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Abstract
Background and aim: Metabolic syndrome (MetS) increases the risk of atherosclerosis 
and diabetes, but there are no approved predictive markers. This study assessed the 
role of specific genetic variations in MetS susceptibility and their impact on clinical 
manifestations.
Method: In	this	study,	a	genotype–phenotype	assessment	was	performed	for	IKZF3	
(rs907091),	microRNA-	let-	7a-	2	(rs1143770),	and	lncRNA-	CDKN2B-	AS1	(rs1333045).
Results: Analyses	 indicate	 that	while	 rs907091	and	 rs1143770	may	have	potential	
associations with MetS susceptibility and an increased risk of atherosclerosis and dia-
betes, there is an observed trend suggesting that the rs1333045 CC genotype may 
be	associated	with	a	decreased	risk	of	MetS.	The	genotypes	and	allele	frequencies	of	
rs1333045	were	significantly	different	between	studied	groups	 (OR = 0.56,	95%	CI	
0.38–0.81,	p = 0.002,	and	OR = 0.71,	95%	CI	0.55–0.92,	p = 0.008),	with	the	CC	gen-
otype	displaying	 increased	 levels	of	HDL.	Furthermore,	the	rs907091	TT	genotype	
was	associated	with	increased	triglyceride,	cholesterol,	and	HOMA	index	in	MetS	pa-
tients.	Subjects	with	the	CC	genotype	for	rs1143770	had	higher	HbA1c	and	BMI.	In	
silico analyses illustrated that rs907091 C remarkably influences the secondary struc-
ture	and	the	target	site	of	a	broad	spectrum	of	microRNAs,	especially	hsa-	miR-	4497.	
Moreover,	rs1333045	creates	a	binding	site	for	seven	different	microRNAs.
Conclusion: Further	 studies	on	other	populations	may	help	 confirm	 these	SNPs	as	
useful predictive markers in assessing the MetS risk.
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1  |  INTRODUC TION

Metabolic syndrome (MetS), also known as syndrome X and insulin 
resistance syndrome, is a multifactorial disorder that is considered a 
major risk factor for cardiovascular disease, type 2 diabetes mellitus 
(T2DM),	stroke,	and	cardiovascular	mortality.1–3	It	is	worth	mention-
ing that there are different risk factors including insulin resistance, 
obesity, atherogenic dyslipidemia (hypertriglyceridemia and reduced 
levels	 of	 high-	density	 lipoprotein	 cholesterol	 (HDL-	C)),	 and	hyper-
tension implicated in MetS development.4,5	Apart	from	that,	other	
factors	such	as	age,	higher	body	mass	index	(BMI)	and	HbA1c	level,	
elevated	diastolic	blood	pressure	(DBP)	and	waist	circumstance,	ele-
vated	low-	density	lipoprotein	(LDL)	and	triglyceride	(TG),	decreased	
HDL,	and	alcohol	consumption	could	raise	the	susceptibility	to	MetS	
progression.6–8	Despite	a	large	number	of	studies	on	the	mechanism,	
diagnosis, and therapeutic strategies, MetS remains a main health 
concern worldwide.9–11 The global prevalence of MetS has been 
estimated	to	be	about	20%–25%	and	would	be	higher	in	the	Asian	
population	(12%–37%).7,12 Therefore, identifying highly specific bio-
markers to predict susceptibility to MetS might help prevent disease 
development and even death.

In	 the	 Iranian	 population,	 nitric	 oxide	 synthase	 3	 (NOS3)-	
c.894G>T was found to be associated with an increased MetS risk in 
Iranian–Azerbaijanis,	with	the	BMI	influencing	the	effects	of	NOS3-	
c.894G>T genotypes on MetS risk.13	Another	study	investigated	the	
interactions	between	rs1761667	polymorphism	and	dietary	patterns	
on cardiometabolic risk factors and MetS risk in apparently healthy 
individuals.	Adherence	 to	 a	diet	 rich	 in	 fiber,	 fish,	 and	dairy	prod-
ucts demonstrated a more pronounced effect on cardiometabolic 
risk	 factors	 in	 A-	allele	 carriers	 compared	 to	 the	 GG	 genotype	 of	
rs1761667	polymorphism.14	Additionally,	kernel	machine	regression	
models	in	the	Tehran	Cardio-	metabolic	Genetics	Study	assessed	the	
association	 between	 BUD13	 homolog	 (BUD13), ZPR1 zinc finger 
(ZPR1),	and	apolipoprotein	A-	V	(APOA5)	SNPs	in	the	11p23.3	region	
with	 lipid-	related	 traits	 in	MetS,	 especially	 those	affected	by	high	
triglyceride levels.15

