 00263.

 2. Oksuzyan A, Juel K, Vaupel JW, Christensen K. Men: 
good health and high mortality. Sex differences in health 
and aging. Aging Clin Exp Res. 2008;20(2):91–102. 
https:// doi. org/ 10. 1007/ bf033 24754.

 3. Cummings SR, Kritchevsky SB. Endpoints for gerosci-
ence clinical trials: health outcomes, biomarkers, and bio-
logic age. GeroScience. 2022;44(6):2925–31. https:// doi. 
org/ 10. 1007/ s11357- 022- 00671-8.

 4. Jylhävä J, Pedersen NL, Hägg S. Biological age predic-
tors. EBioMedicine. 2017;21:29–36. https:// doi. org/ 10. 
1016/j. ebiom. 2017. 03. 046.

 5. Bell CG, Lowe R, Adams PD, et  al. DNA methylation 
aging clocks: challenges and recommendations. Genome 
Biol. 2019;20(1).  https:// link. sprin ger. com/ artic le/ 10. 
1186/ s13059- 019- 1824-y.

 6. Belsky DW, Moffitt TE, Cohen AA, et  al. Eleven tel-
omere, epigenetic clock, and biomarker-composite quan-
tifications of biological aging: do they measure the same 
thing? Am J Epidemiol. 2018;187(6):1220–30. https:// doi. 
org/ 10. 1093/ aje/ kwx346.

 7. Finkel D, Sternäng O, Jylhävä J, Bai G, Pedersen NL. 
Functional aging index complements frailty in predic-
tion of entry into care and mortality. J Gerontol Ser A. 
2019;74(12):1980–6. https:// doi. org/ 10. 1093/ gerona/ 
glz155.

 8. Li X, Ploner A, Wang Y, et al. Longitudinal trajectories, 
correlations and mortality associations of nine biological 
ages across 20-years follow-up. eLife. 2020;9. https:// elife 
scien ces. org/ artic les/ 51507.

 9. Badal VD, Vaccariello ED, Murray ER, et  al. The gut 
microbiome, aging, and longevity: a systematic review. 
Nutrients. 2020;12(12):3759. https:// doi. org/ 10. 3390/ 
nu121 23759.

 10. Galkin F, Mamoshina P, Aliper A, et  al. Human gut 
microbiome aging clock based on taxonomic profiling and 
deep learning. iScience. 2020;23(6):101199. https:// doi. 
org/ 10. 1016/j. isci. 2020. 101199.

 11. Tzemah Shahar R, Koren O, Matarasso S, Shochat T, 
Magzal F, Agmon M. Attributes of physical activity 
and gut microbiome in adults: a systematic review. Int 
J Sports Med. 2020;41(12):801–14. https:// doi. org/ 10. 
1055/a- 1157- 9257.

 12. Corbin CBP, Robert P, Franks, B. Don. Definitions: 
health, fitness, and physical activity. President’s Coun-
cil on Physical Fitness and Sports, Washington, DC. 
2000;(Series 3 n9).

 13. Tzemah-Shahar R, Hochner H, Iktilat K, Agmon M. What 
can we learn from physical capacity about biological age? 
A systematic review. Ageing Res Rev. 2022;77:101609. 
https:// doi. org/ 10. 1016/j. arr. 2022. 101609.

 14. McGee SL, Hargreaves M. Exercise adaptations: molecu-
lar mechanisms and potential targets for therapeutic ben-
efit. Nat Rev Endocrinol. 2020;16(9):495–505. https:// doi. 
org/ 10. 1038/ s41574- 020- 0377-1.

 15. Duggal NA, Niemiro G, Harridge SDR, Simpson RJ, Lord 
JM. Can physical activity ameliorate immunosenescence 
and thereby reduce age-related multi-morbidity? Nat Rev 
Immunol. 2019;19(9):563–72. https:// doi. org/ 10. 1038/ 
s41577- 019- 0177-9.

