Skip to main content
. 2024 Jan 12;10(2):e24315. doi: 10.1016/j.heliyon.2024.e24315

Table 2.

The utilized objective functions.

Type Name Formula Dim Bounds Fmin
Unimodal Sphere F1(x)=i=1nxi2 30 [−100,100] 0
Schwefel2.22 F2(x)=i=1n|Xi|+i=1n|xi| 30 [−10,10] 0
Multimodal Basic Functions Rosenbrock's F3(x)=i=1n1[100(xi+1xi2)2+(xi1)2] 30 [−30,30] 0
Quartic F4(x)=i=1nixi4+random[0,1) 30 [−128,128] 0
Multimodal Benchmark Functions Schwefe F5(x)=i=1nxisin(|xi|) 30 [−500,500] −418.9829
Ackley F6(x)=20exp(0.21ni=1nxi2)exp(1ni=1ncos(2πxi))+e+20 30 [−32,32] 0
Schwefels Problem F7(x)=πn{10sin(πy1)+i=1n=1(yi1)2[1+10sin2(πyi+1)]+(yn1)2}+i=1nu(xi,10,100,4)yi=1+xi+14,
u(xi,a,k,m)={k(xia)mxi>a0a<xi<ak(xia)mxi<a
30 [−50,50] 0