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ABSTRACT 

Enzymes, as paramount protein catalysts, occupy a central role in fostering remarkable progress across 
numerous fields. However, the intricacy of sequence-function relationships continues to obscure our grasp 
of enzyme behaviors and curtails our capabilities in rational enzyme engineering. Generative artificial 
intelligence (AI), known for its proficiency in handling intricate data distributions, holds the potential to 
offer novel perspectives in enzyme research. Generative models could discern elusive patterns within the 
vast sequence space and uncover new functional enzyme sequences. This review highlights the recent 
advancements in employing generative AI for enzyme sequence analysis. We delve into the impact of 
generative AI in predicting mutation effects on enzyme fitness, catalytic activity and stability, rationalizing 
the laboratory evolution of de novo enzymes, and decoding protein sequence semantics and their application 
in enzyme engineering. Notably, the prediction of catalytic activity and stability of enzymes using natural 
protein sequences serves as a vital link, indicating how enzyme catalysis shapes enzyme evolution. Overall, 
we foresee that the integration of generative AI into enzyme studies wi l l remarkably enhance our knowledge 
of enzymes and expedite the creation of superior biocatalysts. 

Keywords: generative AI, mutation effects, evolution–catalysis relationship, enzyme engineering, enzyme 
evolution 
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in their low throughput, which may be augmented by 
computational solutions. Computational methods 
like molecular dynamics simulations and quantum 

mechanics/molecular mechanics for free energy 
calculations offer insights that might be otherwise 
challenging or highly resource intensive with exper- 
imental approaches. However, a comprehensive and 
predictive understanding of enzyme behavior sti l l 
presents a significant challenge. 

Machine learning has recently demonstrated its 
ability to bolster both the analysis and engineering 
of proteins, including enzymes (as discussed in refs 
[12 –26 ]). Machine learning algorithms are broadly 
classified into two groups: discriminative models 
and generative models. Discriminative models spe- 
cialize in data classification or labeling. In contrast, 
generative AI seeks to identify the innate distri- 
bution of data, thereby enabling the generation of 
new instances informed by this distribution. When 

©The Author(s) 2023. Published
Commons Attribution License (h
work is properly cited. 
NTRODUCTION 

nzymes serve as biological catalysts that expedite
ellular chemical reactions without being depleted
1 ]. They are essential in various processes, in-
luding metabolism, digestion, gene regulation
nd cellular signaling. The significance of enzymes
xtends into biotechnology, medicine and industry,
here they find applications in the production of
harmaceuticals, biofuels, diagnostics and targeted
reatments [2 ,3 ]. Thus, improving our knowledge
f enzymes and making advancements in enzyme
ngineering is essential [4 –7 ]. 
Numerous studies have focused on enzymes,

articularly exploring their structure, function and
echanism [8 –11 ]. The conventional experimental
pproaches in use include enzyme kinetics analysis,
-ray crystallography, nuclear magnetic resonance
pectroscopy and cryo-electron microscopy. A bot-

leneck in these experimental methods, however, lies 
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mplemented with enzyme sequences, generative
odels reveal latent patterns and tendencies in the

mmense sequence space, ultimately aiding in the
dentification of novel functional sequences. Several
eviews have summarized the application of gen-
rative models to proteins from an engineering
erspective [19 ,26 ]. There is a pressing need for
n exploration aimed at deciphering proteins, par-
icularly enzymes, in a way that resonates with
iophysicists’ perspective, as they seek to decode the
hysical principles behind the structure and func-
ion of enzymes, guiding a more rational approach
o enzyme engineering. This is the main objective of
he present review. 
In this review, we examine the latest progress

n applying generative AI to enzymes, focusing
n the analysis of natural protein sequences. We
egin with an overview of several notable generative
odels. Next, we discuss the progress made by
enerative models in deepening our insight into
nzyme evolution, architecture and function. In
articular, generative models analyzing natural en-
yme sequences could yield a metric that correlates
ith enzyme fitness, catalytic activity and stability,
hereby indicating how the physicochemical prop-
rties of enzymes shape their evolution. Even for
e novo enzymes utilizing enzyme scaffolds from
ature, natural evolutionary information proves to
e insightful to rationalize their laboratory evolu-
ion. We then explore the application of generative
odels for enzyme engineering. Lastly, we discuss
he challenges and future prospects of employing
enerative models in enzyme studies. We envision
hat generative AI has the potential to resolve persis-
ent issues in enzyme research and sculpt intelligent
trategies for enzyme engineering. 

N OVERVIEW OF GENERATIVE MODELS 

enerative models are a category of machine-
earning approach that uncovers the fundamental
istribution of a data set, enabling the creation of
ew samples that follow this distribution [27 ]. This
enerative capability proves particularly advanta-
eous for data synthesis tasks, such as generating
ext, images or sounds resembling the original
raining data. Given the abundance of homologous
equences from various organisms, the application
f generative models to enzyme design is a natural
t [14 ,18 ,19 ,22 ,25 ], as the sequence probability
earned may also carry biological and evolutionary
mplications. In this setting, we provide a succinct
ntroduction to several generative models pertinent
o enzyme sequence studies, including maximum-
ntropy (MaxEnt) models [28 ], variational autoen-
Page 2 of 13
coders (VAEs) [29 ], language models [30 ] and 
generative adversarial networks (GANs) [31 ]. 