 16. Tzemah-Shahar R, Shapiro I, Kodesh E, et  al. Physical-
capacity based evaluation battery for rate of aging at 
midlife: a preliminary study. Submitted to European 
Review of Aging and Physical Activity, 2023.

 17. Ramos C, Gibson GR, Walton GE, Magistro D, Kin-
near W, Hunter K. Systematic review of the effects of 
exercise and physical activity on the gut microbiome of 
older adults. Nutrients. 2022;14(3):674. https:// doi. org/ 
10. 3390/ nu140 30674.

 18. Baquero F, Nombela C. The microbiome as a human 
organ. Clin Microbiol Infect. 2012;18:2–4. https:// doi. 
org/ 10. 1111/j. 1469- 0691. 2012. 03916.x.

 19. Bana B, Cabreiro F. The microbiome and aging. Annu 
Rev Genet. 2019;53:239–61. https:// doi. org/ 10. 1146/ 
annur ev- genet- 112618- 043650.

 20. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, 
Kroemer G. Hallmarks of aging: an expanding universe. 
Cell. 2023;186(2):243–78. https:// doi. org/ 10. 1016/j. cell. 
2022. 11. 001.

 21. Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome 
and aging: physiological and mechanistic insights. Nutr 
Healthy Aging. 2018;4(4):267–85. https:// doi. org/ 10. 
3233/ NHA- 170030.

 22. Noce A, Marrone G, Di Daniele F, et  al. Impact of 
gut microbiota composition on onset and progres-
sion of chronic non-communicable diseases. Nutrients. 
2019;11(5):1073. https:// doi. org/ 10. 3390/ nu110 51073.

 23. Bennett JE, Stevens GA, Mathers CD, et  al. NCD 
countdown 2030: worldwide trends in non-commu-
nicable disease mortality and progress towards sus-
tainable development goal target 3.4. The Lancet. 
2018;392(10152):1072–88. https:// doi. org/ 10. 1016/ 
s0140- 6736(18) 31992-5.

 24. Belsky DW, Caspi A, Houts R, et  al. Quantification of 
biological aging in young adults. Proc Natl Acad Sci. 
2015;112(30):E4104–10. https:// doi. org/ 10. 1073/ pnas. 
15062 64112.

 25. Huang R, Ju Z, Zhou PK. A gut dysbiotic microbiota-
based hypothesis of human-to-human transmission 
of non-communicable diseases. Sci Total Environ. 
2020;745:141030. https:// doi. org/ 10. 1016/j. scito tenv. 
2020. 141030.

 26. Zhong H, Ren H, Lu Y, et  al. Distinct gut metagen-
omics and metaproteomics signatures in prediabetics 
and treatment-naïve type 2 diabetics. EBioMedicine. 
2019;47:373–83. https:// doi. org/ 10. 1016/j. ebiom. 2019. 
08. 048.

 27. Harlap S, Davies AM, Deutsch L, et  al. The Jerusa-
lem perinatal study cohort, 1964?2005: methods and a 
review of the main results. Paediatr Perinat Epidemiol. 
2007;21(3):256–73. https:// doi. org/ 10. 1111/j. 1365- 3016. 
2007. 00799.x.

 28. Klemera P, Doubal S. A new approach to the concept 
and computation of biological age. Mech Ageing Dev. 
2006;127(3):240–8. https:// doi. org/ 10. 1016/j. mad. 2005. 
10. 004.

