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Abstract  Distinguishing between Alzheimer’s dis-
ease (AD) and frontotemporal dementia (FTD) pre-
sents a clinical challenge. Inexpensive and accessible 
techniques such as electroencephalography (EEG) are 
increasingly being used to address this challenge. In 
particular, the potential relevance between aperiodic 
components of EEG activity and these disorders has 
gained interest as our understanding evolves. This 
study aims to determine the differences in aperiodic 

activity between AD and FTD and evaluate its poten-
tial for distinguishing between the two disorders. A 
total of 88 participants, including 36 patients with 
AD, 23 patients with FTD, and 29 healthy controls 
(CN) underwent cognitive assessment and scalp EEG 
acquisition. Neuronal power spectra were parameter-
ized to decompose the EEG spectrum, enabling com-
parison of group differences in different components. 
A support vector machine was employed to assess 
the impact of aperiodic parameters on the differential 
diagnosis. Compared with the CN group, both the AD 
and FTD groups showed varying degrees of increased 
alpha power (both periodic and raw power) and theta 
alpha power ratio. At the channel level, theta power 
(both periodic and raw power) in the frontal regions 
was higher in the AD group compared to the FTD 
group, and aperiodic parameters (both exponents and 
offsets) in the frontal, temporal, central, and parietal 
regions were higher in the AD group than in the FTD 
group. Importantly, the inclusion of aperiodic param-
eters led to improved performance in distinguishing 
between the two disorders. These findings highlight 
the significance of aperiodic components in discrimi-
nating dementia-related diseases.
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Background

Alzheimer’s disease (AD) and frontotemporal demen-
tia (FTD) are the two most prevalent causes of 
dementia [1]. AD is characterized by amnesia, flu-
ency aphasia, and visuospatial difficulties, while FTD 
is characterized by changes in personality and behav-
ior [2]. However, both diseases often present with 
overlapping clinical symptoms, and FTD can exhibit 
different patterns of brain atrophy (i.e., temporal and 
frontal variants), making diagnosis challenging [3]. 
Neuropsychological tests have yielded inconclusive 
or even contradictory results [4, 5]. Neuroimaging 
techniques, such as positron emission tomography, 
single photon emission computed tomography, and 
functional magnetic resonance imaging, have been 
used to identify affected brain regions to improve 
diagnostic accuracy [6–8]. Nevertheless, their high 
cost and limited availability have been a constraint. 
Electroencephalography (EEG), on the other hand, 
has gained increased interest in clinical practice and 
research due to its low cost and wide availability [9].

Many studies have consistently found an overall 
slowing of EEG rhythm in patients with AD, evi-
denced by increased power in slow rhythm (i.e., delta 
and theta bands) and decreased power in fast rhythm 
(i.e., alpha and beta bands) [10–12], resulting in an 
increased theta alpha power ratio (TAR), which has 
shown promise in differentiating patients with AD 
from healthy controls [13]. In contrast, there have 
been fewer quantitative EEG studies of patients with 
FTD with controversial results, such as no increase in 
delta and theta band power while alpha band power 
increases [14], or an increase in theta power while 
alpha power remains unchanged [15]. It is worth 
noting that previous power spectrum analyses have 
focused on narrowband power, which measures rela-
tive or absolute power changes across specific fre-
quency bands.

In recent years, the dominant scale-free “1/f” com-
ponents of the power spectrum, known as the ape-
riodic components, have attracted much attention 
[16–19]. Previous studies considered “1/f” activity 
as neural noise and often removed it from analyses 
to emphasize brain oscillations [17]. However, recent 
studies have shown that these aperiodic components 
are not unstructured noise but have unique func-
tional significance that indexes the excitation/inhibi-
tion (E/I) balance of neuronal populations [20]. It is 

affected by age [21, 22], state of consciousness [23, 
24], and disease, including attention-deficit/hyperac-
tivity disorder, schizophrenia, and Parkinson’s disease 
[25–27]. Notably, the aperiodic components have 
been found to be excellent predictors of higher-order 
cognitive tasks, such as cognitive processing speed 
and language learning [28, 29]. To date, no studies 
have investigated the effect of aperiodic components 
in dementia-related diseases. Therefore, we employed 
a recently proposed method of parameterizing neu-
ronal power spectra to analyze scalp EEG of patients 
with AD and FTD [30], exhaustively describing all 
components of the EEG power spectrum and examin-
ing the effect of aperiodic components in distinguish-
ing between these two disorders, aiming to improve 
diagnostic accuracy affordably and conveniently.

Methods

Participants

We reanalyzed data that were collected from previ-
ously published studies [31–34]. This dataset consists 
of EEG data from 36 patients with AD, 23 patients 
with FTD, and 29 healthy controls (CN). Cogni-
tive and neuropsychological status was evaluated 
using the international Mini-Mental State Exami-
nation (MMSE), which ranges from 0 to 30, with 
lower MMSE scores indicating more severe cogni-
tive decline. The duration of the disease was meas-
ured in months, and the median value was 25 with 
an interquartile range of 24–28.5 months. Regarding 
the AD groups, no comorbidities related to demen-
tia were reported. All patients were diagnosed by an 
experienced team of neurologists at the 2nd Depart-
ment of Neurology of AHEPA General Hospital of 
Thessaloniki.

