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Abstract

Germinal centers (GCs) are key microanatomical sites in lymphoid organs where responding 

B cells mature and undergo affinity-based selection. The duration of the GC reaction has long 

been assumed to be relatively brief, but recent studies in humans, nonhuman primates, and mice 

indicate that GCs can last for weeks to months after initial antigen exposure. This review examines 

recent studies investigating the factors that influence GC duration, including antigen persistence, 

T-follicular helper cells, and mode of immunization. Potential mechanisms for how persistent GCs 

influence the B-cell repertoire are considered. Overall, these studies provide a blueprint for how to 

design better vaccines that elicit persistent GC responses.

Introduction

Protection against many pathogens relies on developing an effective humoral immune 

response. One characteristic feature of this response is the continued increase in antibody 

affinity for an antigen over time [1]. This affinity maturation occurs in germinal centers 

(GCs), which are distinct microanatomical structures that form primarily in the follicles of 

secondary lymphoid organs (SLOs) [2]. Activated B cells that enter the GC undergo iterative 

rounds of somatic hypermutation (SHM) and proliferation while affinity-maturing their 

B-cell receptor (BCR) against the inciting antigen [2,3]. Graduates of the GC differentiate 

into long-lived bone marrow plasma cells (BMPCs) and circulating memory B cells (MBCs) 

[reviewed in 4]. Additionally, long-lived plasma cells can be retained in the tissue of origin 

(e.g. spleen) 5] or gut-associated lymphoid tissue [6,7], and tissue-resident MBCs serve 
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important defense roles at sites such as surface barriers (reviewed in [8]). Forming these 

effector B-cell types is critical for mediating long-term protection against a pathogen and is 

a major goal of vaccine development.

GC formation begins when antigen-experienced cognate B and T cells interact at the 

interface between the T-cell zone and the border of the follicle [9,10]. Activated B cells 

that receive survival and co-stimulatory signals from cognate T cells can migrate to the 

center of the follicle to seed the GC, which is divided into two distinct compartments 

— the dark zone (DZ) and the light zone (LZ) [11,12]. CXC motif chemokine ligand 

12 (CXCL12)-producing stromal cells in the DZ attract CXC motif chemokine receptor 4 

(CXCR4)-expressing GC B cells, which proliferate and undergo SHM [11]. After they have 

undergone SHM, these GC B cells downregulate CXCR4 and migrate into the LZ through 

CXC motif chemokine receptor 5 (CXCR5) sensing of its ligand CXC motif chemokine 

ligand 13 (CXCL13), which is produced by follicular dendritic cells (FDCs) in the LZ 

[11,13]. FDCs are critical sites of antigen deposition in the follicle, retaining and presenting 

antigen to GC B cells to regulate their affinity maturation [14,15]. FDCs also work with 

T-follicular helper (Tfh) cells in the LZ to send necessary survival signals to GC B cells 

[16-18]. Positively selected GC B cells can return to the DZ to undergo additional SHM and 

proliferation or exit the GC as BMPCs or MBCs [19].

The generation of long-lived effector cells is critical for lasting protection against pathogens. 

While MBCs and, less frequently, BMPCs, can be produced in a GC-independent manner, 

those arising from the GC typically have a higher affinity for antigen [20-23]. GC-dependent 

MBCs are poised to rapidly differentiate into short-lived, extrafollicular plasmablasts (PBs) 

in the event of pathogen re-exposure, producing high-affinity antibodies that can work in 

concert with matured antibodies from BMPCs to help clear pathogens quickly [22,24]. Some 

evidence in mice and humans suggests that upon restimulation with antigen, MBCs can 

differentiate to PCs that potentially contribute to the BMPC pool [25,26], although direct 

differentiation to long-lived PCs remains undetermined. MBCs can also re-enter the GC 

and undergo additional rounds of SHM and affinity maturation, thus enhancing subsequent 

responses [27].