https://doi.org/10.3389/fgene.2019.00263
https://doi.org/10.3389/fgene.2019.00263
https://doi.org/10.1007/bf03324754
https://doi.org/10.1007/s11357-022-00671-8
https://doi.org/10.1007/s11357-022-00671-8
https://doi.org/10.1016/j.ebiom.2017.03.046
https://doi.org/10.1016/j.ebiom.2017.03.046
https://link.springer.com/article/10.1186/s13059-019-1824-y
https://link.springer.com/article/10.1186/s13059-019-1824-y
https://doi.org/10.1093/aje/kwx346
https://doi.org/10.1093/aje/kwx346
https://doi.org/10.1093/gerona/glz155
https://doi.org/10.1093/gerona/glz155
https://elifesciences.org/articles/51507
https://elifesciences.org/articles/51507
https://doi.org/10.3390/nu12123759
https://doi.org/10.3390/nu12123759
https://doi.org/10.1016/j.isci.2020.101199
https://doi.org/10.1016/j.isci.2020.101199
https://doi.org/10.1055/a-1157-9257
https://doi.org/10.1055/a-1157-9257
https://doi.org/10.1016/j.arr.2022.101609
https://doi.org/10.1038/s41574-020-0377-1
https://doi.org/10.1038/s41574-020-0377-1
https://doi.org/10.1038/s41577-019-0177-9
https://doi.org/10.1038/s41577-019-0177-9
https://doi.org/10.3390/nu14030674
https://doi.org/10.3390/nu14030674
https://doi.org/10.1111/j.1469-0691.2012.03916.x
https://doi.org/10.1111/j.1469-0691.2012.03916.x
https://doi.org/10.1146/annurev-genet-112618-043650
https://doi.org/10.1146/annurev-genet-112618-043650
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.3233/NHA-170030
https://doi.org/10.3233/NHA-170030
https://doi.org/10.3390/nu11051073
https://doi.org/10.1016/s0140-6736(18)31992-5
https://doi.org/10.1016/s0140-6736(18)31992-5
https://doi.org/10.1073/pnas.1506264112
https://doi.org/10.1073/pnas.1506264112
https://doi.org/10.1016/j.scitotenv.2020.141030
https://doi.org/10.1016/j.scitotenv.2020.141030
https://doi.org/10.1016/j.ebiom.2019.08.048
https://doi.org/10.1016/j.ebiom.2019.08.048
https://doi.org/10.1111/j.1365-3016.2007.00799.x
https://doi.org/10.1111/j.1365-3016.2007.00799.x
https://doi.org/10.1016/j.mad.2005.10.004
https://doi.org/10.1016/j.mad.2005.10.004


1487GeroScience (2024) 46:1477–1488 

1 3
Vol.: (0123456789)

 29. Kwon D, Belsky DW. A toolkit for quantification of bio-
logical age from blood chemistry and organ function test 
data: BioAge. Geroscience. 2021;43(6):2795–808. https:// 
doi. org/ 10. 1007/ s11357- 021- 00480-5.

 30. Uzan-Yulzari A, Morr M, Tareef-Nabwani H, et  al. The 
intestinal microbiome, weight, and metabolic changes in 
women treated by adjuvant chemotherapy for breast and 
gynecological malignancies. BMC Med. 2020;18(1):281. 
https:// doi. org/ 10. 1186/ s12916- 020- 01751-2.

 31. Bolyen E, Rideout JR, Dillon MR, et  al. Reproducible, 
interactive, scalable and extensible microbiome data sci-
ence using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. 
https:// doi. org/ 10. 1038/ s41587- 019- 0209-9.

 32. Kim BR, Shin J, Guevarra R, et  al. Deciphering diver-
sity indices for a better understanding of microbial com-
munities. J Microbiol Biotechnol. 2017;27(12):2089–93. 
https:// doi. org/ 10. 4014/ jmb. 1709. 09027.

 33. Lozupone C, Lladser ME, Knights D, Stombaugh J, 
Knight R. UniFrac: an effective distance metric for micro-
bial community comparison. ISME J. 2011;5(2):169–72. 
https:// doi. org/ 10. 1038/ ismej. 2010. 133.

 34. Santiago A, Pozuelo M, Poca M, et  al. Alteration of the 
serum microbiome composition in cirrhotic patients with 
ascites. Sci Rep. 2016;6(1):25001. https:// doi. org/ 10. 
1038/ srep2 5001.

 35. Breban M, Tap J, Leboime A, et  al. Faecal microbiota 
study reveals specific dysbiosis in spondyloarthritis. Ann 
Rheum Dis. 2017;76(9):1614–22. https:// doi. org/ 10. 1136/ 
annrh eumdis- 2016- 211064.