Correspondingly,	 recognizing	 non-	coding	 RNAs	 (ncRNAs)	 in-
volved in the regulation of lipid metabolism, insulin secretion, and 
blood pressure control might pave this road. Several studies illus-
trated	 that	 IKAROS	Family	Zinc	Finger	3	 (IKZF3),	 long	non-	coding	
RNAs	cyclin-	dependent	kinase	inhibitor	2B	(lncRNA	CDKN2B- AS1), 
and	microRNA	lethal	7-	a2	(let7- a- 2) are involved in lipid metabolism 
disorders, type 2 diabetes mellitus, diabetic neuropathy, inflam-
mation, cerebral and cardiovascular diseases, and atherosclerosis 
disorders through regulating numerous pathways comprising B lym-
phocyte proliferation and differentiation and lipid (especially TG and 
cholesterol) metabolism.16–19 Given the wide spectrum functions of 
the	above	genes,	any	variation,	particularly	single-	nucleotide	poly-
morphisms	 (SNPs),	 in	 their	 sequence	might	 dramatically	 influence	
their	 expression	 and	 function	 and	 could	 consequently	 promote	
MetS development.

The present study aimed to determine the association between 
IKZF3 rs907091 T>C,	 microRNA- LET7A2 rs1143770 C>T, and 

lncRNA- CDKN2B- AS1 rs1333045 T>C and the risk of its develop-
ment. To the best of our knowledge, this is the first study investigat-
ing	the	association	of	these	SNPs	with	MetS.

2  |  MATERIAL S AND METHODS

2.1  |  Subjects

This	 study	 included	369	 (252	men	 and	117	women)	 patients	with	
MetS	 and	 200	 (137	 men	 and	 63	 women)	 normal	 subjects.	 The	
subjects were diagnosed and recruited at 17 Shahrivar hospi-
tal	 in	Amol,	 Iran,	 based	 on	 a	 cohort	 study	which	 is	 ongoing	 since	
2008.20,21 The subjects were screened and selected according to 
the	following	 inclusion	and	exclusion	criteria:	 the	 inclusion	criteria	
consisted	 of	 age > 20 years;	 TG > 150 mg/dL,	HDL	 (female < 50 mg/
dL,	 male < 40 mg/dL),	 waist	 circumference	 (female > 89 cm,	
male > 102 cm),	 fasting	blood	 sugar	 (FBS)	>100 mg/dL,22 and mean 
arterial	 pressure	 (MAP)	 >100 mmHg,23	 and	 the	 exclusion	 criteria	
consisted of subjects with underlying diseases and infection with 
Epstein–Barr	 virus	 (EBV)	 or	 cytomegalovirus	 (CMV).	 Biochemical	
criteria	 (TG,	 cholesterol,	 LDL,	 HDL,	 aspartate	 aminotransferase	
[AST],	 alanine	 aminotransferase	 [ALT],	 HbA1C,	 FBS,	 gamma-	
glutamyl	 transpeptidase	 [GGT],	 C-	reactive	 protein	 [CRP]	 and	 al-
kaline	 phosphatase	 [ALP]),	 hematological	 index	 (hemoglobin	 [Hb],	
mean	 corpuscular	 volume	 [MCV],	 mean	 corpuscular	 hemoglobin	
[MCH],	hematocrit	[HCT],	and	mean	cell	hemoglobin	concentration	
[MCHC]),	and	other	clinical	and	physiological	parameters	 including	
systolic	blood	pressure	(SBP),	DBP,	MAP,	height,	weight,	BMI,	waist,	
hip,	and	fatty	liver	were	collected	from	existing	records.	All	partici-
pants provided written consent before they participated, and all pro-
tocols were approved by the Ethics Committee of Babol University 
of	Medical	Sciences	(IR.MUBABOL.REC.1400.039).