EEG acquisition

Recordings were acquired from the 2nd Department 
of Neurology of AHEPA General Hospital of Thes-
saloniki. A Nihon Kohden EEG 2100 clinical device 
with 19 scalp electrodes (Fp1, Fp2, F7, F3, Fz, F4, 
F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, 
and O2) according to the 10–20 international sys-
tem, and 2 reference electrodes (A1 and A2) placed 
on the mastoids for impedance check were used for 
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recording, as specified in the manual of the device. 
Each recording was conducted according to the clini-
cal protocol, with participants in a sitting position 
and their eyes closed. Before the initialization of each 
recording, the skin impedance value was checked 
to ensure it was below 5 kΩ. The sampling rate was 
500 Hz with a 10 uV/mm resolution. The recording 
montages were anterior–posterior bipolar and referen-
tial montages using Cz as the common reference. The 
recordings were received under the range of the fol-
lowing parameters of the amplifier: sensitivity, 10 uV/
mm; time constant, 0.3 s; and high-frequency filter at 
70 Hz. Each recording lasted approximately 13.5 min 
for the AD group (min = 5.1, max = 21.3), 12 min for 
the FTD group (min = 7.9, max = 16.9), and 13.8 min 
for the CN group (min = 12.5, max = 16.5). In total, 
485.5 min of AD, 276.5 min of FTD, and 402 min of 
CN recordings were collected.

Signal processing

All data preprocessing steps and subsequent analy-
ses were performed using MATLAB (Version 2020a, 
MathWorks, Inc., Natick, MA, USA) and Python 
(Version 3.8). First, the EEG data were bandpass 
filtered using pop_firws function in the EEGLAB 
toolbox (http://​www.​sccn.​ucsd.​edu/​eeglab/) with a 
Hamming window with lower and upper cutoff fre-
quencies of 0.5 and 45 Hz, respectively [35]. Subse-
quently, an adaptive method named Artifact Subspace 
Reconstruction was used to remove occasional large-
amplitude artifacts [36], and an independent compo-
nent analysis was performed to decompose constant 
fixed source noise [37]. The data were then manually 
inspected for periods of artifact, which were marked 
for exclusion. After artifact removal, the data were 
re-referenced to a common average reference due to 
unknown locally confined spatial origins of aperiodic 
activity.

Data analysis

To avoid EEG instability at the start of the experiment 
and subject fatigue at the later stages of the experi-
ment, EEG data of a length of 3 min from 2 min after 
the start of the experiment were selected in each sub-
ject for subsequent analysis. Power spectral density 
(PSD) estimation was performed using the Welch 
method with a 0.5-s Hamming window, 50% overlap, 

and a 0.5-Hz resolution. Then, the FOOOF Python 
package was used to separate periodic and aperiodic 
components from the spectral results [30]. The power 
spectral density P(f ) for each frequency f  is expressed 
as: P(f ) = L(f ) +

∑

n Gn(f ).
Where the P(f ) is a combination of the aperiodic 

components L(f ) and Gaussians Gn(f ).
The periodic components were parameterized as a mix-

ture of Gaussian distributions: Gn(f ) = α ∗ exp
(

−(f−c)2

2∗ω2

)

 . 
With α as the height of the peak, over and above the aperi-
odic components, c as the center frequency of the peak, ω 
as the width of the peak, and f  as the array of frequency 
values.

The aperiodic components were also parameterized 
using a Lorentzian function as: L(f ) = b − log(k + f χ) . 
With b as the broadband “offset,” k as the “knee,” and 
χ as the “exponent” of the aperiodic fit.

The full model was described using these peri-
odic and aperiodic parameters, the goodness of fit 
was estimated by comparing each fit with the origi-
nal PSD in terms of the mean absolute error and the 
R2 of the fit. To avoid overfitting, peak_width_limits 
were set at 1–12, fitted frequency range was 2–40 Hz, 
and aperiodic_mode was chosen as “fixed” (fitted 
without a knee parameter) considering the narrow 
frequency range. For further analysis, all the models 
meet the condition that R2 value is higher than 0.95 to 
exclude the potential influence of noise on the results. 
After completing the parameterization of the power 
spectra, the fitted spectra were used to subtract the 
aperiodic components to obtain periodic oscillatory 
components. At last, we use bandpower function to 
calculate the power values, which means calculating 
the average power in a frequency interval by integrat-
ing the power spectral density estimate. We investi-
gated the band-limited power of raw spectra, periodic, 
and aperiodic components in three frequency bands 
traditionally used in EEG analysis: theta (4–8  Hz), 
alpha (8–12  Hz), and beta (12–30  Hz). Our analy-
ses were limited to absolute power because relative 
power measurements were artificially affected by 
normalization.