Since the mutational load of GC B cells increases over time, and high levels of mutation 

enhance antibody affinity, extending the duration of GCs can enhance the production of 

high-affinity antibodies [21,28]. In this review, we will summarize what is currently known 

about GC duration, as well as explore multiple factors that may influence GC persistence, 

including immune complex formation, antigen persistence in the follicle, the ability of GC 

B cells to acquire T-cell help, and the proliferative capacity of GC B cells. Additionally, we 

will highlight how the method and context of antigen exposure alter the duration of the GC 

and how vaccination strategies may be optimized to enhance GC persistence.

How long do germinal centers last?

The ultimate duration of the GC reaction varies depending on the model system studied. 

Most studies assessing GC kinetics have been done in murine models of vaccination 

in which an antigen and adjuvant are given as a bolus. These models frequently use a 
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hapten conjugated to a carrier protein, adjuvanted with alum, and track the hapten-specific 

GC response in the SLOs. With this immunization method, the antigen-specific mouse 

GC declines between 2 and 5 weeks after immunization. However, small numbers of 

antigen-specific GC B cells have been detected in the spleen as late as 21 weeks post 

immunization [21,29,30]. Using alternate adjuvants may extend GC magnitude and duration, 

but immunization with other proteins in alum leads to a similar GC kinetics [31-34]. The 

GC response after injection of sheep red blood cells has also been extensively studied and 

frequently declines between 2 and 4 weeks post injection in mice [35-37]. Alternate vaccine 

design and delivery can increase the magnitude and duration of the mouse GC response. 

Antigens packaged in nanoparticles, particularly those including innate immune system 

agonists, result in GCs persisting up to 8 weeks post immunization in mice and frequently 

induce a larger GC compared with a bolus immunization [38,39].

In contrast to vaccination, infection consistently produces more persistent GCs in mice, 

especially in the SLOs draining the affected tissues. In mice infected with influenza virus, 

splenic GCs persist until 6–9 weeks post infection, whereas GCs in the lung-draining 

mediastinal lymph node last between 18 and 24 weeks post infection [40-43]. Notably, 

later GCs had higher levels of SHM than early GCs and continuously graduated MBCs, 

highlighting the importance of GC persistence in increasing the affinity of the subsequent 

antibody response [40,42]. This phenomenon is also observed when comparing GCs 

generated from acute or chronic infection using the lymphocytic choriomeningitis virus 

(LCMV) model. Chronically infected mice exhibit more robust GCs at later time points 

[44,45]. These GCs facilitate higher levels of SHM that lead to an increase in neutralizing 

antibodies in chronically infected animals compared with acute infection [44].

GC persistence has also been studied in nonhuman primate (NHP) models. Different 

methods of antigen packaging, adjuvanting, and dosing have also been compared in NHPs. 

An alum-adjuvanted bolus induces a GC that persists up to 10 weeks post immunization 

[46]. In contrast, using a saponin-like adjuvant extends GC persistence to 14 weeks post 

immunization in rhesus monkeys [47]. Escalating the immunization dose over several weeks 

or delivering antigen through a slow-release osmotic pump also increases the magnitude of 

the NHP GC response [46,47].

In humans, indirect evidence that GC responses can persist for extended periods is 

demonstrated by peripheral B-cell SHM rates in antigen-specific BCRs. In subjects 

vaccinated with a replication-competent adenovirus type-4 recombinant virus expressing 

influenza H5 hemagglutinin, increases in H5-specific antibody SHM were detected up 

to 12 months after vaccination [48]. This ongoing SHM persisted beyond the period of 

active viral replication (2–4 weeks after vaccination) [48]. Similarly, in a longitudinal 

study, two flavivirus-naive donors vaccinated with the yellow fever 17D vaccine exhibited 

increased antibody SHM and affinity maturation for 6–9 months post immunization [49]. 

Ongoing SHM in peripheral B cells has also been observed in humans after influenza H7N9 

vaccination [50] and Ebola virus infection [51].