Whi le al l these diverse models fall under the um-
brella of generative AI, each offers a distinct suite of 
characteristics, including distinct formulations, in- 
terpretative capacities and generative competencies, 
as summarized in Table 1 . Frameworks such as Max- 
Ent models, VAEs and language models explicitly 
furnish sequence probabilities; in contrast, GANs 
are not typically classified within the standard prob- 
abilistic model framework. MaxEnt models provide 
a more intuitive interpretation despite not explicitly 
addressing higher-order residue interactions as other 
models do. Setting them apart, language models 
eliminate the need for multiple sequence alignment 
(MSA) during training, a quality that allows them 

to conduct research across diverse protein families 
within a single model. These nuances suggest the 
potential for certain models to surpass others in spe- 
cific tasks, highlighting the significance of deliberate 
model selection in machine-learning research. 

Maximum entropy model 
MaxEnt models constitute a specific class of proba- 
bilistic models that calculate a data set’s probability 
distribution while maximizing information entropy 
given a set of constraints derived from the observed 
data [28 ]. These models are rooted in informa- 
tion theory and statistical mechanics. In analyzing 
protein sequences, MaxEnt models usually take 
into consideration evolutionary conservation and 
pairwise residue correlation derived from MSA 

(Fig. 1 A). The pairwise residue correlation mirrors 
epistasis, wherein the impact of mutations on one 
residue is influenced by another residue, possibly 
due to residue interactions or functional associ- 
ations. By integrating these constraints, MaxEnt 
models provide a framework for capturing the in- 
tricate dependencies and patterns present within 
protein sequences. The MaxEnt model, which 
serves as a generic framework, has been referred to 
as a Potts model, Boltzmann machine [32 ], direct 
coupling analysis (DCA) [33 ], EVcoupling [34 ], 
GREMLIN [35 ] and CCMpred [36 ], among other 
names in protein studies. 

MaxEnt models use the formula P (S ) ∝ 

exp(−E(S ) ) to compute the probability P (S ) for a 
sequence S , where E(S ) = ∑ 

i hi Si +
∑ 

i> j Ji j Si S j 
represents the sequence statistical energy. The 
model parameters hi and Ji j can be effectively trained 
using gradient-based optimization techniques. De- 
pending on the conventions used, some studies 
might represent E(S ) with a negative sign, while 
others might not. 
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Table 1. Features of representative generative AI applied in protein sequence analysis. 

Model type Residue coupling 
Sequence 
probability MSA independent 

Interpretable 
parameter Alternative name 

MaxEnt Pairwise 
√ × √ 

DCA, EVcoupling, 
GREMLIN, etc. 

VAE Higher-order 
√ × × DeepSequence 

Language Higher-order 
√ √ × ESM 

GAN Higher-order × × ×

A B DC

Encoder

Decoder

Generator

Discriminator

MaxEnt VAE GANLanguage

Figure 1. Comparative illustration of generative models utilized for protein sequence modeling. (A) MaxEnt model: This model aims to delineate both 
the conservation of individual amino acids and their pairwise interactions, while concurrently making minimal assumptions by maximizing sequence 
information entropy. (B) VAE: A neural network that learns to encode data into a lower-dimensional latent space and then decode it back; after training, it 
can effectively generate new data that resemble the training set. (C) Language model: A masked language model employs a prediction-based mechanism 

that strives to accurately forecast the masked amino acid, thus learning the distribution of a corpus of protein sequences. (D) GAN: A framework utilizes 
two neural networks operating in tandem—a generator that creates new protein sequences, and a discriminator that evaluates them for authenticity. 
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ariational autoencoder 
AEs are generative models that blend probabilistic
odeling with deep neural-network-based encoders
nd decoders [29 ]. VAEs operate on the principle
f mapping input data to a low-dimensional latent
pace. Once the encoder has successfully mapped
he input data to the latent space, the decoder learns
o reconstruct the original input data from this space
Fig. 1 B). The latent space provides a representation
f the data’s structures. A key advantage of VAEs
ver traditional autoencoders is their generative
bility. To achieve this, the decoder generates new
ata points using samples taken from the latent
pace. A notable instance of VAE being used on
rotein fitness prediction is DeepSequence [37 ]. 
The log probability of a protein sequence S ,

og P (S ) , can be approximated using the evi-
ence lower bound (ELBO) Eq [log p(S |z ) ] −
KL [ q (z |S ) || p(z )] [29 ]. In this expression, q (z |S )
nd p(S |z ) represent neural networks responsible
or encoding protein sequence data into latent
ariables and decoding from the latent space to
econstruct the original sequence data, respectively.
Page 3 of 13
The latent variables’ prior distribution, p(z ) , is 
commonly represented by a Gaussian normal dis- 
tribution; the Kullback-Leibler (KL) divergence is 
a measure of the difference between two probability 
distributions. 

