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Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiologi-
cal investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies
on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins
on several key steps involved in cancer chemoprevention: (i) inhibition of anthocyanidins in cell transformation through targeting
mitogen-activated protein kinase (MAPK) pathway and activator protein 1 (AP-1) factor; (ii) suppression of anthocyanidins in in-
flammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB) pathway and cyclooxygenase 2 (COX-2) gene; (iii)
apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS) / c-Jun NH2-terminal kinase (JNK)-
mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

INTRODUCTION

Anthocyanins are naturally occurring polyphenolic
compounds that give the intense color to many fruits
and vegetables such as berries, red grapes, purple sweet
potato, and red cabbages [1, 2]. In contrast to the other
flavonoids, anthocyanins carry a positive charge in the
central ring structure and are thus cations. In plants,
they are present exclusively as glycosidic compounds. The
number and nature of the different attached sugar moi-
eties are responsible for the high number of anthocyanins,
more than 500 compounds [3]. The aglycone (named
anthocyanidin) is a diphenylpropane-based polyphenolic
ring structure, and is limited to a few structure variants
including delphinidin, cyanidin, petunidin, pelargonidin,
peonidin, and malvidin (Figure 1), that represent the
aglycones of most anthocyanins in plants.

Based on food composition data, we consume consid-
erable amounts of anthocyanins from crops, fruits, and
vegetable-based diets [4] although the range is from sev-
eral milligrams to several hundred milligrams, depending
on the nutrition customs. An enhanced intake of antho-
cyanin is now increasing because extracts with higher an-
thocyanin contents from bilberry or elderberry are com-
mercially available. Epidemiological investigations have
indicated that moderate consumption of anthocyanins
through the intake of products such as red wine [5] or bil-
berry extract [6] is associated with a lower risk of coronary

heart disease. Recent studies indicated that anthocyanins
have strong free radical scavenging and antioxidant activ-
ities [7, 8, 9, 10, 11, 12, 13], and show inhibitory effects on
the growth of some cancer cells [14, 15, 16, 17, 18]. Ani-
mal experiments showed that oral intake of anthocyanins
from purple sweet potato (Ipomoea batatas L.) and red
cabbage (Brassica oleracea L.) suppressed rat colon car-
cinogenesis induced by 1, 2-dimethylhydrazine and 2-
amino-1-methyl-6-phenylimidazo- [4,5-b] pyridine [19].
In addition, anthocyanins can be directly absorbed and
distributed to the blood in human and rats after con-
sumption of dietary anthocyanins [18, 19, 20, 21, 22, 23,
24]. These facts suggest that anthocyanins may play a role
in cancer chemoprevention. Thus, mechanisms behind
chemopreventive effects of anthocyanins need to be con-
sidered at molecular level.

ANTICARCINOGENESIS THROUGH TARGETING
MAPK PATHWAY AND AP-1 FACTOR

AP-1 is a transcription factor and has been shown to
play a critical role in promoting carcinogenesis [25, 26].
In mouse epidermal cell line JB6 (+), tumor promot-
ers such as 12-O-tetradecanoylphorbol-13-acetate (TPA),
epidermal growth factor (EGF), and tumor necrosis fac-
tor (TNF) alpha can induce AP-1 activity and neoplastic
transformation by activating MAPK including extracel-
lular signal-regulated kinase (ERK), JNK, or p38 kinase
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Figure 1. Basic chemical structures of the major anthocyani-
dins.