2.2  |  Single- nucleotide polymorphism selection

SNPs	 including	 IKZF3 rs907091 T>C (3′UTRs	 variant),	microRNA-	
LET7A2 rs1143770 C>T	(promoter	variant),	and	lncRNA	CDKN2B- AS1 
rs1333045 T>C	(intronic	variant)	were	retrieved	from	the	SNP	data-
bases	of	ENSEMBL	v70,	NCBI	db	SNP,	and	HapMap	by	considering	
minimum minor	allele	frequency	(MAF) ≥ 0.05.

2.3  |  DNA extraction and genotyping

Genomic	 DNA	 was	 isolated	 from	 peripheral	 whole	 blood	 by	 the	
salting-	out	 method.	 Genotyping	 of	 IKZF3,	 microRNA-	LET7-	a-	2,	
and	 lncRNA-	CDKN2B	genes	was	 performed	using	PCR-	RFLP.	 The	
PCR	 primers	were	 designed	 using	AlleleID	 7.0	 (Table 1). The PCR 
and	single-	base	extension	were	performed	in	a	20-	μL	reaction	mix-
ture,	containing	1.5 μL	genomic	DNA	(20–50 ng),	1 μL of each primer 
(0.05 μmol),	8.5 μL H2O,	and	8 μL	PCR	master	mix	 (Pars	 tous,	 Iran).	

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/minor-allele-frequency
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PCR reactions were carried out using a thermocycler (Eppendorf, 
Hamburg,	Germany),	under	the	following	conditions:	95°C	for	5 min	
followed	 by	 35 cycles	 of	 94°C	 for	 20 s,	 annealing	 temperature	 for	
35 s	 (Table 1)	and	then	72°C	for	35 s,	and	a	final	extension	step	of	
72°C	for	5 min.

2.4  |  In silico analysis

Bioinformatics	 online	 databases	 including	 PolymiRTS	 Database	
3.024	and	miRNASNP	v2.025	were	recruited	to	investigate	microRNA	
binding	sites.	In	addition,	the	RNAhybrid	v2.1.2	tool	was	engaged	in	
order	to	analysis	the	impact	of	SNPs	on	putative	microRNAs	targets.	
In	this	regard,	highly	stable	microRNA/mRNA	duplexes	show	a	very	
low	minimum	free	energy	(MFE)	(kcal/mol),	and	MFE	was	calculated	
for both variant alleles. Moreover, the Sfold 2.2 web server was used 
to	predict	the	impact	of	different	alleles	of	SNPs	on	the	secondary	
structure.

2.5  |  Statistical analyses

The sample size for this genetic association study was determined 
through	power	analysis	using	the	QUANTO	program.26 Setting the 
significance level (α)	at	5%	and	aiming	for	a	statistical	power	(1 − β) 
of	80%,	we	conducted	the	analysis	based	on	the	prevalence	of	MetS	
in	the	Iranian	population,	which	was	derived	from	the	literature	and	
established	at	0.26.27	Additionally,	we	considered	 the	MAF	of	 the	
selected	SNPs,	obtaining	this	information	from	the	PubMed	SNP	da-
tabase,	with	a	specific	focus	on	frequencies	observed	in	the	other	
Asian	population.	Notably,	the	selected	sample	size	was	calculated	
to	meet	the	smallest	sample	size	suitable	for	each	of	the	three	SNPs,	
further enhancing the reliability and robustness of our investigation.