In a study of survivors of infection with severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), the causative agent of the coronavirus disease-2019 (COVID-19) pandemic, 
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increases in SHM and antibody affinity were observed over several months [52]. This 

was corroborated by other studies of SARS-CoV-2 infection based on peripheral blood 

samples [53,54]. However, because postmortem samples of spleen and lymph nodes from 

severely infected COVID-19 patients showed disrupted GCs, these studies presented no 

direct evidence of persisting GCs [52].

Other studies have utilized ultrasound-guided fine-needle aspiration to detect GC B cells 

in lymph nodes after vaccination in humans [55,56]. Notably, the use of mRNA vaccines 

in response to the COVID-19 pandemic has highlighted the importance of vaccine design 

in influencing GC magnitude and persistence. In humans, two doses of BNT162b2 (Pfizer-

BioNTech), an mRNA vaccine encoding the spike protein (S) of SARS-CoV-2, produced an 

S-specific GC response that lasted up to 6 months post immunization [56-58]. In contrast, 

immunization with the unadjuvanted quadrivalent inactivated vaccine for influenza virus 

induces an antigen-specific GC that lasts between 2 and 4 months post vaccination [55; 

unpublished data]. While exposure history and pre-existing memory may complicate the 

comparison between these vaccines in humans, the strength of the GC response to mRNA 

vaccination suggests that it could be a useful strategy for increasing GC persistence after 

immunization.

These studies in murine and NHP models and humans demonstrate that GCs can persist for 

extended periods. Classical dogma based on hapten immunizations in mice would suggest 

that B-cell responses are rapidly generated, affinity-matured, and GCs are only maintained 

for a few weeks. However, the studies above indicate that GC responses can persist for 

months following infection or vaccination and that the antigen-specific B-cell repertoire 

can continue to mutate and affinity-mature over this period. To design vaccines that elicit 

these persistent GC reactions, multiple factors should be considered that may influence the 

duration of the GC.

Factors influencing germinal center persistence

Antigen persistence

After immunization, the antigen is rapidly delivered to the draining lymph nodes [59-61], 

but only retained for days to weeks within the B-cell follicles [62]. Opsonization of 

antigens by complement or immunoglobulins generates immune complexes, which can be 

efficiently trafficked into follicles by subcapsular sinus macrophages [63,64]. These immune 

complexes are then captured and retained on the surface of FDCs, which present membrane-

bound antigens to B cells for selection within the GC [15,16]. B-cell clones will test the 

affinity of their BCRs in a mechanosensory process [65,66], interacting with FDCs [67] 

to extract antigen from their surface [68]. FDCs are unique antigen-presenting cells in that 

they recycle and retain immune complexes without degradation on their surface for extended 

periods [14,69], thus acting as a source of intact antigen to fuel ongoing selection in the GC.

Extended antigen persistence may contribute to the durability of GC responses. In 
silico modeling suggests that while T-cell help is necessary for generating GCs, antigen 

consumption by B cells governs the duration of the GC [70]. Computational modeling 

also predicts that immune complex formation and antigen concentration on the surface 
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of FDCs dictate GC kinetics and that increased antigen availability results in increased 

numbers of GC B cells in mice [39]. In vivo, persistent antigen has been found to influence 

GC B-cell numbers and Tfh cells. In vesicular stomatitis virus (VSV)-infected mice that 

exhibited GCs up to 100 days post infection, antigen persisted on FDCs for the duration 

of the GC [71]. Mice immunized with a continuous supply of antigen exhibit prolonged 

antigen retention on the surface of FDCs and a greater number of GC B cells compared 

with the bolus immunization [39]. A constant supply of antigens also positively correlates 

with the magnitude of the Tfh-cell response and the maintenance of the Tfh phenotype [72]. 

This finding agrees with the result that viral persistence drives CD4 T cells toward a Tfh 

phenotype [73], suggesting that persistent antigen influences both GC B- and Tfh-cell levels. 