Language model 
Language models used in natural language pro- 
cessing determine the probability distribution of 
a sequence of words by assigning probabilities to 
each potential word combination, reflecting their 
likelihood of occurrence within the language [30 ]. 
Similarly, protein sequences can be treated as a form
of language where amino acids replace words in 
natural languages as tokens. When tailored appro- 
priately, protein language models can capture the 
distribution, patterns and relationships observed 
within protein sequence data, enabling them to gen- 
erate novel sequences and predict protein attributes. 
ESM is a widely used pre-trained language model 
for proteins [38 ]. 

Deep-learning techniques, such as recurrent 
neural networks (RNNs), transformers and 
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utoregressive models, can be used to train pro-
ein language models. Both RNNs and transformers
an be trained using masked language models, which
redict a hidden amino acid based on the context
rovided by adjacent amino acids in the sequence
Fig. 1 C). The probability of a protein sequence S is
iven by P (S ) = ∏ 

i p(Si | S−i ) . In the case of autore-
ressive models, they are employed to model protein
equences by learning the probability distribution
f amino acids in a sequence, with each amino acid
onditioned on its predecessors. The probability of a
rotein sequence S can be computed using the chain
ule of probability P (S ) = ∏ 

i p(Si | S1 , . . . , Si −1 ) . 

enerative adversarial network 

ANs comprise two distinct neural networks: the
enerator and the discriminator (Fig. 1 D) [31 ]. The
enerator network takes random noise as input and
roduces new data points intended to mimic the
raining data. Meanwhile, the discriminator network
ses both the training data and generated data as
nputs to differentiate them. The training process in-
olves refining the generator network to create data
oints that can deceive the discriminator network,
hile simultaneously improving the discriminator
etwork’s ability to accurately discern between
eal and fake data points. Therefore, when used in
nalyzing protein sequences, GANs may distinguish
eal protein sequences and sequences that do not
ollow the rules that proteins should have. 
In the realm of protein studies, GANs can differ-

ntiate authentic protein sequences from those not
dhering to conventional protein structures. How-
ver, unlike other generative models, GANs do not
resent an explicit probability distribution for their
amples. For tasks that demand an estimation of se-
uence probability distribution, which we wi l l delve
nto further below, one might lean towards models
ike MaxEnt models, VAEs or language models. 

REDICTING MUTATION EFFECTS 

N ENZYME FITNESS 

enerative models can assign a probability to any
pecific enzyme sequence based on the model’s
omprehension of the inherent distribution within
atural protein sequence data. It is intriguing to ex-
lore the factors that contribute to the prevalence of
pecific sequences or variants in nature. To this end,
t is essential to bridge the connection between the
robability of a certain enzyme sequence in natural
rotein repositories and its phenotype, which can
e assessed in different experiments. 
Page 4 of 13
Deep mutational scanning (DMS) offers a high- 
throughput approach for measuring the functional 
impact of various protein variants in a single exper- 
iment, by creating a large library of protein mutants 
and examining their effects on a specific phenotype 
[39 ]. Given that enzymes play a pivotal role in 
numerous biological pathways, the growth rate of 
a species could serve as a phenotype to gauge the 
impact of mutations. Meanwhile, generative models 
offer an evolutionary landscape to quantify the se- 
quence probability of each mutant. Hence, drawing 
correlations between sequence probability quanti- 
fied by the generative model and DMS outcomes 
can aid in unearthing the biological implications 
embedded within generative models (Fig. 2 A). 

To achieve this, several generative models have 
been deployed across diverse enzymes, revealing a 
significant correlation between sequence probability 
in generative models and mutant fitness (Fig. 2 B). 
Overall, VAE and language models tend to excel be- 
yond the MaxEnt model, though each surpasses the 
independent model. Notably, their performance is 
not uniform across all enzymes. For certain enzymes, 
the correlations are not significant, potentially due 
to DMS experimental noise or the intricacies of 
evolution. In the following, we wi l l showcase the 
differing performances of various models. 

To our knowledge, the MaxEnt model was the 
first to be used to associate its sequence statistical 
energy, or sequence probability, with outcomes of 
the DMS experiment. Figliuzzi et al. used DCA 

to investigate beta-lactamase TEM-1, an enzyme 
conferring resistance to beta-lactam antibiotics 
[40 ]. They discovered a significant correlation 
between the statistical energy E(S ) (i.e. −log P (S ) ) 
and the minimum inhibitory concentration of the 
antibiotic, which assesses the enzyme’s fitness in 
promoting survival in antibiotic environments. In 
a more extensive analysis, Hopf et al. corroborated 
that this relationship prevails across a diverse array of 
enzymes and other proteins using EVcoupling [25 ]. 
This correlation surpasses other metrics, such as 
the position-specific scoring matrix (PSSM) or the 
conservation score derived from the MSA profile, 
highlighting the role of epistasis in shaping protein 
function. 