Clinical characteristics and demographic data of studied subjects 
and their genotypes were statistically analyzed using R programming 
language (version 4.0.3)28 given that the Q–Q	plot	and	Shapiro–Wilk	
test showed that some of the continuous variables do not follow a 
normal	 distribution,	 median,	 interquartile	 range	 (IQR)	 and	Mann–
Whitney U test were considered instead of mean, standard devia-
tion, and Student's t-	test,	respectively.	Furthermore,	the	Chi-	square	
test and linear regression model were adjusted with confounders 

including	 sex,	 age,	 height,	 CRP,	 hemoglobin,	 ALT,	 AST,	 ALP,	 GGT,	
MCV,	 MCH,	 MCHC,	 and	 smoking	 history.	 Moreover,	 the	 odds	
ratio	 (OR)	and	 its	corresponding	95%	confidence	 interval	 (95%	CI)	
were	calculated.	Three	central	body	obesity	 indices	 including	BMI	
(Weight/Height2),	Waist-	to-	Hip	Ratio	 (WHR),	 and	Waist-	to-	Height	
Ratio	 (WHtR)	 also	 were	 included	 in	 the	 features.	 Pearson's	 Chi-	
square	test	was	analyzed	for	each	polymorphism	in	controls	to	find	
out	any	possible	deviation	from	Hardy–Weinberg	equilibrium	(HWE)	
and genotyping error. While genetic polymorphisms are more likely 
to function in only one inherited way, we aimed to throughly investi-
gate the potential associations between the genetic polymorphisms 
and	 MetS	 by	 considering	 multiple	 genetic	 models	 (co-	dominant,	
dominant,	 overdominant,	 recessive,	 and	 log-	additive),	 providing	 a	
more comprehensive understanding of their role. Genetic models 
and genotype associations analyses were conducted applying the R 
package	SNPassoc.29 This package allows incorporating the speci-
fied confounders as covariates in the logistic regression model. By 
considering these confounders in our analysis, we aimed to minimize 
their potential influence on the observed associations between the 
genetic polymorphisms and the outcome of interest, such as MetS. 
The	false	discovery	rate	was	controlled	by	Benjamini–Hochberg	(BH)	
correction, and an adjusted p-	value	<0.05 has been considered sta-
tistically significant.

3  |  RESULTS

3.1  |  Patients' characteristics

The	study	groups	included	369	MetS	patients	and	200	normal	sub-
jects	with	68%	male	participants	in	each	group	(Table 2). The mean 
age	of	MetS	patients	and	healthy	controls	was	50.44 ± 14.65 years	
and	 49.92 ± 15.23 years,	 respectively.	 Results	 showed	 significantly	
higher	values	of	fatty	liver	(grade	I–III),	diabetes,	waist,	weight,	BMI,	
hip	 circumference,	 WHR,	 FBS,	 TG,	 GGT,	 ALT,	 HbA1c,	 SBP,	 DBP,	
MAP,	WHtR,	homeostatic	model	assessment	 for	 insulin	 resistance	
(HOMA)	index	(p < 0.0001),	CRP	(p < 0.008)	and	serum	insulin	levels	
(p < 0.013),	 and	 lower	 values	of	HDL	 (p < 0.0001)	 in	patients	 com-
pared	 to	 the	 control	 group.	 It	 is	worth	 noting	 that	 there	were	 no	
significant	differences	between	age,	height,	cholesterol,	Hb,	MCV,	
MCH,	HCT,	MCHC,	LDL,	ALP,	and	AST	in	the	studied	groups.

TA B L E  1 The	sequence	of	primers	and	PCR-	RFLP	conditions.

Polymorphisms Primer sequences (5′ → 3′) Allele Region

Annealing 
temperature 
(°C)

Amplicon 
size (bp) Enzyme

Fragment 
length (bp)

rs907091 F:	GGTGA	GGC	TTC	CCA	GCA	AGGTC T/C 3′UTR 62 371 NciI C = 245,	126
T = 371R:	GACCT	CGC	CTA	ACA	GAT	TGCTCTC

rs1143770 F:	GAAGG	GAG	CAA	ATA	CTT	GGGACTG C/T Promoter 62 429 HincII C = 285,	110
T = 414R:	GAGAA	ATG	CTG	AAA	CAG	TCA	ACTCTG

rs1333045 F:	CATTG	GAG	TCA	GGC	TGC	TGGAG T/C Intron 62 470 MvaI C = 190,	280
T = 470R:	GACCT	CGC	CTA	ACA	GAT	TGCTCTC
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TA B L E  2 Demographic	characteristics	of	metabolic	syndrome	patients	and	controls.