Additionally, the lack of antigen presentation by B cells reduces Tfh-cell differentiation 

[74]; thus, a constant source of antigen from FDCs to B cells is likely necessary to sustain 

cognate B–Tfh interactions.

Limited evidence in human studies also suggests antigen persistence may contribute to 

GC duration. GC responses that lasted up to 6 months have been detected in humans that 

received SARS-CoV-2 mRNA vaccines [56]. Röltgen et al. separately demonstrated that 

SARS-CoV-2 vaccine S-protein is present in lymph node GCs of vaccinees up to 60 days 

post second dose [75]. If such mRNA vaccine-derived antigen is indeed driving long-lasting 

GCs in human vaccine recipients, it would support the hypothesis that GC persistence is 

dependent on antigen availability.

Other computational modeling experiments demonstrate that while increased antigen 

availability extends the length of the GC reaction, it can also influence the degree of 

affinity maturation the B-cell repertoire undergoes [76], as lower-affinity B-cell clones can 

compete for help with increased antigen availability. These results have been confirmed in 
vivo, where sequential immunization with antigen variants has been shown to broaden the 

reactivity of the B-cell response [77], suggesting that increased antigen persistence may not 

only lengthen GC responses but also influence repertoire diversity and affinity [78].

T-follicular helper cells

Tfh cells play an important role in the GC reaction by providing ‘help’ to antigen-specific 

B- cell clones in the form of CD40 ligand (CD40L), interleukin (IL)-21, and IL-4 [79]. B 

cells that do not receive co-stimulation after binding antigen likely die [80], and Tfh-cell 

impairment in mice results in reduced or absent GCs [81-83]. While Tfh cells are not only 

involved in initiating GC responses, they likely contribute to determining GC duration, 

as GCs stimulated by T-independent antigens such as 4-Hydroxy-3-nitrophenylacetic (NP)-

Ficoll do not persist as long as conventional T-dependent GCs [84]. T-cell help is considered 

a possible limiting factor in GC selection, with GC B cells competing for survival signals 

by presenting antigen to Tfh cells to enter the DZ and clonally expand [18]. However, 

some data suggest that T-cell help may not be necessary for LZ–DZ cycling [85]. Instead, 

increased Tfh-cell help ‘refuels’ GC B cells for improved survival and proliferation in 

the DZ, promoting selection and polyclonal responses [85]. This model demonstrates how 

cognate B–T-cell interactions may not be necessary for B-cell GC cycling, but are required 
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to sustain prolonged GC responses. Without Tfh-cell help, GC B cells cannot receive growth 

and proliferation signals [85,86] necessary for long-lived GCs.

In addition to controlling selection and proliferative capacity, Tfh cells also influence the 

terminal differentiation of GC B cells to plasma cells or MBCs, in part by regulating GC 

persistence. Increased plasma cell differentiation due to constitutive CD40L expression in 

mouse B cells results in premature termination of GCs [87]. The Tfh-cell repertoire also 

likely plays a role in determining GC persistence. Experiments suggest low-affinity T-cell 

antigens result in early GC collapse and reduced memory B-cell output [88]. The length 

of the GC reaction may also be determined by the differentiation of Foxp3+ Tfh cells, also 

known as Tfh-regulatory cells [89]. These cells have been found to expand in mice before 

GC contraction, with late-stage GC B cells displaying prolonged interactions with Foxp3+ 

Tfh cells [90]. Tfh-regulatory cells have also been shown to suppress Tfh numbers [89]. 

Disruption of B-cell interactions with Tfh-regulatory cells results in elevated GC responses 

[91]. Thus, Tfh phenotypic changes likely influence the length of GCs. These studies 

demonstrate that by influencing GC entry, proliferation of GC B cells, and GC termination, 

Tfh cells are critical in determining GC length by controlling many of the ‘on’ and ‘off’ 

switches for sustained B-cell responses.