It is sti l l noteworthy to acknowledge that the 
PSSM often serves as a suitable initial approach 
(Fig. 2 B). The introduction of epistasis appears to 
outperform the PSSM, yet in numerous instances, 
the enhancement brought about by the epistasis 
model is modest. This could be attributed to the 
dominance of single mutations in the DMS data 
set. Although coevolutionary information stem- 
ming from the epistasis between two residues is 
vital for protein structure prediction [41 ], residue 
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Generative
model

A

B

Fitness

P(S)
Fitness

Evolutionary landscape

E(S)

Figure 2. Exploration of enzyme fitness through generative models. (A) Generative models trained on protein sequence 
data produce a probability distribution that correlates with protein fitness, as determined in DMS. While the evolutionary 
landscape is intrinsically high-dimensional, we offer a schematic illustration for explanation. Cells in the plate are illustrated 
using BioRender. (B) Strong correlations are evident across various generative models for a range of enzymes, as highlighted 
by the Spearman’s correlation ρ between sequence probability and fitness. The illustration incorporates several models, 
including the MaxEnt model, a VAE and a language model, as represented by EVmutation [25 ], DeepSequence [37 ] and ESM- 
1v [38 ], respectively. (The data used to generate this figure were sourced from ref. [38 ], focusing exclusively on enzymes.) 
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onservation seems to play a predominant role in
redicting protein fitness in the current data set. This
ligns with the observation that, predominantly, the
umulative changes in free energy of reaction result-
ng from single mutations closely approximate the
ree energy alteration measured in the multi-mutant
cross several proteins [42 ]. 
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While the MaxEnt model usually considers 
second-order epistasis, explicitly incorporating 
higher-order interactions is difficult due to the vast 
number of model parameters involved. In contrast, 
VAEs inherently incorporate higher-order correla- 
tions. It would be intriguing to investigate the signif- 
icance of higher-order epistasis in predicting fitness. 



Natl Sci Rev, 2023, Vol. 10, nwad331

R  

f  

a  

h  

M  

o
 

a  

o  

p  

t  

c  

e  

p  

a  

t  

[  

U  

s  

e  

b
 

b  

r  

i  

[  

s  

e  

d  

m  

c  

a  

n  

a  

c  

fi  

e  

a  

c  

p
 

i  

R  

m  

f  

A  

d  

t  

p  

a  

U  

d  

a  

p  

d

iesselman et al. employed DeepSequence, a VAE
ramework, to relate sequence probability (estimated
s ELBO) to fitness scores, resulting in slightly en-
anced correlation values compared to the epistatic
axEnt model for a data set encompassing numer-
us enzymes and other proteins (Fig. 2 B) [37 ]. 
MaxEnt models and VAEs necessitate the cre-

tion of aligned MSA. In contrast, language models
ffer an added degree of flexibility, capable of em-
loying unaligned protein sequences as input. This
rait permits the inclusion of a variety of protein
lasses into the language model. Language mod-
ls have been deployed to predict the fitness of
rotein variants, a significant proportion of which
re enzymes, demonstrating comparable correla-
ion values to other models. For instance, ESM-1v
38 ], trained with masked language models on the
niRef90 database (98 mi l lion sequences), demon-
trates an impressive capacity to predict mutation
ffects on enzyme fitness, marginally outperforming
oth the MaxEnt model and VAE (Fig. 2 B). 
Despite the comprehensive data set generated

y DMS, it primarily focuses on a single functional
eadout, which could not capture the full complex-
ty of a protein’s sequence-function relationship
43 ]. Consider the widely recognized DMS data
et of beta-lactamase TEM-1 provided by Firnberg
t al. [44 ]. Sy nony mous mutations may lead to
iscernible variations in fitness values, gauged by the
inimum inhibitory concentration of the antibiotic,
omplicating the correlation between fitness values
nd changes in protein sequences. Furthermore,
umerous factors influence an enzyme’s fitness, such
s enzyme activity and protein abundance, which
ould be affected by protein stability. Associating
tness with the catalytic activity and stability of
nzymes remains challenging. Thus, while gener-
tive models can predict fitness, there remains a
onsiderable gap in using such models to further
redict enzyme physicochemical properties. 
In addition to the zero-shot fitness prediction

 l lustrated above in this section, the hidden states of
NNs, an alternative approach to training language
odels, can be used to train supervised models
or many downstream applications. For example,
lley et al. employed an RNN with the UniRef50
atabase (24 mi l lion sequences) as input, finding
hat the RNN’s hidden state could effectively predict
rotein stability and fitness data [45 ]. Rives et al.
lso applied a transformer model to analyze the
niParc database (250 mi l lion sequences) and pre-
ict mutation effects on fitness [46 ]. Besides, there
re many noteworthy studies focused on learning
rotein representations that can be fine-tuned for
iverse tasks [47 –49 ]. 
Page 6 of 13
PREDICTING MUTATION EFFECTS ON 

ENZYME ACTIVITY AND STABILITY 

Assessing catalytic activity and stability of en- 
zymes is crucial for understanding biochemical 
mechanisms, optimizing bioindustrial applications, 
guiding therapeutic enzyme interventions and 
ensuring the efficacy of enzyme-based products; 
however, predicting the influence of mutations on 
such physicochemical attributes of enzymes has 
proven to be particularly arduous. Compared to 
protein thermostability prediction [50 ], forecasting 
enzyme activity poses a more substantial challenge. 
It frequently necessitates multiscale simulations for 
modeling chemical reactions, which consume sig- 
nificant computational resources [4 ,8 ]. For certain 
mutations, the difference from the wild-type could 
be relatively small; for instance, a 10-fold rate dif- 
ference translates to a reaction barrier difference of 
just 1.4 kcal/mol. Such a negligible difference might 
exceed the precision of available physical models. 
Meanwhile, some mutations might provoke large 
conformational changes [51 ], which add to the al- 
ready convoluted task of modeling enzyme catalysis. 