Classification and machine learning algorithms

The library for support vector machine (Version 3.25, 
https://​www.​csie.​ntu.​edu.​tw/​~cjlin/​libsvm/) package for 
MATLAB (Version 2020a, MathWorks, Inc., Natick, 

http://www.sccn.ucsd.edu/eeglab/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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MA, USA) was adopted [38]; we assessed the ability 
of each feature and their combinations in distinguish-
ing between patients with AD and FTD using a support 
vector machine (SVM) classifier (see Fig. 9a for pipeline 
schematic diagram). Specifically, each feature mentioned 
above was averaged across channels for each participant. 
First, we oversampled the samples with the SMOTE 
(Synthetic Minority Oversampling Technique) algorithm 
to address the sample imbalance. The SMOTE algorithm 
operates by selecting a random sample from the minority 
class and then identifying its k-nearest neighbors. Instead 
of simply replicating the chosen sample, SMOTE gener-
ates new data points along the line segments connecting 
the original sample to these k-nearest neighbors. This 
strategy is employed to address the issue of overfitting 
and enhance the quality of synthetic samples, thus con-
tributing to a more effective and balanced dataset [39]. 
Next, all participants were randomly assigned to a train-
ing set and a test set with a ratio of 7:3, and the value of 
each feature was normalized in each group. The hyper-
parameters of each classifier were optimized with inner 
fivefold cross-validation. Then, an SVM model with a 
radial basis function kernel was trained using the whole 
training set with the optimal hyperparameters. We sub-
sequently repeated the whole process 100 times using 
different randomized training and testing sets to ensure 
the robustness of our results, classification effectiveness 
evaluation was obtained using the receiver operating 
characteristic curve and area under curve (AUC). Finally, 
we obtained 100 AUCs for each feature combination and 
compared them among different feature combinations.

Statistical analysis

All statistical analyses were performed with SPSS 25.0 
software (SPSS Inc., Chicago, IL, USA), and the sig-
nificance level was set at α = 0.05. The Shapiro–Wilk 
method was used to test the normality of the data dis-
tribution. Since EEG parameters were not normally 
distributed in all groups, variables were log-trans-
formed before comparison between groups. For chan-
nel-averaged group comparisons, EEG parameters for 
the three groups were analyzed using one-way analysis 
of variance (ANOVA) and post hoc tests with Bonfer-
roni correction for multiple comparisons. Channel-by-
channel group comparisons were performed using Stu-
dent’s t-test, and the resulting p-values were corrected 
for multiple comparisons using the false discovery rate 
(FDR) procedure across 19 channels. Spearman corre-
lation analysis was used to test the correlation between 
EEG parameters and MMSE scores, and the FDR pro-
cedure was used to correct for multiple comparisons. 
AUC values obtained for different feature combina-
tions were compared using one-way ANOVA and post 
hoc tests (Bonferroni correction).

Results

Demographic

All three groups had similar age distributions (see 
Table 1). In the AD group, a higher proportion of par-
ticipants were female, whereas more FTD participants 
were male. Consistent with the disease characteris-
tics, the AD group exhibited more severe impairment 

Table 1   Demographic and clinical variables, mean (standard deviation)

AD Alzheimer’s disease, CN healthy control, FTD frontotemporal dementia, MMSE Mini-Mental State Examination
a Chi-square test AD, CN, FTD
b One-way ANOVA AD, CN, FTD
c Student’s t-test AD, FTD

AD (N = 36) CN (N = 29) FTD (N = 23) Group differences

Male to female 12:24 18:11 14:9 χ2 = 6.8, p = 0.034a

p (AD, CN) = 0.021
p (AD, FTD) = 0.038
p (CN, FTD) = 0.930

Age 66.4(7.9) 67.9(5.4) 63.7(8.2) F (2, 85) = 2.218, p = 0.115b

MMSE 17.8(4.5) 30(0) 22.2(2.6) t57 =  − 4.3, p < 0.001c
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in overall cognitive performance (MMSE score) com-
pared to the FTD group (t57 =  − 4.3, p < 0.001).

Neuronal power spectrum parameterization

Using the method of parameterizing neural power 
spectral, we separated the raw power into periodic 
and aperiodic components, with the periodic compo-
nents represented by periodic power and the aperiodic 
components represented by offsets and exponents (as 
illustrated in Fig.  1, see Fig.  2 for all fitting curves 

in three groups). ANOVAs showed the following (see 
Table 2 and Fig. 3).

Group differences in theta power were observed in 
the raw power analysis (F (2, 85) = 3.25, p = 0.044), 
but post hoc multiple comparisons revealed no sig-
nificant differences among the three groups. In 
the alpha band, consistent group differences were 
observed in both raw power and periodic power 
analyses. Specifically, alpha power was reduced in 
the AD (raw power, mean = 4.98, SD = 0.38; peri-
odic power, mean = 0.40, SD = 0.32) and FTD (raw 

Fig. 1   Schematic diagram of separating the power spectra. 
Raw power (left), periodic fits (middle), and aperiodic fits 
(right) from an example participant, where raw power is equal 

to periodic fits plus aperiodic fits. (Spectrogram (top) and 
time–frequency diagram (bottom))