Clinical characteristics

Cases (n = 369) Controls (n = 200) p- value

Mean ± SD Mean ± SD

BHMedian (IQR) Median (IQR)

Sex
Male 252 137 1
Female 117 63

Fatty
Non-	fatty 173 132 >0.0001*
Grade	I 94 38 0.5127
Grade	II 74 21
Grade	III 28 9

Diabetes
Diabetic 114 18 <0.0001*
Non-	diabetic 255 182

Age 50.44 ± 14.65 49.92 ± 15.23 0.69
Waist circumference (cm) 93.57 ± 9.52 87.5 ± 10.87 <0.0001*
Height (cm) 165.11 ± 9.61 165 ± 10.3 0.94
Weight (kg) 81.56 ± 14.9 74.23 ± 15.64 <0.0001*
Hip (cm) 103	(98–108) 99	(93–106) <0.0001*
FBS	(mg/dL) 110	(103–129) 95	(90–102) <0.0001*
TG (mg/dL) 140	(95–195) 99	(79–133) <0.0001*
Cholesterol (mg/dL) 185.28 ± 41.72 184.08 ± 43.05 0.65
GGT (U/L) 26.7	(21.55–36.9) 22.1	(17.8–30.8) <0.0001*
CRP (mg/dL) 1	(1–4) 1	(0–2) 0.013*
Hb (g/dL) 14.4	(13.2–15.57) 14.25	(13–15.3) 0.15
MCV	(fL) 85	(80.4–87.6) 84.65	(80.57–88.22) 0.52
MCH (pg) 29.4	(27.9–30.4) 29.5	(27.32–30.6) 0.54
HCT 41.61 ± 4.20 40.86 ± 4.19 0.07
MCHC (g/dL) 34.6	(33.9–35) 34.45	(33.8–35.1) 0.57
HDL	(mg/dL) 39.39 ± 8.82 43.83 ± 10.13 <0.0001*
LDL	(mg/dL) 96.78 ± 25.39 100.76 ± 26.67 0.09
ALP	(U/L) 199	(160–252) 195	(159–231) 0.20
ALT	(U/L) 23	(16–34) 18	(13.97–27) <0.0001*
AST	(U/L) 21	(18–27) 20	(17–25) 0.17
HbA1c	(mmol/mol) 5	(4.6–5.7) 4.4	(4–5) <0.0001*
SBP (mmHg) 125	(110–140) 115	(100–125) <0.0001*
DBP	(mmHg) 80	(70–90) 70	(60–80) <0.0001*
MAP	(mmHg) 96.27 ± 14.67 86.54 ± 13.31 <0.0001*
BMI	(kg/m2) 29.41	(26.34–33.11) 26.67	(23.49–30.30) <0.0001*
WHR 0.904 ± 0.066 0.874 ± 0.067 <0.0001*
WHtR 0.568 ± 0.066 0.531 ± 0.070 <0.0001*
Smoking

Yes 301 165 1
No 57 31

Serum insulin levels (pmol/L) 10.93	(7.30–15.03) 9.04	(6.26–13.59) 0.008*
HOMA	index 2.93	(1.89–4.29) 2.13	(1.35–3.21) <0.0001*

Note:	Chi-	square	test	(p-	value)	was	used	for	categorical	variables	(e.g.,	sex	and	diabetes),	while	t-	test	(p-	value)	was	utilized	for	continuous	variables	(e.g.,	
Age	and	FBS).	BH	denotes	the	corrected	p-	value	for	multiple	comparisons	(Benjamini	&	Hochberg).	Significance	level	was	set	at	p-	value < 0.05	(*).
Abbreviations:	ALP,	Alkaline	phosphatase;	ALT,	alanine	transaminase;	AST,	aspartate	aminotransferase;	BMI,	body	mass	index;	CRP,	c-	reactive	
protein;	DBP,	diastolic	blood	pressure;	FBS,	fast	blood	sugar;	GGT,	gamma	glutamyl	transferase;	Hb,	hemoglobin;	HCT,	Hematocrit;	HDL,	high-	
density	lipoprotein;	HOMA,	homeostatic	model	assessment;	LDL,	low-	density	lipoprotein;	MAP,	mean	arterial	pressure;	MCH,	mean	corpuscular	
hemoglobin;	MCHC,	mean	cell	hemoglobin	concentration;	MCV,	mean	corpuscular	volume;	SBP,	Systolic	blood	pressure;	TG,	triglycerides;	WHR,	
waist–hip	ratio;	WHtR,	Waist-	To-	Height	Ratio.
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3.2  |  Relationships between demographic and 
clinical factors and IKZF3, lncRNA CDKN2B- AS1, and 
microRNA- LET7- a- 2 genotypes