Aside from physics-based models, predicting the 
effects of mutations on enzyme activity using super- 
vised learning is currently unfeasible, largely because 
of the limited data on enzyme turnover numbers 
[52 ]. Although mi l lions of enzyme mutations have 
been measured and cataloged in databases such as 
BRENDA and SABIO [53 ,54 ], many entries either 
lack information on experimental conditions or 
were measured under varying conditions in different 
laboratories, thus complicating direct comparisons. 
It is well acknowledged that experimental factors 
like pH and temperature could considerably impact 
enzyme catalysis. Thus, predicting the impact of 
mutations on enzyme activity continues to be both 
a formidable and vital undertaking that demands 
innovative strategies. 

One might question if a connection exists be- 
tween sequence probabilities in generative models 
and enzyme properties such as catalytic activity 
and thermostability. Identifying a reliable link could 
lead to predictions of these physicochemical traits 
in a manner analogous to fitness predictions. Yet, 
it is crucial to remember that factors determining 
organism fitness often interrelate. The complex in- 
terplay between enzyme catalytic activity ( kcat ) and 
protein thermostability serves as a prime example 
[55 –59 ]. In light of these complexities, drawing a 
direct association between sequence probability and 
individual enzyme properties can be intricate. 

Nevertheless, using the MaxEnt model, we scru- 
tinized 12 representative enzyme-substrate pairs 
frequently examined in computational chemistry 
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E(S)

A B C

Active center Enzyme scaffold Enzyme scaffold

E(S)E(S)

Figure 3. Strong correlation between enzyme physicochemical properties and evolutionary information as extracted from 

sequence data using generative AI, showcased using DHFR. (A) The E (S ) (i.e. −log P (S ) ) exhibits a correlation with enzyme 
activity ( kcat ) for mutations in the vicinity of the substrate or cofactor, indicated by a Pearson correlation coefficient of −0.74. 
Mutated sites within the data set are highlighted. (B) The E (S ) does not show any correlation with enzyme activity for 
mutations located on the enzyme scaffold. Mutated sites within the data set are denoted. (C) For mutations occurring on the 
enzyme scaffold, the E (S ) displays a correlation with thermostability ( Tm ), reflected by a Pearson correlation value of −0.65. 
Mutated sites are also marked in purple. (The data used to generate this figure were sourced from ref. [60 ].) 
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P(S) ~ activity
Native substrate

Natural enzyme

P(S) ~ stability

Active center

Enzyme scaffold

Figure 4. The evolution-catalysis relationship for enzymes. 
The sequence probability, P (S ) , derived from generative 
models, correlates with enzyme activity when mutations oc- 
cur at the active center and with stability when mutations 
are in the scaffold region. Further examination of more evo- 
lutionary pressures and enzyme regions might reveal new 

classifications or fine-tune the existing ones. 
tudies, and uncovered a link between E(S ) (i.e.
log P (S ) ) and enzyme properties [60 ]. The crux
f our approach was the separate consideration of
istinct enzyme regions. An i l lustration of the rela-
ionship is depicted in Fig. 3 for the enzyme dihydro-
olate reductase (DHFR). When mutations occur on
esidues proximal to the substrate or the active cen-
er, their sequence probabilities were found to align
ith enzyme kcat values (Fig. 3 A). In contrast, muta-
ions on the enzyme scaffold, distant from the sub-
trate, exhibited sequence probabilities that aligned
ore with enzyme thermostability ( Tm 

) than with
cat (Fig. 3 B–C). Beyond DHFR, this observation
ppears consistent across several enzymes that
atalyze different types of chemical reactions [60 ]. 
It is known that structural and functional con-

traints influence sequence variation rates at diverse
ites [61 ,62 ], and the study of patterns within extant
equences offers valuable perspectives on protein
unctionality [63 ]. Here the generative model serves
s a structured framework for extracting otherwise
lusive evolutionary information from the high-
imensional sequence landscape, which can be
orrelated with enzyme physicochemical properties.
We term the identified correlations the

evolution-catalysis relationship’, linking evolu-
ionary information to factors that impact enzyme
Page 7 of 13
catalysis, including catalytic activity and stability 
(Fig. 4 ). The relationship implies that nature mainly 
utilizes different regions on enzymes to enhance 
different properties, thereby optimizing overall en- 
zyme catalysis. Thus, the relationship provides a way 
to understand enzy me f unctional architecture. This 
comprehension becomes increasingly significant 
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Native substrate New substrate

Redesigned active center

A

B C
Enzyme scaffold

E(S)E(S)