 36. Jolivet-Gougeon MB-MA. Roseburia spp.: a marker of 
health. Future Microbiol. 2017;12(2):157–70. https:// doi. 
org/ 10. 2217/ fmb- 2016- 0130.

 37. Zheng Y, Fang Z, Xue Y, et  al. Specific gut microbi-
ome signature predicts the early-stage lung cancer. Gut 
Microbes. 2020;11(4):1030–42. https:// doi. org/ 10. 1080/ 
19490 976. 2020. 17374 87.

 38. Boursier J, Mueller O, Barret M, et  al. The severity of 
nonalcoholic fatty liver disease is associated with gut dys-
biosis and shift in the metabolic function of the gut micro-
biota. Hepatology. 2016;63(3):764–75. https:// doi. org/ 10. 
1002/ hep. 28356.

 39. Da Silva HE, Teterina A, Comelli EM, et  al. Nonal-
coholic fatty liver disease is associated with dysbiosis 
independent of body mass index and insulin resistance. 
Sci Rep. 2018;8(1).  https:// www. nature. com/ artic les/ 
s41598- 018- 19753-9.

 40. Kovács T, Mikó E, Ujlaki G, et  al. The involvement 
of oncobiosis and bacterial metabolite signaling in 
metastasis formation in breast cancer. Cancer Metasta-
sis Rev. 2021;40(4):1223–49. https:// doi. org/ 10. 1007/ 
s10555- 021- 10013-3.

 41. Emoto T, Yamashita T, Kobayashi T, et al. Characteriza-
tion of gut microbiota profiles in coronary artery disease 
patients using data mining analysis of terminal restric-
tion fragment length polymorphism: gut microbiota 
could be a diagnostic marker of coronary artery disease. 
Heart Vessels. 2017;32(1):39–46. https:// doi. org/ 10. 1007/ 
s00380- 016- 0841-y.

 42. Liu Z, Li J, Liu H, et al. The intestinal microbiota associ-
ated with cardiac valve calcification differs from that of 

coronary artery disease. Atherosclerosis. 2019;284:121–8. 
https:// doi. org/ 10. 1016/j. ather oscle rosis. 2018. 11. 038.

 43. Jie Z, Xia H, Zhong S-L, et  al. The gut microbiome 
in atherosclerotic cardiovascular disease. Nat Com-
mun. 2017;8(1).  https:// www. nature. com/ artic les/ 
s41467- 017- 00900-1.

 44. Nakatsu G, Li X, Zhou H, et al. Gut mucosal microbiome 
across stages of colorectal carcinogenesis. Nat Commun. 
2015;6(1):8727. https:// doi. org/ 10. 1038/ ncomm s9727.

 45. Kim S, Rigatto K, Gazzana MB, et al. Altered gut micro-
biome profile in patients with pulmonary arterial hyper-
tension. Hypertension. 2020;75(4):1063–71. https:// doi. 
org/ 10. 1161/ hyper tensi onaha. 119. 14294.

 46. Ettehad Marvasti F, Moshiri A, Taghavi MS, et  al. The 
first report of differences in gut microbiota composition 
between obese and normal weight Iranian subjects. Iran 
Biomed J. 2020;24(3):148–54. https:// doi. org/ 10. 29252/ 
ibj. 24.3. 148.

 47. Zhu L, Baker SS, Gill C, et  al. Characterization of gut 
microbiomes in nonalcoholic steatohepatitis (NASH) 
patients: a connection between endogenous alcohol and 
NASH. Hepatology. 2013;57(2):601–9. https:// doi. org/ 10. 
1002/ hep. 26093.

 48. Jiang W, Wu N, Wang X, et  al. Dysbiosis gut microbi-
ota associated with inflammation and impaired mucosal 
immune function in intestine of humans with non-alco-
holic fatty liver disease. Sci Rep. 2015;5(1):8096. https:// 
doi. org/ 10. 1038/ srep0 8096.