Proliferative capacity and B-cell receptor signaling

As GCs are derived from the clonal expansion of proliferating B cells, the persistence of 

GC responses is influenced by the divisional capacity and internal signaling of B cells. 

The formation and maintenance of GCs are dependent on the expression of the cell cycle 

regulator c-Myc in B cells [92,93]. Downstream of BCR signaling, c-Myc controls the 

expression of D-type cyclins necessary for the DZ GC B-cell proliferation [94]. The levels 

of c-Myc expression proportionally dictate the amount of cellular expansion in the DZ [95], 

and proliferative capacity is controlled by the Tfh-cell help [85] and BCR/CD40 signaling 

[96]. Blocking these signals or knocking out cyclin D3 reduces proliferation in the GC [97]. 

Inhibition of c-Myc also results in reduced GC size [93]. Thus, the degree to which B-cell 

clones continuously receive proliferative signals likely influences the overall duration of the 

GC response.

Type of infection or antigen exposure

How long GCs persist is influenced by whether a pathogen generates an acute or chronic 

infection. Mouse models utilizing LCMV, which can produce acute or chronic infections 

depending on the strain used and infection dose, demonstrate that chronic viral infections 

drive more extended GC responses. Mice chronically infected with LCMV had GC B cells 

that persisted up to 60 days post infection [44]. Chronic LCMV infection generates higher 

numbers of GC B cells and increased antiviral antibody titers over time compared with acute 

infection [44,45]. While B cells accumulate mutations in acute and chronic infections, long-

term chronic infections generate higher-neutralizing antibody titers dependent on SHM of 

antibody clones, and sustain clonal diversity throughout the response [44,45]. Additionally, 

for some pathogens, the generation of a potent neutralizing antibody response is dependent 

on appreciable levels of affinity maturation, as evidenced by longitudinal analysis of 

responses to Ebola virus in humans [51]. These results in mice strongly suggest that 
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persistent GCs are more likely to be established by chronic pathogen infections. However, 

evidence for persisting GCs in mice in response to influenza [42] or VSV [71] infection 

indicates that the persistence of antigen may continue to drive GC responses even after viral 

infection has been resolved.

Infection or vaccination with pathogens (live or inactivated) is more likely to generate long-

lived GC responses than vaccination with protein antigens. A longitudinal study in humans 

found that half-lives for antibody responses to viral antigens were far greater (50–200 years) 

than for responses to nonreplicating protein antigens (11–19 years) [98]. Mice immunized 

with protein antigens typically do not generate GCs that persist for more than a few weeks 

[21,99]. Still, modulation of the delivery method of protein antigen to better stimulate 

pattern recognition receptors of the innate immune system can increase GC duration to over 

one year [38]. The method of vaccination used to stimulate GC responses likely greatly 

influences whether GCs are maintained for long periods.

Method of vaccination

Modulating the vaccine delivery method beyond bolus injection or the adjuvant used has 

been shown to contribute to the development of prolonged GC responses. An escalating dose 

regimen of antigen delivery, in which mice were immunized with exponentially increasing 

doses of a protein antigen, was shown to increase both the magnitude of the antibody 

response and the numbers of GC B cells [39]. It is hypothesized that this method of antigen 

delivery improves the GC response by providing a continuous supply of intact antigens 

rather than degraded epitopes for diverse B-cell selection [100]. Another possibility is that 

greater antigen supply increases the probability that antigen–antibody immune complexes 

form due to early PB induction. FDCs can then capture and retain these immune complexes 

for GC B-cell selection. Increased antigen dosing may also overcome pre-existing high-

affinity antibody titers that clear antigen before it can be presented in GCs, thus limiting the 

GC response.