Catalytically active remote region

Natural enzyme

Figure 5. Insights from the MaxEnt model applied to de novo Kemp eliminase. 
(A) Kemp eliminase adopts the TIM-barrel scaffold of a natural synthase; its active cen- 
ter is modified to accommodate a new substrate. (B) Mutations on the Kemp eliminase 
scaffold show a correlation between E (S ) and Tm , evidenced by a Pearson correlation 
value of −0.77. (C) Mutations in the catalytically active remote region correlate their 
E (S ) values with kcat , indicated by a Pearson correlation value of −0.89. (The data 
used to generate this figure were sourced from ref. [65 ].) 
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s it produces testable hypotheses. The most
traightforward application pertains to suggesting
utations to enhance specific enzyme properties,
s demonstrated successfully in ref. [64 ] (also see
iscussions in the section ‘Applications in enzyme
ngineering’). However, given the vast diversity
f enzymes, as demonstrated by the wide array
f chemical reactions they catalyze, it is possible
hat further study of enzymes or specific enzyme
egions may reveal additional categories in terms of
unctional architecture [65 ]. 
A fundamental question in enzyme evolution

evolves around whether natural enzymes are evolv-
ng towards higher kcat or kcat /KM 

values. While on
ne side, it intuitively seems that a more proficient
nzyme would save an organism’s energy, it is also
vident that the catalytic efficiency of many enzymes
s not optimal. This paradox remains an unresolved
ssue, as extensively discussed by Milo and Tawfik
66 ,67 ]. However, the evident link between se-
uence probability in generative models and both
cat and kcat /KM 

, as depicted in Fig. 3 A and ref. [60 ],
mplies a trend where many enzymes might indeed
e on a trajectory towards enhanced activity during
atural evolution. Besides, the observed correlation
etween evolutionary information and enzyme
tability in the scaffold region aligns with studies on
on-enzyme proteins [68 ], where enhancing stabil-
ty could be the dominant evolutionary pressure. 
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RATIONALIZING THE LABORATORY 

EVOLUTION OF DE NOVO ENZYMES 

We expanded our research to include de novo en- 
zymes, specifically focusing on Kemp eliminases, 
using generative models [65 ]. In nature, there are 
no recognized enzymes that can catalyze Kemp 
elimination [69 ], which initially poses a challenge 
in leveraging natural sequence data to analyze Kemp 
eliminases. However, we discovered that the scaf- 
fold of the Kemp eliminase, which originates from 

an imidazole glycerol phosphate synthase with a 
triosephosphate isomerase (TIM)-barrel scaffold, 
provides crucial insights into the function of this de 
novo enzyme (Fig. 5 A). 

We trained the MaxEnt model using homologs of 
the natural synthase. The mutations from directed 
evolution of Kemp eliminase are predominantly 
located on the synthase scaffold; we assign each mu- 
tant E(S ) (i.e. −log P (S ) ). Notably, the statistical 
energy E(S ) correlates with the thermostability of 
the Kemp eliminase variants (Fig. 5 B), although the 
model is trained with natural synthase homologs 
[65 ]. This finding aligns with our observations 
regarding natural enzymes, where evolutionary in- 
formation of the enzyme scaffold mainly correlates 
with enzyme stability [60 ]. 

There is another data set that utilized molecular 
dynamics simulations and biochemistry experi- 
ments to pinpoint regions in Kemp eliminase with 
dynamics coupled to the active site [70 ]. The 
majority of these mutations were situated on the 
TIM-barrel loops, which we have designated as the 
‘catalytically active remote region’. Intriguingly, E(S ) 
of mutations in this region exhibit a strong correla- 
tion with enzyme catalytic activity, which markedly 
differs from other sites on the enzyme scaffold 
(Fig. 5 C) [65 ]. A possible molecular mechanism 

could involve substrate-gated loop rearrangement 
determining enzyme activity, as others have posited 
[71 ]. Once the substrate enters the pocket, loop 
rearrangement excludes water molecules from the 
pocket, subsequently enhancing catalytic activ- 
ity. This reasoning suggests that the role of some 
TIM-barrel loops is not overly sensitive to a spe- 
cific chemical reaction, a hypothesis that could be 
investigated in future experiments. 

The findings here for Kemp eliminases suggest 
that traits from naturally evolved enzyme scaffolds 
can be integrated into novel functions, which might 
help to i l luminate the origins of new enzymatic 
activities. This might also explain the prominence 
of the TIM-barrel scaffold in ∼10% of all enzymes. 

Altogether, our studies of enzymes, encompass- 
ing both natural and de novo enzymes, bring fresh 
insights into enzyme architecture, catalysis and 
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Figure 6. Deciphering protein sequence semantics with generative models. (A) 
Language models embody the semantics encoded in sequences, capturing various 
elements including amino acid types, secondary structure and information at the 
organism level, to name a few. (B) The weight logo associated with a hidden unit of the 
RBM model imparts biologically meaningful information. For example, the interactions 
of charged residues between residues 4 and 22 are underscored. This figure, adapted 
from ref. [75 ], is distributed under the terms of the Creative Commons Attribution 
License. 
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volution, giving rise to several hypotheses that
arrant further investigation through biochemistry
xperiments and computational chemistry stud-
es. Meanwhile, we recognize that the correlations
epicted in Fig. 3 and detailed in refs [60 ] and
65 ] are not perfect, which is anticipated given the
ntertwined factors influencing enzyme evolution.
elving deeper into various evolutionary pressures
nd examining different enzyme regions wi l l be
rucial to further elucidate and understand the
volution-catalysis relationship. 