 49. Loke MF, Chua EG, Gan HM, et  al. Metabolomics and 
16S rRNA sequencing of human colorectal cancers and 
adjacent mucosa. Plos One. 2018;13(12):e0208584. 
https:// doi. org/ 10. 1371/ journ al. pone. 02085 84.

 50. Kim S, Goel R, Kumar A, et  al. Imbalance of gut 
microbiome and intestinal epithelial barrier dysfunc-
tion in patients with high blood pressure. Clin Sci. 
2018;132(6):701–18. https:// doi. org/ 10. 1042/ cs201 80087.

 51. Raman M, Ahmed I, Gillevet PM, et  al. Fecal Microbi-
ome and volatile organic compound metabolome in obese 
humans with nonalcoholic fatty liver disease. Clin Gastro-
enterol Hepatol. 2013;11(7):868-875.e3. https:// doi. org/ 
10. 1016/j. cgh. 2013. 02. 015.

 52. Li Q, Chang Y, Zhang K, Chen H, Tao S, Zhang Z. Implication 
of the gut microbiome composition of type 2 diabetic patients 
from northern China. Sci Rep. 2020;10(1).  https:// www. 
nature. com/ artic les/ s41598- 020- 62224-3.

 53. Ortiz-Alvarez L, Xu H, Martinez-Tellez B. Influence 
of exercise on the human gut microbiota of healthy 
adults: a systematic review. Clin Transl Gastroenterol. 
2020;11(2):e00126. https:// doi. org/ 10. 14309/ ctg. 00000 
00000 000126.

 54. Larsen OFA, Claassen E. The mechanistic link between health 
and gut microbiota diversity. Sci Rep. 2018;8(1). https:// www. 
nature. com/ artic les/ s41598- 018- 20141-6.

 55. Dogra SK, Dore J, Damak S. Gut microbiota resilience: 
definition, link to health and strategies for intervention. 
Front Microbiol. 2020;11:572921. https:// doi. org/ 10. 
3389/ fmicb. 2020. 572921.

 56. Aya V, Flórez A, Perez L, Ramírez JD. Association 
between physical activity and changes in intestinal 
microbiota composition: a systematic review. Plos One. 

https://doi.org/10.1007/s11357-021-00480-5
https://doi.org/10.1007/s11357-021-00480-5
https://doi.org/10.1186/s12916-020-01751-2
https://doi.org/10.1038/s41587-019-0209-9
https://doi.org/10.4014/jmb.1709.09027
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1038/srep25001
https://doi.org/10.1038/srep25001
https://doi.org/10.1136/annrheumdis-2016-211064
https://doi.org/10.1136/annrheumdis-2016-211064
https://doi.org/10.2217/fmb-2016-0130
https://doi.org/10.2217/fmb-2016-0130
https://doi.org/10.1080/19490976.2020.1737487
https://doi.org/10.1080/19490976.2020.1737487
https://doi.org/10.1002/hep.28356
https://doi.org/10.1002/hep.28356
https://www.nature.com/articles/s41598-018-19753-9
https://www.nature.com/articles/s41598-018-19753-9
https://doi.org/10.1007/s10555-021-10013-3
https://doi.org/10.1007/s10555-021-10013-3
https://doi.org/10.1007/s00380-016-0841-y
https://doi.org/10.1007/s00380-016-0841-y
https://doi.org/10.1016/j.atherosclerosis.2018.11.038
https://www.nature.com/articles/s41467-017-00900-1
https://www.nature.com/articles/s41467-017-00900-1
https://doi.org/10.1038/ncomms9727
https://doi.org/10.1161/hypertensionaha.119.14294
https://doi.org/10.1161/hypertensionaha.119.14294
https://doi.org/10.29252/ibj.24.3.148
https://doi.org/10.29252/ibj.24.3.148
https://doi.org/10.1002/hep.26093
https://doi.org/10.1002/hep.26093
https://doi.org/10.1038/srep08096
https://doi.org/10.1038/srep08096
https://doi.org/10.1371/journal.pone.0208584
https://doi.org/10.1042/cs20180087
https://doi.org/10.1016/j.cgh.2013.02.015
https://doi.org/10.1016/j.cgh.2013.02.015
https://www.nature.com/articles/s41598-020-62224-3
https://www.nature.com/articles/s41598-020-62224-3
https://doi.org/10.14309/ctg.0000000000000126
https://doi.org/10.14309/ctg.0000000000000126
https://www.nature.com/articles/s41598-018-20141-6
https://www.nature.com/articles/s41598-018-20141-6
https://doi.org/10.3389/fmicb.2020.572921
https://doi.org/10.3389/fmicb.2020.572921