Fig. 2   Average PSDs in three groups, including linear scale (left) and log–log scale (right) (95% confidential interval was shown in 
shadow area). AD, Alzheimer’s disease; CN, healthy control; FTD, frontotemporal dementia; PSD, power spectral density
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power, mean = 4.99, SD = 0.44; periodic power, 
mean = 0.45, SD = 0.31) groups compared to the CN 
(raw power, mean = 5.33, SD = 0.45; periodic power, 
mean = 0.81, SD = 0.34) group, with no significant 
difference observed between the two disease groups 
(p = 1.0). In the beta band, no group differences were 
observed in the raw power analysis, but the periodic 
power analysis revealed that the AD (mean = 0.43, 
SD = 0.34) and FTD (mean = 0.48, SD = 0.30) groups 
reduced compared to the CN group (mean = 0.90, 
SD = 0.45). Both offsets (F (2, 85) = 3.323, p = 0.041) 
and exponents (F (2, 85) = 0.512, p = 0.048) showed 
significant group differences at the significance level 
we set, but post hoc multiple comparisons revealed no 
significant differences among the three groups in the 

aperiodic parameters. Finally, raw theta/alpha power 
ratio (TAR) showed significant group differences (F 
(2, 85) = 22.43, p < 0.001), with an increased ratio 
observed in the AD (mean = 1.05, SD = 0.08) and 
FTD (mean = 1.00, SD = 0.07) groups compared to 
the CN group (mean = 0.93, SD = 0.04), but no sig-
nificant difference was observed between the two dis-
ease groups (p = 0.053).

Considering the unknown origin of the aperiodic 
components, to exclude the potential influence of 
channel averaging on the results, we plotted topog-
raphies of EEG parameters on all 19 electrodes to 
illustrate the spatial patterns of EEG parameters in 
three groups and conducted pairwise group com-
parisons. Corresponding results of the statistical 

Table 2   Group comparison of channel-averaged EEG parameters

Mean (95% confidence interval) of different EEG parameters. Group comparisons were performed using ANOVAs followed by post 
hoc tests, Bonferroni-corrected for multiple comparisons
AD Alzheimer’s disease, CN healthy control, FTD frontotemporal dementia, TAR​ theta alpha power ratio

AD CN FTD Group differences

Theta raw power 5.19 [5.06, 5.33] 4.96 [4.82, 5.10] 4.99 [4.78,5.19] F (2, 85) = 3.25, p = 0.044
p (AD, CN) = 0.068
p (AD, FTD) = 0.174
p (CN, FTD) = 1.0

Alpha raw power 4.98 [4.85, 5.11] 5.33 [5.16, 5.50] 4.99 [4.80,5.18] F (2, 85) = 6.61, p = 0.002
p (AD, CN) = 0.004
p (AD, FTD) = 1.0
p (CN, FTD) = 0.013

Beta raw power 16.70 [16.38,17.01] 17.18 [16.88, 17.55] 16.93 [16.30, 17.55] F (2, 85) = 1.71, p = 0.187
Theta periodic power 0.28 [0.23, 0.32] 0.24 [0.16, 0.31] 0.20 [0.13, 0.27] F (2, 85) = 1.51, p = 0.228
Alpha periodic power 0.40 [0.29, 0.51] 0.81 [0.68, 0.94] 0.45 [0.32, 0.58] F (2, 85) = 14.63, p < 0.001

p (AD, CN) < 0.001
p (AD, FTD) = 1.0
p (CN, FTD) < 0.001

Beta periodic power 0.43 [0.31, 0.55] 0.91 [0.73, 1.08] 0.48 [0.35, 0.61] F (2, 85) = 14.46, p < 0.001
p (AD, CN) < 0.001
p (AD, FTD) = 1.0
p (CN, FTD) < 0.001

Offsets 1.02 [0.84, 1.20] 0.76 [0.63, 0.90] 0.73 [0.49, 0.98] F (2, 85) = 3.323, p = 0.041
p (AD, CN) = 0.109
p (AD, FTD) = 0.089
p (CN, FTD) = 1.0

Exponents 1.31 [1.17, 1.46] 1.12 [1.02, 1.23] 1.06 [0.85, 1.27] F (2, 85) = 0.512, p = 0.048
p (AD, CN) = 0.193
p (AD, FTD) = 0.071
p (CN, FTD) = 1.0

TAR​ 1.05 [1.02, 1.07] 0.93 [0.92, 0.95] 1.00 [0.97, 1.03] F (2, 85) = 22.43, p < 0.001
p (AD, CN) < 0.001
p (AD, FTD) = 0.053
p (CN, FTD) = 0.001
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comparisons between groups are shown in Supple-
mentary Tables S1 and S2.