[27, 28]. Delphinidin, cyanidin, and petunidin have been
shown to inhibit TPA-induced AP-1 transcriptional activ-
ity and cell transformation in JB6 cells [29]. Structure-
activity studies indicated that the ortho-dihydroxyphenyl
structure on the B-ring of anthocyanidins seems essential
for the inhibitory action because pelargonidin, peonidin,
and malvidin, having no such ortho-dihydroxyphenyl
structure, failed to show the inhibitory effects in both AP-
1 activity and cell transformation. The results from signal
transduction analysis indicated that delphinidin blocked
ERK phosphorylation at early times and JNK phospho-
rylation at later times, but not p38 phosphorylation at
any time [29]. Moreover, delphinidin blocked the phos-
phorylation of MAPK/ERK kinase (MEK, an ERK ki-
nase), SAPK/ERK kinase (SEK, a JNK kinase), and c-Jun
(a phosphorylation target of ERK and JNK). The data
suggest that the inhibition of TPA-induced AP-1 activ-
ity and cell transformation by delphinidin involves the
blockage of ERK and JNK signaling cascades (Figure 2).
Furthermore, a greater inhibition was observed in combi-
nations of superoxide dismutase (SOD) with anthocyani-
dins that have the ortho-dihydroxyphenyl structure on
the B-ring. Multiplicative model analysis suggested that
this greater inhibition between SOD and delphinidin is
synergistic, not additive [29]. Thus, the inhibitory effects
of anthocyanidins on AP-1 activation and cell transforma-
tion would be due in part to their potent scavenging ac-
tivity for superoxide radicals and in part to MAPK block-
age. SOD has been shown to selectively inhibit the TPA-
induced activation of protein kinase Epsilon and to pre-
vent subsequent activation of JNK2 in response to TPA,
thereby delaying AP-1 activation and inhibiting mouse
skin tumor promotion [30]. Thus, the signaling path-
ways blocked by delphinidin or SOD may differ in part
although both are considered to be important in the can-
cer prevention activity of anthocyanidins.

ANTI-INFLAMMATION THROUGH TARGETING NF-κB
PATHWAY AND COX-2 GENE

Cyclooxygenase (COX) is the rate-limiting enzyme for
synthesis of dienoic eicosanoids such as prostaglandin
(PG) E2. COX exists in three isoforms [31, 32]. COX-1
is expressed constitutively in many types of cells and is
responsible for the production of PGs under physiologi-
cal conditions. COX-3 is a COX-1 variant and is mainly
expressed in cerebral cortex. Analgesic/antipyretic drugs
such as acetaminophen, phenacetin, antipyrine, and dipy-
rone can selectively inhibit this enzyme. Thus, inhibition
of COX-3 could represent a primary central mechanism
by which these drugs decrease pain and possibly fever
[31]. COX-2 is induced by proinflammatory stimuli, in-
cluding mitogens, cytokines, and bacterial lipopolysac-
charide (LPS) in cells in vitro and in inflamed sites in
vivo [33]. Data indicate that COX-2 is involved in many
inflammatory processes and induced in various carcino-
mas, suggesting that COX-2 plays a key role in tumorige-
nesis [34]. Interestingly, some antioxidants with chemo-
preventive effects inhibit the expression of COX-2 by in-
terfering with the signaling mechanisms that regulate the
COX-2 gene [35]. Wang et al [36] found that antho-
cyanins and their aglycone, cyanidin, from tart cherries
could inhibit the activities of COX-1 and COX-2. Seeram
et al [37] found that cyanidin showed superior inhibi-
tion of the cyclooxygenase activity in vitro. In our labo-
ratory, we used mouse macrophage cell line RAW264 to
demonstrate the molecular mechanism of anthocyanins
in the inhibition of the COX-2 gene. We found that an-
thocyanin extracts from bilberry or purified delphinidin
inhibited LPS-induced COX-2 expression at protein and
transcriptional levels. Studies on signal pathway indicated
that delphinidin at least blocked LPS-induced IκB degra-
dation and then suppressed NF-κB activation and COX-2
gene expression (Hou et al, unpublished data). These data
demonstrated that the blockage of NF-κB signaling path-
way is involved in the inhibition of COX-2 gene expression
by anthocyanins (Figure 2).

ANTITUMOR PROGRESSION THROUGH
OXIDATIVE/JNK-MEDIATED APOPTOSIS

Apoptosis has been reported to play an important role
in elimination of seriously damaged cells or tumor cells by
chemopreventive agents [38, 39]. The cells that have un-
dergone apoptosis have typically shown chromatin con-
densation and DNA fragmentation [40]. They are rapidly
recognized by macrophages before cell lysis, and then
can be removed without inducing inflammation [38, 41].
Therefore, apoptosis-inducing agents are expected to be
ideal anticancer drugs of which human promyelocytic
leukemia cell line (HL-60) provides a valid model for test-
ing antileukemic or general antitumoral compounds [42].
Delphinidin, cyanidin, and petunidin induced apoptosis
of HL-60 cells detected by morphological changes and
by DNA fragmentation, whereas pelargonidin, peonidin,
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Figure 2. A schematic molecular view of cancer chemoprevention by anthocyanidins. Anthocyanidins may contribute to cancer
chemoprevention through targeting three different signal transduction pathways and downstream genes. Abbreviations: AP-1, activa-
tor protein-1; ERK, extracellular signal-regulated kinase; JNK, c-Jun NH2-terminal kinase; LPS, lipopolysaccharide; NF-κB, nuclear
factor κB; ROS, reactive oxygen species; TPA, 12-O-tetradecanoylphorbol-13-acetate.