Multiple studies have validated the continuous supply of antigens as a robust method for 

optimizing antibody responses. Osmotic pump immunization utilized in NHPs demonstrated 

that extended immunogen release could improve neutralizing antibody titers to human 

immunodeficiency virus (HIV) versus bolus injection of antigen [101]. Osmotic pump 

delivery of antigen [102] and mini collagen pellets [103] have also been shown to modulate 

mouse antibody responses. Finally, slow antigen release devices have been shown to induce 

high-titer antibody responses and long duration in sheep [104]. In addition to the method 

of antigen delivery, modulating the site of booster vaccination may contribute to improving 

GC persistence and MBC recall. Data in mice indicate that ipsilateral boosting with antigen 

rather than contralateral boosting more efficiently recalls MBC to secondary GC reactions 

[105]. This result may be observed because ipsilateral boosting better coordinates cognate 

antigen delivery with persistent GCs in draining lymph nodes, thus helping to expand the 

MBC repertoire. In agreement with the studies supporting increased antigen availability 

contributing to persisting GCs, altering vaccination strategies to supply antigen continuously 

will likely extend GC response duration.
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Insights from ‘naturally’ persisting germinal centers — gut and tertiary lymphoid 
structures

In addition to the studies cited above contributing evidence regarding the factors that 

extend GC duration, some information may be gleaned by studying two scenarios where 

GCs persist naturally for extended periods. In contrast to the typically assumed transient 

GCs of SLOs, GCs persist chronically in the Peyer’s patches of the murine gut due to 

continuous stimulation by commensal bacteria [reviewed in 106,107]. However, there is 

underdeveloped gut-associated lymphoid tissue and an absence of GCs in the gut of germ-

free mice [108,109], suggesting a lack of antigen results in an abrogation of the persistent 

GC response. Murine gut GCs have been shown to robustly select antigen-specific clones 

and facilitate SHM and affinity maturation of BCRs [110], despite a lack of immunization 

or infection. The rate of B-cell selection is tunable based on the presence or absence of 

microbiota, with faster clonal dominance occurring in germ-free mice [110]. Collectively, 

data from gut GCs indicate that persistent GC reactions likely require continuous antigen 

stimulation, but also that long-lived GCs can support complex clonal selection. Thus, 

stimulating persisting GCs in SLOs will likely support diverse B-cell repertoires.

Further support for the benefit of persisting GCs comes from tertiary lymphoid structures 

(TLSs). TLSs are ectopic lymphoid structures that develop outside of SLOs at sites of 

inflammation or chronic antigen stimulation and are associated with both autoimmune 

diseases and tumors [reviewed in 111,112]. TLSs associated with tumors can generate 

mature GCs and support antigen-driven B-cell selection [reviewed in 111]. In several forms 

of cancer, the presence of TLSs with GCs has been associated with improved patient 

prognosis. Patients with pancreatic ductal adenocarcinoma that develops TLS GCs show 

increased rates of B-cell SHM and improved survival [113]. Improved prognosis was 

also associated with TLS GCs in patients with lung squamous cell carcinoma [114] and 

colorectal cancer [115]. B-cell signatures and GCs in tumors are enriched in patients that 

respond positively to immune checkpoint blockade therapy [116], and CXCL13-producing 

Tfh cells have been found to be a positive biomarker for survival in patients with breast 

cancer (presumably indicative of GC activity) [117]. The development of TLS GCs in the 

presence of chronic antigen stimulation (tumors) and the improved association of these GCs 

with patient survival provides another ‘natural’ example of persistent GCs that require a 

continuous source of antigen and generate enhanced humoral effector output.

Why should we care about persistent germinal centers?

The goal of understanding the factors that influence the GC reaction is to design better 

vaccines that produce long-lasting humoral immunity. This is contingent on the ability of a 

vaccine to generate effective MBC repertoires and long-lived BMPCs. Part of the difficulty 

in generating vaccines against certain infectious agents is the high degree of antigenic 

variability that allows the pathogen to evade the humoral immune system. This is seen 

with HIV, malaria, influenza, and, most recently, SARS-CoV-2. Generating more persistent 

GC responses may facilitate protection against such pathogens by boosting antibody titers 

and generating greater SHM in MBCs and BMPCs [46,57]. Extended GC responses may 

contribute to generating a repertoire of responding B cells that more broadly bind pathogen 

strains [56], potentially generating MBC pools that can anticipate pathogen mutants. 
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Persistent GCs can support a complex polyclonal selection environment, with ‘invader’ 

clones continuously entering the ongoing GC reactions [31,41]. This likely contributes to the 

‘permissive’ selection of a diversity of clones spanning various affinities [118], and thus is 

more likely to produce highly mutated B-cell clones while preventing responses from being 

biased toward a limited repertoire.