ECODING PROTEIN SEQUENCE 

EMANTICS 

enerative models excel not only in predicting the
onsequences of mutations but also in discerning
he inherent semantics and biological structures in-
rained in protein sequences. The term ‘semantics’
efers to the meaningful patterns or relationships
hat exist within the data—in this case, the func-
ional and structural significance encoded in protein
equences. Here, we present several insightful stud-
es that harness generative models to enhance our
omprehension of proteins. While these investiga-
ions do not explicitly focus on enzymes, nor have
hey been applied to enzyme studies yet, they pro-
ide adaptable strategies that could be customized
or enzyme research in forthcoming pursuits. 
Language models can learn semantics by ana-

yzing the co-occurrence patterns of amino acids
n large volumes of sequence data, or by implicitly
Page 9 of 13
modeling the syntax and structure of protein lan- 
guage. The RNN model’s hidden state was found 
to encode structural, evolutionary and functional 
information [45 ]. Remarkably, when projected 
into low-dimensional space, the embedding vectors 
for distinct amino acids arrange according to their 
physicochemical properties (Fig. 6 A). The repre- 
sentation of protein sequences organizes based on 
the organism origin and protein secondary structure 
[45 ]. By carefully analyzing the correlation between 
neurons in the network and various properties, 
it is possible to comprehend the significance of 
different neurons. These observations extend to the 
transformer model as well [46 ]. 

Hie et al. also utilized the language framework to 
examine the semantics and fitness of viral proteins 
[72 ]. The language model’s sequence embedding 
captures the semantics, where sequences in different 
semantic landscape areas may suggest antigenic 
differences. Furthermore, sequences with high 
probability in the language model indicate increased 
fitness. These two factors collectively influence the 
likelihood of a new viral protein mutation evading 
detection by the immune system. 

Although language models have had great success 
in learning the semantics of natural language, their 
main focus has been on text-based inputs. However, 
protein sequences involve more than just text-based 
information, and also encompass evolutionary, bio- 
logical and physical priors that traditional language 
models are unable to capture [18 ,73 ,74 ]. As a result,
it is necessary to develop new language models 
that can incorporate these priors and go beyond 
semantic visualization. 

Besides language models, using a restricted 
Boltzmann machine (RBM), a generative model 
akin to the MaxEnt model, Tubiana et al. managed 
to extract meaningful biological features from the 
learned representation [75 ]. Certain hidden units 
were assigned biological relevance, such as a hidden 
unit trained with the Kunitz Domain MSA that rep- 
resented the interaction between charged residues 
at two separate sites (Fig. 6 B). While it is unclear if
each hidden unit can be assigned a definite biological 
meaning, this analysis offers valuable insights. This 
technique is somewhat related to predicting protein 
contacts using evolutionary information and protein 
sector analysis [41 ,63 ]. 

APPLICATIONS IN ENZYME 

ENGINEERING 

Generative models have been employed to design 
f unctional enzy mes, as summarized in Table 2 . For
example, Russ et al. utilized DCA to design choris- 
mate mutase homologs, resulting in 481 functional 



Natl Sci Rev, 2023, Vol. 10, nwad331

Table 2. Application of generative AI in enzyme engineering. 

Generative Mutant Designs Improved activity 
Enzyme model type functional? vs. wild-type? 

Chorismate mutase MaxEnt [76 ] Multiple 
√ 

Malate dehydrogenase GAN [77 ] Multiple 
√ 

Luciferase LuxA VAE [78 ] Multiple 
√ 

Lysozyme Language [80 ] Multiple 
√ 

Ornithine transcarbamylase VAE [79 ] Multiple 
√ √ 

(2.3-fold) 
Luciferase RLuc MaxEnt [64 ] Single 

√ √ 

(2.0-fold)
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equences from 1618 tested, an impressive success
ate of ∼30% [76 ]. Biochemical assays character-
zed five designed sequences, demonstrating activity
imilar to their natural counterparts. Repecka et al. ,
sing GANs, investigated malate dehydrogenase
nd found activity in 13 of 55 tested sequences [77 ].
mploying VAEs, Hawkins-Hooker et al. examined
acterial luciferase luxA, with 9 out of 11 tested
equences exhibiting activity [78 ]. Giessel, also
tilizing VAEs, explored ornithine transcarbamylase
79 ]. Protein language models, in addition to mod-
ls trained on MSA, have also been used to create
ysozyme variants [80 ]. 
In most of these enzyme engineering endeavors,