1488 GeroScience (2024) 46:1477–1488

1 3
Vol:. (1234567890)

2021;16(2):e0247039. https:// doi. org/ 10. 1371/ journ al. pone. 
02470 39.

 57. Rinninella E, Raoul P, Cintoni M, et  al. What is the 
healthy gut microbiota composition? A changing ecosys-
tem across age, environment, diet, and diseases. Micro-
organisms. 2019;7(1):14. https:// doi. org/ 10. 3390/ micro 
organ isms7 010014.

 58. Hawley JA, Joyner MJ, Green DJ. Mimicking exer-
cise: what matters most and where to next? J Physiol. 
2021;599(3):791–802. https:// doi. org/ 10. 1113/ jp278 761.

 59. Langsetmo L, Johnson A, Demmer RT, et  al. The asso-
ciation between objectively measured physical activity 
and the gut microbiome among older community dwelling 
men. J Nutr Health Aging. 2019;23(6):538–46. https:// doi. 
org/ 10. 1007/ s12603- 019- 1194-x.

 60. Ma Z, Li L, Gotelli NJ. Diversity-disease relationships 
and shared species analyses for human microbiome-asso-
ciated diseases. ISME J. 2019;13(8):1911–9. https:// doi. 
org/ 10. 1038/ s41396- 019- 0395-y.

 61. Dziewiecka H, Buttar HS, Kasperska A, et al. Physical activ-
ity induced alterations of gut microbiota in humans: a sys-
tematic review. BMC Sports Sci Med Rehabil. 2022;14(1). 
doi:https:// doi. org/ 10. 1186/ s13102- 022- 00513-2.

 62. Divella R, De Palma G, Tufaro A, et  al. Diet, probiotics 
and physical activity: the right allies for a healthy micro-
biota. Anticancer Res. 2021;41(6):2759–72. https:// doi. 
org/ 10. 21873/ antic anres. 15057.

 63. Lv WQ, Lin X, Shen H, et  al. Human gut microbiome 
impacts skeletal muscle mass via gut microbial synthe-
sis of the short-chain fatty acid butyrate among healthy 
menopausal women. J Cachexia Sarcopenia Muscle. 
2021;12(6):1860–70. https:// doi. org/ 10. 1002/ jcsm. 12788.

 64. Barton W, Penney NC, Cronin O, et al. The microbiome of pro-
fessional athletes differs from that of more sedentary subjects 
in composition and particularly at the functional metabolic 
level. Gut. 2017:gutjnl-2016–313. https:// gut. bmj. com/ conte nt/ 
67/4/ 625. abstr act? casa_ token= uG5E_ mzSPd sAAAAA: IpoRg 
Mfcqa 5L6qy nNLAp YQjQW bj166O_ ICGZO i1lhI uDc6P 
ZdZZt lDZRH kNWxV Apc7e M0WVN z7U.

 65. Allam-Ndoul B, Castonguay-Paradis S, Veilleux A. Gut 
microbiota and intestinal trans-epithelial permeability. 
Int J Mol Sci. 2020;21(17):6402. https:// doi. org/ 10. 3390/ 
ijms2 11764 02.