One potential mechanism for how persistent GCs benefit the B-cell repertoire could be 

extended access to novel antigen epitopes (Figure 1). If early PB responses generated 

by MBCs produce secreted antibodies to conserved epitopes, these antibodies could form 

immune complexes or bind antigens on the surface of FDCs. These early secreted antibodies 

would block access by GC B-cell clones to the conserved epitopes unless BCRs were 

of sufficiently high affinity to outcompete the MBC clonotypes. This would drive B-cell 

selection toward clonotypes targeting nonconserved or novel epitopes, thus ensuring a more 

diverse repertoire while simultaneously supporting the development of high-affinity clones. 

In a scenario where GC duration is relatively short, this process could be ‘shut down’ early 

by secreted antibodies reducing intact antigen persistence. The result would be limited B-

cell selection and maintenance of a MBC pool targeting conserved, previously experienced 

epitopes (i.e. ‘antigenic imprinting’ phenomenon observed with influenza). However, if GC 

reactions were extended for long periods, it would allow for B-cell selection against the 

exposed epitopes and increase the diversity of exported MBC and BMPC clones. Greater 

SHM loads and increased diversity would facilitate broader binding to pathogen strains. 

Thus, persistent GCs would yield the best ‘fruit’ for future humoral responses.

Evidence for such a mechanism has been identified by Tas and colleagues in mice. Broadly 

binding, low-affinity primary antibody responses can enhance recruitment of naive cells to 

GCs upon secondary challenge, while high-titer, high-affinity primary responses focused on 

specific epitopes reduce later cognate B-cell recruitment to GCs [119]. This inhibition of 

naive B-cell recruitment can be overcome with excess antigen doses [119], lending credence 

to the hypothesis that antigen availability influences GC responses. High-affinity primary 

responses may result in increased antigen clearance upon subsequent rechallenge, limiting 

GC duration. These data demonstrate the importance of considering how primary responses 

influence subsequent GC reactions when designing vaccine regimens, particularly when 

antigenic variability is a concern.

Conclusion

This review summarizes how GCs, once previously believed to last only a few weeks, are 

structures that can be persistently maintained in SLOs for months after the pathogen has 

been cleared. Many factors likely contribute to whether a GC subsides or is continuously 

renewed, including antigen persistence, ongoing Tfh-cell help, B-cell proliferative capacity, 

and the mode of infection or immunization. While GCs are perceived as transient in the 

spleen and lymph nodes, studying persistent GCs under chronic stimulation conditions, such 

as the gut and TLSs, may provide evidence for how to prime long-term reactions. The 

development of new strategies for vaccination will permit GC responses that persist long 

after the initial immunization. Such GCs may better generate MBCs and BMPCs that protect 

against antigenically variable pathogens.
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Figure 1. 
Potential mechanism for how persistent GCs could increase memory B-cell repertoire 

diversity. Upon encountering antigens, MBCs rapidly generate PB responses that produce 

antibodies to previously encountered epitopes. These antibodies bind antigen to form 

immune complexes, which are then deposited on the surface of FDCs within GCs. These 

immune complexes may impede repertoire diversification in short-lived GCs by blocking 

access to epitopes or reducing the duration of antigen presentation. However, persistent 

GCs could allow for sufficient time for prolonged access of naive B cells to exposed novel 

epitopes. These clones could be selected and exported as MBCs, expanding the repertoire 

and driving future responses away from conserved epitopes or antigenic imprinting.
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