Analyzing	HWE	for	IKZF3	rs907091,	microRNA- LET7 rs1143770, and 
lncRNA	CDKN2B- AS1 rs1333045 in the control group showed that 
they were all in HWE. Besides, the results have been adjusted for 
confounders	including	sex,	age,	height,	CRP,	Hb,	ALT,	AST,	ALP,	GGT,	
MCV,	MCH,	HCT,	MCHC,	and	smoking	status.	The	genotype	distribu-
tion	and	allele	frequencies	of	IKZF3,	microRNA- LET7- a- 2,	and	lncRNA	
CDKN2B- AS1 and also their genetic models between MetS patients 
and healthy controls are presented in Table 3. There were statisti-
cally significant associations of genotype and allelic variations for 
rs1333045 T>C	(OR = 0.56,	95%	CI	0.38–0.81,	p = 0.002;	OR = 0.71,	
95%	 CI	 0.55–0.92,	 p = 0.008),	 while	 rs907091	 C>T and rs1143770 
C>T did not show statistically significant associations between stud-
ied	 groups.	 In	 addition,	 results	 revealed	 that	 lncRNA	CDKN2B- AS1 
rs1333045T>C was significantly associated with a decreased risk of 
MetS	 progression	 under	 co-	dominant,	 dominant,	 and	 log-	additive	
models	 after	 adjustment	 (CT	 vs.	 TT:	 OR = 0.57,	 95%	 CI	 0.37–0.88,	
p = 0.007;	 CC	 vs.	 TT:	 OR = 0.47,	 95%	 CI	 0.26–0.84,	 p = 0.007,	 co-	
dominant	 model,	 CT + CC	 vs.	 TT:	 OR = 0.66,	 95%	 CI	 0.39–1.10,	

p = 0.003,	dominant	model,	and	TT	vs.	TC	vs.	CC:	OR = 0.66,	95%	CI	
0.50–0.88,	p = 0.004,	log-	additive	model).	Also,	the	frequency	of	the	
C allele in the patients' group was significantly higher than that in the 
healthy	group	(OR = 0.71,	95%	CI	0.55–0.92,	p = 0.008).

Besides,	the	association	of	SNPs	with	TG,	cholesterol,	CRP,	HDL,	
HOMA,	and	HbA1c	values	was	measured	with	adjustment	of	 sex,	
age,	height,	CRP,	Hb,	ALT,	AST,	ALP,	GGT,	MCV,	MCH,	HCT,	MCHC,	
and smoking status (Table 4).	As	shown	in	Table 4, there was a signif-
icant association between IKZF3 rs907091 and TG, cholesterol, and 
HOMA	in	the	patients'	group	and	CRP	in	the	healthy	group	(p = 0.013,	
0.047,	 0.011,	 and	 0.008,	 respectively).	 In	 addition,	 a	 statistically	
significant	 association	was	observed	between	microRNA-	LET7- a- 2 
and	TG,	cholesterol,	CRP	and	HOMA	(p = 0.032,	0.005,	0.022,	and	
0.006,	 respectively)	 in	 patients	 as	 well	 as	 in	 controls	 except	 for	
HOMA	 index	 (p = 0.039,	0.043,	and	0.033,	 respectively).	Although	
lncRNA	CDKN2B- AS1 rs1333045 showed no significant association 
with any of the clinical parameters, in the combined model (patients 
and controls altogether), there were significant associations with 
HDL	and	HOMA	 index	 in	 the	 control	 group	 (p = 0.042	 and	0.030,	
respectively).

The associations between IKZF3 rs907091 T>C,	 microRNA- 
LET7A2 rs1143770C>T,	 and	 lncRNA- CDKN2B- AS1 rs1333045T>C 

TA B L E  3 Genotype	and	allele	distributions	of	three	variants	and	their	association	with	the	risk	of	metabolic	syndrome	under	different	
genetic models.