and malvidin showed no induction of apoptosis [43]. The
anthocyanidin glycosides (anthocyanins) extracted from
bilberry such as delphinidin glycosides and cyanidin gly-
cosides also induced the apoptosis in HL-60 cells [44].
Structure-activity studies indicated that the potency of
apoptosis induction of anthocyanidins is associated with
the number of hydroxyl groups at the B-ring, and the
ortho-dihydroxyphenyl structure at the B-ring appears es-
sential for apoptosis actions [43]. It is noteworthy that
anthocyanidins increased the levels of hydrogen peroxide
in HL-60 cells with a structure-activity relationship that
depends on the number of hydroxyl groups at the B-ring
[43] and appears in the order of delphinidin > cyanidin,
petunidin > pelargonidin, peonidin, and malvidin.

The mechanistic analysis indicates that the apoptosis
induction by delphinidin may involve an oxidation/JNK-
mediated caspase pathway. Delphinidin treatment in-
creased the levels of intracellular ROS, which may be a
sensor to activate JNK. Concomitant with the apopto-
sis, JNK pathway activation such as JNK phosphoryla-
tion, c-jun gene expression, and caspase-3 activation was
observed in delphinidin-treated cells [43]. Antioxidants
such as N-acetyl-L-cysteine (NAC) and catalase effectively
blocked delphinidin-induced JNK phosphorylation, cas-
pase 3 activation, and DNA fragmentation [43]. Thus,
delphinidin may trigger an apoptotic death program in
HL-60 cells through an oxidative stress-mediated JNK sig-
naling cascades (Figure 2). It is interesting that antho-
cyanidins produced ROS, showing pro-oxidant activities,
to induce apoptosis in HL-60 cells, contrary to the an-
tioxidant activities of anthocyanidins in the inhibition of
TPA-induced cell transformation in mouse skin JB6 cells
[29].

It should be noted that anthocyanidins are the agly-
cons of the naturally occurring anthocyanins. Most of
the molecular results on biological activities of antho-

cyanins were from anthocyanidins due to the fact that
anthocyanidins are easier to be prepared than antho-
cyanins. Thus, it is not yet known whether the naturally
occurring anthocyanins will also activate these molecu-
lar pathways. Accumulated results on structure-activity
studies have shown that the biological activities of an-
thocyanins appear to increase with a decreasing number
of sugar units and/or with an increasing number of hy-
droxyl groups at their aglycons [7]. For example, both an-
tioxidant activity and cyclooxygenase inhibitory activity
of cyanidin glycosides increased with a decreasing num-
ber of sugar units. Cyanidin-rutinose showed better ac-
tivity than cyanidin-glucosylrutinose, and cyanidin agly-
cone showed the best activity at much lower concentra-
tions [37]. In our laboratory, we found that the aglycons
with ortho-dihydroxyphenyl structure at the B-ring, such
as delphinidin and cyanidin [29, 43] and their glycosides
(Hou et al, unpublished data), possessed the activities of
anticarcinogenesis, anti-inflammation, and apoptosis in-
duction. The ortho-dihydroxyphenyl structure on the B-
ring appears essential for these actions, and the activities
of aglycons such as delphinidin and cyanidin are stronger
than that of their glycosides.

CONCLUSION

The molecular mechanisms of anticarcinogenesis,
anti-inflammation, and apoptosis induction of malignant
cells by anthocyanidins have been demonstrated at molec-
ular level. These data provide a first molecular view of
the chemopreventive effects of anthocyanidins. Based on
many genes that may be associated with cancer chemopre-
vention, a genome-wide gene analysis by using microarray
technology will be required to get the whole view of
molecular mechanisms of cancer chemoprevention by an-
thocyanidins.
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