 66. Park JH, Moon JH, Kim HJ, Kong MH, Oh YH. Seden-
tary lifestyle: overview of updated evidence of potential 
health risks. Korean J Fam Med. 2020;41(6):365–73. 
https:// doi. org/ 10. 4082/ kjfm. 20. 0165.

 67. Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevo-
tella diversity, niches and interactions with the human 
host. Nat Rev Microbiol. 2021;19(9):585–99. https:// doi. 
org/ 10. 1038/ s41579- 021- 00559-y.

 68. OECD, Organization WH. Step up! Tackling the burden 
of insufficient physical activity in Europe. 2023.

 69. Bhargava A, Arnold AP, Bangasser DA, et  al. Consider-
ing sex as a biological variable in basic and clinical stud-
ies: an Endocrine Society scientific statement. Endocr Rev. 
2021;42(3):219–58. https:// doi. org/ 10. 1210/ endrev/ bnaa0 34.

 70. Valeri F, Endres K. How biological sex of the host shapes 
its gut microbiota. Front Neuroendocrinol. 2021;61:100912. 
https:// doi. org/ 10. 1016/j. yfrne. 2021. 100912.

 71. Shin JH, Park YH, Sim M, Kim SA, Joung H, Shin DM. 
Serum level of sex steroid hormone is associated with 
diversity and profiles of human gut microbiome. Res 
Microbiol Jun-Aug. 2019;170(4–5):192–201. https:// doi. 
org/ 10. 1016/j. resmic. 2019. 03. 003.

 72. Hall CV, Lord A, Betzel R, et  al. Co-existence of network 
architectures supporting the human gut microbiome. iScience. 
2019;22:380–91. https:// doi. org/ 10. 1016/j. isci. 2019. 11. 032.

 73. (CDC) CfDCaP. Data from: National Health and Nutrition 
Examination Survey Data. Hyattsville, MD: U.S. Depart-
ment of Health and Human Services.

 74. Shapiro I, Belsky DW, Israel S, Youssim I, Friedlander Y, 
Hochner H. Familial aggregation of the aging process: bio-
logical age measured in young adult offspring as a predic-
tor of parental mortality. GeroScience. 2023;45(2):901–
13. https:// doi. org/ 10. 1007/ s11357- 022- 00687-0.

 75. Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-
throughput microbial community analysis on the Illumina 
HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4. 
https:// doi. org/ 10. 1038/ ismej. 2012.8.

 76. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, John-
son AJA, Holmes SP. DADA2: High-resolution sample 
inference from Illumina amplicon data. Nat Methods. 
2016;13(7):581–3. https:// doi. org/ 10. 1038/ nmeth. 3869.

 77. DeSantis TZ, Hugenholtz P, Larsen N, et  al. Greengenes, 
a chimera-checked 16S rRNA gene database and work-
bench compatible with ARB. Appl Environ Microbiol. 
2006;72(7):5069–72. https:// doi. org/ 10. 1128/ AEM. 03006- 05.

 78. McMurdie PJ, Holmes S. phyloseq: an R package for 
reproducible interactive analysis and graphics of micro-
biome census data. PLoS One. 2013;8(4):e61217. https:// 
doi. org/ 10. 1371/ journ al. pone. 00612 17.

 79. Love MI, Huber W, Anders S. Moderated estimation 
of fold change and dispersion for RNA-seq data with 
DESeq2. Genome Biol. 2014;15(12).  https:// genom ebiol 
ogy. biome dcent ral. com/ artic les/ 10. 1186/ s13059- 014- 
0550-8? ref= https:// githu bhelp. com.

 80. Wickham H. Programming with ggplot2. Springer Inter-
national Publishing; 2016:241–253.  https:// link. sprin ger. 
com/ chapt er/ 10. 1007/ 978-3- 319- 24277-4_ 12.

 81. Douglas GM, Maffei VJ, Zaneveld JR, et  al. PICRUSt2 
for prediction of metagenome functions. Nat Biotechnol. 
2020;38(6):685–8. https:// doi. org/ 10. 1038/ s41587- 020- 0548-6.