In terms of raw power, significant differences were 
found between the AD and CN groups in all three 
bands but in different brain regions (see Fig. 4). Spe-
cifically, differences in the theta band were concen-
trated in the frontotemporal region, while differences 

in the beta band were observed in the parietooccipital 
region. In contrast, significant differences in the alpha 
band were observed in almost the entire brain. The 
FTD and CN groups showed differences in both alpha 
(almost the whole brain) and beta (parietal (P3 and 
Pz), temporal (T5), and bilateral occipital (O1 and 
O2)) bands. Only theta power in the frontal regions 

Fig. 3   Channel-averaging results of the parameterized spec-
trum. a Group comparison of raw power. b Group comparison 
of periodic power. c Group comparison of aperiodic parameter. 
d Group comparison of θ/α power ratio. In each box plot, the 
center line corresponds to the median of the sample; the upper 

and lower borders of the boxes indicate the 25th and 75th per-
centiles, respectively; the length of the whiskers represents the 
range of the data. *p < 0.05, **p < 0.01. Corresponding results 
of the statistical comparisons between groups are shown in 
Table 2
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(F3, F4, F7, and Fz) differed between the AD and 
FTD groups, while no significant differences were 
found in the alpha and beta bands of all channels.

After removing the aperiodic components, we 
analyzed only periodic power and found significant 

differences in all three frequency bands between 
the AD and CN groups (see Fig.  5). Specifically, in 
the theta band, differential channels were in fron-
tal regions (Fz) and bilateral temporal regions (T3 
and T4). In the alpha and beta bands, the AD group 

Fig. 4   Scalp topography 
and group comparison for 
raw power in three groups. 
a Theta raw power. b Alpha 
raw power. c Beta raw 
power. All test statistics 
were rescaled and normal-
ized to the percentage of the 
most significant test statistic 
for better visualization, 
such that 100 would reflect 
the most significant test 
statistic. All electrodes with 
significant test statistics 
(FDR-corrected p < 0.05) 
were marked with red stars. 
AD, Alzheimer’s disease; 
CN, healthy control; FTD, 
frontotemporal dementia; 
FDR, false discovery rate



759GeroScience (2024) 46:751–768	

1 3
Vol.: (0123456789)

showed higher periodic power in all channels com-
pared to the CN group. Similar results were found in 
the comparison of the FTD and CN groups, with the 
FTD group showing overall higher periodic power in 
the alpha and beta bands compared to the CN group. 

Additionally, compared to the FTD group, the AD 
group had higher theta power in the frontal (F3 and 
Fz) and temporal (T5) regions, but no differences 
were found between the two groups in the fast EEG 
rhythm (alpha and beta band).

Fig. 5   Scalp topography 
and group comparison for 
periodic power in three 
groups. a Theta periodic 
power. b Alpha periodic 
power. c Beta periodic 
power. All test statistics 
were rescaled and normal-
ized to the percentage of the 
most significant test statistic 
for better visualization, 
such that 100 would reflect 
the most significant test 
statistic. All electrodes with 
significant test statistics 
(FDR-corrected p < 0.05) 
were marked with red stars. 
AD, Alzheimer’s disease; 
CN, healthy control; FTD, 
frontotemporal dementia; 
FDR, false discovery rate
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The channel-by-channel comparisons of aperiodic 
parameters revealed that the AD group exhibited 
higher offsets and exponents compared to the CN 
group in the frontal, temporal, parietal, and occipi-
tal regions, whereas no significant differences were 
observed in the aperiodic parameters between the 
FTD and CN groups across all channels (see Fig. 6). 
Notably, in the frontal (F3 and F4), temporal (T3), 
central (C3), and parietal (P3 and Pz) regions, the AD 
group showed higher offsets and exponents than the 
FTD group.

Finally, we compared the TAR results of all chan-
nels (see Fig.  7). Compared to the CN group, the 
TAR of the AD and FTD groups was increased at the 
whole brain level. Specifically, we observed higher 
TAR in the frontal (F3, Fz, and F4), temporal (T3, 
T5, and T6), central (Cz), and occipital (O2) regions 
in the AD group compared to the FTD group.

Correlation relationship analyses

We examined the possible correlations between EEG 
parameters and overall cognitive impairment (MMSE 
score) (see Fig. 8). First, the aperiodic parameters had 
a significant and high positive correlation between 
each other in all three groups (AD: offsets–expo-
nents, ρ = 0.92, p FDR < 0.001; CN: offsets–exponents, 
ρ = 0.81, p FDR < 0.001; FTD: offsets–exponents, 
ρ = 0.85, p FDR < 0.001). Also, there was a low but 
significant positive correlation between theta periodic 
power and offsets in all three groups (AD: theta peri-
odic power–offsets, ρ = 0.45, p FDR < 0.01; CN: theta 
periodic power–offsets, ρ = 0.47, p FDR < 0.01; FTD: 
theta periodic power–offsets, ρ = 0.55, p FDR < 0.01), 
while the low positive correlation between peri-
odic theta power and exponents was found only 
between the AD and FTD groups (AD: theta periodic 