he tested sequences do not surpass wild-type or
atural enzymes in performance, and even when
mprovements occur, numerous mutations have to
e introduced. While such diverse variants with
atural-like functions highlight the generative po-
ential of machine-learning models, their practical
pplication could face limitations due to factors such
s increased cost, complexity, potential ethical con-
erns and poor solubility in some cases [81 ]. Hence,
here is a need to further develop innovative meth-
ds to identify beneficial mutations, a task that falls
ithin the realm of rational enzyme engineering. 
Rational enzyme engineering demands a deeper

nderstanding of enzyme action. As discussed in a
revious section, the evolutionary information in
arious enzyme components is linked to distinct
hysicochemical properties, specifically, active sites
nd enzyme scaffolds are primarily shaped by the
volutionary pressure of enzyme activity and stabil-
ty, respectively [60 ]. Recently, we applied this con-
ept to RLuc luciferase [64 ]. The evolution-catalysis
elationship was validated for RLuc using previous
nzyme characterization data. We then followed the
elationship to design mutants with potentially en-
anced properties. Four out of eight single mutants
urrounding the substrate exhibited improved activ-
ty compared to the w ild-type, w ith minimal changes
n stability. In contrast, three out of six expressed
ingle mutants in the enzyme scaffold displayed in-
reased stability but reduced activity. The overall ex-
erimental results confirm the evolution-catalysis re-
Page 10 of 13
lationship. Interestingly, the maximum fold enhance- 
ment in activity achieved through a single mutation 
in RLuc is 2.0, which is on par with the best gener-
ative design resulting from multiple mutations (on 
average eight mutations) in ornithine transcarbamy- 
lase, with a fold increase of 2.3 [79 ]. The results high-
light the potential of using generative modeling for 
enzyme sequences in rational enzyme engineering. 

SUMMARY AND PERSPECTIVE 

Generative models, which learn patterns underlying 
naturally evolved sequences, hold the potential to 
revolutionize our comprehension of enzymes and 
ultimately aid in designing efficient biocatalysts. 
In this review, we touched upon a few topics that 
focus on generative modeling of enzyme sequences. 
For a broader perspective on machine learning in 
protein studies, we recommend readers explore 
other reviews [12 –26 ]. 

Implementing generative models to investigate 
enzyme physicochemical properties necessitates 
a large quantity of both sequencing data and en- 
zyme biochemistry data. Fortunately, metagenomic 
databases, which house genetic material from mi- 
crobial communities, are experiencing rapid growth 
[82 ]. Improvements in sequencing technologies 
could further boost data collection. However, the 
slow accumulation of physicochemical data for 
enzyme variants obstructs the establishment of 
relationships between sequences and functions. 
The standardization of enzymatic data reporting is 
crucial [83 ], and the application of microfluidics for 
high-throughput measurement of enzymatic data 
seems promising [43 ,84 ]. 

In addition to data, a crucial aspect of machine 
learning involves selecting a model that aligns with 
the inductive bias of a specific problem. Many 
existing models introduced here have been di- 
rectly borrowed from other disciplines, which may 
not provide the optimal approach for addressing 
biological problems. This situation can hinder 
the ability to learn and extract genuine biological 
principles. From another perspective, it is worth 
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onsidering the development of models specifically
ailored to the unique requirements of biological re-
earch, including proposing biologically meaningful
okenization, structure-informed sequence embed-
ing, and designing a good measure for sequence
epresentation quality [18 ,74 ,85 ]. Furthermore,
nterdisciplinary collaboration between experts in
nzymology, machine learning and physics-based
odels could foster the development of novel mod-
ls that are better suited to biological problems and
an effectively capture the inherent characteristics
f biological systems. 
While the focal point of our review is the appli-

ation of generative modeling to enzyme sequences,
e acknowledge the transformative potential of
pplying generative models to protein structures
n a bid to enhance enzyme design. Recent break-
hroughs in protein structure prediction have pre-
ented potent tools for translating protein sequences
nto structures [86 ], sparking the development of
ovel strategies that utilize generative models for de
ovo protein design. Grounded in the principles of
on-equilibrium thermodynamics, generative diffu-
ion models enable protein design under a variety of
ircumstances, including the scaffold of enzyme ac-
ive sites [87 ,88 ]. However, the task of constructing
fficient enzymes de novo remains challenging due
o many mysteries surrounding enzyme catalysis
89 ]. As a result, physics-based models need to be
mproved and integrated with generative designs. 
Additionally, natural language processing using

enerative language models, such as ChatGPT [30 ],
an revolutionize our comprehension of enzymes.
pecifically, ChatGPT can aid in extracting knowl-
dge from previous enzyme research, expediting
he discovery process. GPT-4, for example, envi-
ions a wider range of applications for generative
odels in enzyme studies than our review outlines
see Supplementary Data). While some assertions
ight seem early, the prospects for upcoming
dvancements are bright. 
In summary, the integration of generative models

nto enzyme studies holds the promise of expanding
ur knowledge of enzymology and facilitating the
evelopment of efficient enzymes for diverse ap-
lications, potentially giving rise to a novel domain
alled ‘evolutionary catalysis’. To this end, em-
edding domain expertise into generative models
an enhance their capacity to address the specific
omplexities inherent in enzyme research and
ngineering. 

UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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