 82. Caspi R, Billington R, Keseler IM, et  al. The MetaCyc 
database of metabolic pathways and enzymes - a 2019 
update. Nucleic Acids Res. 2019;48(D1):D445–53. 
https:// doi. org/ 10. 1093/ nar/ gkz862.

Publisher’s note Springer Nature remains neutral with regard 
to jurisdictional claims in published maps and institutional 
affiliations.

Springer Nature or its licensor (e.g. a society or other partner) 
holds exclusive rights to this article under a publishing 
agreement with the author(s) or other rightsholder(s); author 
self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement 
and applicable law.

https://doi.org/10.1371/journal.pone.0247039
https://doi.org/10.1371/journal.pone.0247039
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.3390/microorganisms7010014
https://doi.org/10.1113/jp278761
https://doi.org/10.1007/s12603-019-1194-x
https://doi.org/10.1007/s12603-019-1194-x
https://doi.org/10.1038/s41396-019-0395-y
https://doi.org/10.1038/s41396-019-0395-y
https://doi.org/10.1186/s13102-022-00513-2.
https://doi.org/10.21873/anticanres.15057
https://doi.org/10.21873/anticanres.15057
https://doi.org/10.1002/jcsm.12788
https://gut.bmj.com/content/67/4/625.abstract?casa_token=uG5E_mzSPdsAAAAA:IpoRgMfcqa5L6qynNLApYQjQWbj166O_ICGZOi1lhIuDc6PZdZZtlDZRHkNWxVApc7eM0WVNz7U
https://gut.bmj.com/content/67/4/625.abstract?casa_token=uG5E_mzSPdsAAAAA:IpoRgMfcqa5L6qynNLApYQjQWbj166O_ICGZOi1lhIuDc6PZdZZtlDZRHkNWxVApc7eM0WVNz7U
https://gut.bmj.com/content/67/4/625.abstract?casa_token=uG5E_mzSPdsAAAAA:IpoRgMfcqa5L6qynNLApYQjQWbj166O_ICGZOi1lhIuDc6PZdZZtlDZRHkNWxVApc7eM0WVNz7U
https://gut.bmj.com/content/67/4/625.abstract?casa_token=uG5E_mzSPdsAAAAA:IpoRgMfcqa5L6qynNLApYQjQWbj166O_ICGZOi1lhIuDc6PZdZZtlDZRHkNWxVApc7eM0WVNz7U
https://doi.org/10.3390/ijms21176402
https://doi.org/10.3390/ijms21176402
https://doi.org/10.4082/kjfm.20.0165
https://doi.org/10.1038/s41579-021-00559-y
https://doi.org/10.1038/s41579-021-00559-y
https://doi.org/10.1210/endrev/bnaa034
https://doi.org/10.1016/j.yfrne.2021.100912
https://doi.org/10.1016/j.resmic.2019.03.003
https://doi.org/10.1016/j.resmic.2019.03.003
https://doi.org/10.1016/j.isci.2019.11.032
https://doi.org/10.1007/s11357-022-00687-0
https://doi.org/10.1038/ismej.2012.8
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1128/AEM.03006-05
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8?ref=https://githubhelp.com
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8?ref=https://githubhelp.com
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-014-0550-8?ref=https://githubhelp.com
https://link.springer.com/chapter/10.1007/978-3-319-24277-4_12
https://link.springer.com/chapter/10.1007/978-3-319-24277-4_12
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1093/nar/gkz862

	Signs of aging in midlife: physical function and sex differences in microbiota
	Abstract 
	Introduction
	Study sample
	Biological age estimation and physical capacity measurements
	Microbiome sample collection and analysis

	Results
	Within-person and between-person microbiome composition comparisons (α-diversity, β-diversity)
	Differentially abundant taxa

	Discussion
	Microbiota diversity in midlife
	Contribution of specific taxon abundance to the link between physical capacity, biological age, and non-communicable diseases
	Sex difference impact on microbiota composition and estimated BA
	Strengths and limitations

	Conclusions
	Acknowledgements 
	References