Fig. 6   Scalp topography 
and group comparison 
for aperiodic parameters 
in three groups. a Aperi-
odic offsets. b Aperiodic 
exponents. All test statistics 
were rescaled and normal-
ized to the percentage of the 
most significant test statistic 
for better visualization, 
such that 100 would reflect 
the most significant test 
statistic. All electrodes with 
significant test statistics 
(FDR-corrected p < 0.05) 
were marked with red stars. 
AD, Alzheimer’s disease; 
CN, healthy control; FTD, 
frontotemporal dementia; 
FDR, false discovery rate
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power–exponents, ρ = 0.43, p FDR < 0.01; FTD: theta 
periodic power–exponents, ρ = 0.53, p FDR < 0.01). 
We also observed consistent significant positive cor-
relations between alpha and beta periodic power (AD: 
alpha periodic power–beta periodic power, ρ = 0.64, p 
FDR < 0.001; CN: alpha periodic power–beta periodic 
power, ρ = 0.48, p FDR < 0.01; FTD: alpha periodic 
power–beta periodic power, ρ = 0.45, p FDR < 0.05), 
and consistent significant negative correlations 
between TAR and periodic power (alpha and beta 
band) in all three groups (AD: TAR–beta periodic 

power, ρ =  − 0.83, p FDR < 0.001, TAR–beta periodic 
power, ρ =  − 0.54, p FDR < 0.001; CN: TAR–beta peri-
odic power, ρ =  − 0.70, p FDR < 0.001, TAR–beta peri-
odic power, ρ =  − 0.53, p FDR < 0.01; FTD, TAR–beta 
periodic power, ρ =  − 0.64, p FDR < 0.001, TAR–beta 
periodic power, ρ =  − 0.54, p FDR < 0.01). Notably, 
exponents were negatively correlated with MMSE 
scores in the AD and FTD groups (AD: expo-
nents—MMSE, ρ =  − 0.13, p = 0.02; FTD: expo-
nents–MMSE: ρ =  − 0.24, p = 0.03). However, all 
correlations between aperiodic parameters and 

Fig. 7   Scalp topography 
and group comparison for 
θ/α power ratio in three 
groups. All test statistics 
were rescaled and normal-
ized to the percentage of the 
most significant test statistic 
for better visualization, 
such that 100 would reflect 
the most significant test 
statistic. All electrodes with 
significant test statistics 
(FDR-corrected p < 0.05) 
were marked with red stars. 
AD, Alzheimer’s disease; 
CN, healthy control; FTD, 
frontotemporal dementia; 
FDR, false discovery rate

Fig. 8   Spearman’s correlation between the severity of overall 
cognitive impairment (MMSE scores) and EEG parameteriza-
tion results in three groups. a AD. b CN. c FTD. Statistically 
significant groups are marked by black asterisks on the lower 
left ellipse (FDR-corrected p-value, *p < 0.05, **p < 0.01, 
***p < 0.001), and the transparent number on the upper right 

represents the correlation coefficient value. Also, the color of 
the ellipse maps the correlation coefficient value. AD, Alz-
heimer’s disease; CN, healthy control; FTD, frontotemporal 
dementia; TAR, theta alpha power ratio; MMSE, Mini-Mental 
State Examination; FDR, false discovery rate
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MMSE scores were not significant after correction for 
FDR multiple comparisons (all p FDR > 0.05).

SVM analysis for diagnostic discrimination

Based on the results above, we chose certain EEG 
parameters of AD and FTD groups for machine 
learning classification, ANOVA tests and multiple 
comparison corrections were performed on the AUC 
values obtained for all feature combinations. All sta-
tistical results can be found in Supplementary Table 2 
and 3, partially significantly different comparative 
results are presented in the Fig. 9b.

Compared with using theta periodic power alone, 
we obtained significantly higher AUCs using the 
combination of theta periodic power and aperiodic 
parameters (theta periodic power vs. offsets and theta 
periodic power, p < 0.001; theta periodic power vs. 
exponents and theta periodic power, p < 0.001; theta 
periodic power vs. offsets and exponents and theta 
periodic power p < 0.001). Similarly, we obtained 
significantly higher AUCs using the combination of 
TAR and aperiodic parameters compared with using 
TAR alone (TAR vs. offsets and TAR, p < 0.001; 
TAR vs. exponents and TAR, p < 0.001; TAR vs. off-
sets and exponents and TAR, p < 0.001).

Our results indicate that when using a single EEG 
parameter as a feature, the aperiodic parameters off-
sets (AUC, mean = 0.66, SD = 0.12) and exponents 
(AUC, mean = 0.66, SD = 0.13) showed the best 
classification performance. However, when multi-
ple parameters were used as features, the combina-
tion of aperiodic parameters (offsets and exponents) 
and the periodic parameter (theta periodic power) 
resulted in the best classification performance (AUC, 
mean = 0.73, SD = 0.12). Surprisingly, the combina-
tion of all four parameters did not show the best per-
formance (AUC, mean = 0.71, SD = 0.12).

Discussion

In this study, we aimed to explore changes in differ-
ent components of scalp EEG between patients with 
AD and TD by spectral decomposition and investi-
gate the potential of aperiodic components in distin-
guishing between these two disorders. Specifically, 
our results revealed that aperiodic parameters (offsets 
and exponents) and theta power were significantly 

higher in the AD group compared to the FTD group 
at the channel level. Moreover, combining aperiodic 
parameters improved the discriminative ability of 
EEG features in differentiating AD from FTD. These 
results suggest that aperiodic parameters could serve 
as a promising biomarker for the identification and 
distinction of these dementia-related diseases.

The initial analysis revealed that both the AD and 
FTD groups exhibited varying degrees of increased 
EEG low-frequency raw power compared to the CN 
group, as evidenced by an increase in slow rhythms 
(theta) and a decrease in fast rhythms (alpha and 
beta), or an increase in TAR, which is consistent with 
previous studies on scalp EEG in patients with AD 
[10, 12]. Importantly, we found that this trend per-
sisted even after the removal of the aperiodic com-
ponents. Our correlation results indicate a robust 
association between the TAR and both alpha and 
beta periodic power, which aligns with Donoghue 
et  al.’s findings, suggesting that TAR predominantly 
reflects alpha power [40]. However, it is essential 
to recognize that the band ratio measure is a broad, 
non-specific metric that amalgamates various poten-
tial spectral variations. This raises questions about 
the interpretability of TAR, indicating that it may not 
be a straightforward indicator of EEG slowing. This 
underscores the importance of incorporating parame-
terized neural power spectra in future studies to gain a 
more nuanced and precise understanding of underly-
ing neural dynamics. In contrast to a study by Passant 
and colleagues who reported well-preserved alpha 
power in patients with FTD [15], our results showed 
reduced alpha power in the FTD group. We suggest 
that our results better reflect reality since our FTD 
group consisted of a larger sample of patients with 
similar ages and symptom severity.

Our results revealed significantly higher theta 
power in the AD group compared to the FTD group, 
which is partially consistent with a previous quantita-
tive EEG study [41], inconsistent in that our results 
differed only in a few channels, whereas Caso et  al. 
found differences in regions other than the central 
region. This discrepancy may be attributed to the 
vulnerability of averaged over different regions of 
interest to the extreme values of individual channels. 
Overall, our results indicate that the theta power, 
including both periodic and raw power, in the fron-
tal regions of the EEG was significantly elevated in 
the AD group compared to the FTD group under 
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Fig. 9   Schematic diagram of the SVM model and AUC 
results. a Pipeline for training and evaluation of SVM mod-
els. Feature combinations were extracted from the total dataset 
(AD group, N = 36; FTD group, N = 36 (data over-sampling)), 
then normalized and divided into training and test sets in the 
ratio of 7:3. Hyperparametric optimization was performed in 
the training set using inner fivefold cross-validation to obtain 
the best SVM model, and the test set was used to evaluate the 
performance of the optimized SVM model. Finally, the whole 
procedure was repeated 100 times using different random 
training and test sets. Posterior probabilities were calculated 
to obtain ROC curves and AUC values. b Group comparison 
of AUC values in different feature combinations. In each vio-

lin plot, the white dot in the center corresponds to the mean 
of the sample; the upper and lower boundaries of the boxes 
indicate the 25th percentile and 75th percentile, respectively; 
the length of the whiskers represents the range of the stated 
data. *p < 0.001. Violin diagrams with the top 3 AUC values 
are represented in a darker color. Only partially significantly 
different comparative results are presented in the figure, cor-
responding results of all statistical comparisons between dif-
ferent feature combinations are shown in Supplementary 
Table  S3. AD, Alzheimer’s disease; FTD, frontotemporal 
dementia; SVM, support vector machine; ROC, receiver oper-
ating characteristic; AUC, area under curve; O, offsets; E, 
exponents; T, theta raw power; TAR, theta alpha power ratio
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age-matched conditions. These results suggest that 
varying degrees of EEG slowing may be indicative of 
distinct pathophysiological processes in different neu-
rodegenerative diseases.

Both computational models and experimental evi-
dence have linked aperiodic activity to an underly-
ing E/I balance of neuronal population [20], where 
an increase in inhibition (e.g., the use of GABAergic 
drugs such as propofol) leads to a steepening of the 
power spectrum (i.e., an increase in exponents) [24, 
42], whereas an increase in excitation (e.g., the use 
of 5-hydroxytryptamine reuptake inhibitors such 
as escitalopram) leads to a flattening of the power 
spectrum (i.e., a decrease in exponents) [43]. Addi-
tionally, there is growing evidence that alterations 
in neuronal E/I balance may be a potential cause of 
neural network dysfunction in AD [44, 45]. Our 
results indicate higher offsets and exponents in the 
AD group compared to the FTD group, with the larg-
est difference observed in the temporal region (chan-
nel T3). Given the good age match between the two 
groups, it is unlikely that the observed changes in 
aperiodic parameters are due to age-related differ-
ences [21, 46]. The higher exponents observed in the 
AD group may suggest a higher degree of inhibition 
in the neuronal population, but the results obtained 
from macroscopic-scale analysis differ from those 
observed at the microscopic scale. At the synaptic 
level, Aβ plaques cause local alterations in dendrites 
and cytosol in contact with Aβ, leading to local loss 
of dendritic spines and GABAergic interneuron ter-
minals [47–49], which can promote the presence of 
overactive neurons that may cause epileptiform activ-
ity. Conversely, neurons with intracellular neurofibril-
lary tangles (NFTs), another characteristic marker of 
AD, exhibit significant loss of dendritic spines and 
consequent synaptic loss in all dendritic regions [50]. 
Thus, while Aβ plaques may primarily lead to neu-
ronal hyperexcitability, NFTs may be more associated 
with a reduction in neuronal activity and connectiv-
ity[44], which could explain the contradictory results 
at the micro- and macro-scale. Overall, we inferred 
the altered E/I balance associated with AD and FTD 
patients from macroscopic-scale electrophysiological 
recordings.

Previous research has suggested a potential rela-
tionship between aperiodic activity and cognitive 
status [28, 29]. However, we did not observe a sig-
nificant correlation between aperiodic parameters and 

MMSE scores in either the AD or FTD groups in our 
study. One possible explanation for this discrepancy 
is that aperiodic parameters may reflect disease-spe-
cific pathological changes, such as selective degen-
eration of the frontal or temporal cortex in patients 
with FTD [51], in addition to cognitive performance. 
Nonetheless, we did observe a trend of negative cor-
relation between aperiodic parameters and cognition 
performance in the FTD group, indicating that larger 
exponents (steeper power spectrum) were associated 
with poorer overall cognitive performance. This find-
ing is consistent with a recent study that examined the 
effects of anesthesia and surgery on cognitive perfor-
mance, which found that a reduction in the slope of 
the spectrum after anesthesia (flatter power spectrum) 
was associated with better language learning [52]. It 
should be noted that the neuropsychological assess-
ment protocol used in this study contained more 
detailed and comprehensive subitems compared to the 
MMSE. Therefore, another explanation for the lack of 
significant correlation between aperiodic parameters 
and MMSE scores may be due to the limited sensi-
tivity of the MMSE in assessing subtle cognitive 
changes. Future studies may need to consider more 
sensitive and specific neurocognitive assessment pro-
tocols to better capture the relationship between ape-
riodic activity and cognitive status in AD and FTD 
patients. Moreover, our study did not observe any 
significant correlation between other EEG parameters 
and MMSE scores, which contradicts some existing 
research. For instance, Garn et al. found a significant 
positive correlation between relative delta power dur-
ing closed-eye resting state and MMSE scores [53], 
while Meghdadi et  al.’s study revealed a significant 
negative correlation between TAR and MMSE scores 
[13]. Although our results indicated higher TAR val-
ues in AD and FTD patients compared to healthy con-
trols, aligning with the trend observed in Meghdadi 
et  al.’s study, we believe that these differing results 
may be attributed to limitations in sample size and the 
characteristics of the study population. Future investi-
gations should aim to expand the sample size, include 
a more diverse range of subjects with varying disease 
severity, and provide a more comprehensive evalua-
tion of the relationship between EEG parameters and 
MMSE scores.

Furthermore, we observed a weak correla-
tion between aperiodic parameters and periodic 
theta power, suggesting that they provide distinct 
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information regarding physiological or pathological 
activity. This indicates that aperiodic parameters and 
periodic theta power could serve as complementary 
measures for understanding the disease, reflecting dif-
ferent neuronal mechanisms underlying these distinct 
types of neural activity [54]. To test this hypothesis, 
we utilized SVM to classify the two diseases based 
on different feature combinations. We found that the 
use of aperiodic parameters yielded higher AUC val-
ues compared to the use of only periodic theta power. 
However, the combination of both aperiodic offsets 
and exponents did not significantly improve the clas-
sification performance, likely due to their high posi-
tive correlation, consistent with a correlation-based 
feature selection approach [55]. Interestingly, the fea-
ture combinations that included aperiodic parameters 
resulted in higher AUC values compared to individual 
parameters as features (see Supplementary Table 3), 
indicating that they provide non-redundant infor-
mation. Specifically, the feature combinations that 
included offsets, exponents, and periodic theta power 
yielded the best classification performance. Overall, 
these results highlight the distinct physiological sig-
nificance of aperiodic activity in dementia-related 
diseases and demonstrate the utility of aperiodic 
parameters in distinguishing AD from FTD.

One potential limitation of this study is the dis-
parity in the gender composition between the AD 
and FTD groups. Although the impact of gender 
on aperiodic activity has not been reported, future 
research should strive to replicate these findings with 
gender-matched cohorts. Furthermore, we did not 
differentiate FTD by clinical phenotype, which may 
result in potential selection bias. Lastly, high-density 
EEG data should be included in further research to 
facilitate source analysis and accurately identify the 
brain regions responsible for the origin of aperiodic 
components.

Conclusions

Increasing evidence suggests that aperiodic com-
ponents in neurophysiological signals have physi-
ological significance but have not been studied in 
dementia-related diseases. In this study, we revealed 
potential differences in neural oscillatory and 
non-oscillatory dynamics between AD and FTD 
patients, with aperiodic components exhibiting better 

performance in distinguishing between AD and FTD. 
Our findings provide important new insights for the 
precise identification and distinction of these two 
dementia-related diseases.
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