Variant Genotype

Study population p- Valuea (BH)

Genetic model
Adjusted  
OR (95% CI)

p- Valueb  
(BH)Case Control

Unadjusted OR 
(95% CI)

IKZF3 TT 114	(32%) 51	(27.1%) 0.235 (0.352)
1.27	(0.86–1.87)

Co-	dominant TC 1.19	(0.75–1.88) 0.486

TC 173	(48.6%) 92	(48.9%) CC 1.33	(0.76–2.30) 0.203

CC 69	(19.4%) 45	(23.9%) Dominant TC + CC 1.23	(0.80–1.90) 0.346

T 401	(56.3%) 194	(51.6%) 0.137 (0.274)
1.21 (0.94,1.55)

Recessive CC 1.19	(0.75–1.89) 0.468

C 311	(43.7%) 182 (48.4) Overdominant TC 1.05	(0.71–1.55) 0.80

Log-	Additive TT, TC, CC 1.15	(0.88–1.52) 0.30

microRNA- let7 CC 131	(36.8%) 67	(35.6%) 0.789 (0.789)
1.05	(0.73–1.52)

Co-	dominant CT 1.27	(0.82–1.96) 0.286

CT 154	(43.3%) 92	(48.9%) TT 0.80	(0.45–1.41) 0.481

TT 71	(19.9%) 29	(15.4%) Dominant CT + TT 1.11	(0.74–1.67) 0.621

C 416	(58.5%) 226	(60.1%) 0.592 (0.710)
0.93 (0.72,1.20)

Recessive TT 0.70	(0.42–1.18) 0.171

T 296	(41.5%) 150	(39.9%) Overdominant CT 1.36	(0.92–2.2) 0.12

log-	Additive CC, CT, TT 0.95	(0.72–1.24) 0.68

CDKN2B TT 96	(27%) 75	(39.9%) 0.002* (0.012)
0.56	(0.38–0.81)

Co-	dominant CT 0.57	(0.37–0.88) 0.007*

TC 190	(53.4%) 83	(44.1%) CC 0.47	(0.26–0.84) 0.007*

CC 70	(19.7%) 30	(16%) Dominant CT + CC 0.66	(0.39–1.10) 0.003*

T 382	(53.6%) 233	(62%) 0.008* (0.024)
0.71	(0.55–0.92)

Recessive CC 0.66	(0.39–1.10) 0.105

C 330	(46.4%) 143	(38%) Overdominant TC 0.75	(0.50–1.10) 0.13

log-	Additive TT, TC, CC 0.66	(0.50–0.88) 0.004*

Note:	The	statistical	analysis	for	IKZF3	rs907091	and	CDKN2B	rs1333045	included	Codominant	(TT,	TC,	and	CC),	Dominant	(TT	vs.	TC-	CC),	
Recessive	(TT-	TC	vs.	CC),	and	Overdominant	(TT-	CC	vs.	TC)	models.	For	microRNA-	let7	rs1143770,	the	analysis	encompassed	Codominant	(CC,	CT,	
and	TT),	Dominant	(CC	vs.	CT-	TT),	Recessive	(CC-	CT	vs.	TT),	and	Overdominant	(TT-	CC	vs.	TC)	models.	p-	valuea	was	calculated	using	a	two-	sided	χ2 
test	for	genotype	distributions	or	allele	frequencies,	while	p-	valueb was determined using logistic regression with different models. BH denotes the 
corrected p-	value	for	multiple	comparisons	(Benjamini	&	Hochberg),	presented	in	parentheses.	The	significance	level	was	set	at	p-	value	<0.05 (*).
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genotypes and clinical parameters of MetS were investigated 
(Tables S1–S3). The results showed that the TT genotype at rs907091 
T>C was significantly associated with an increase in TG, cholesterol, 
HOMA	index,	and	insulin	levels	in	the	patients'	group	in	comparison	
with	those	presenting	with	CC	and	CT	genotypes.	It	also	illustrated	
that TT genotype at rs907091 T>C was strongly associated with 
higher	levels	of	LDL,	CRP,	and	HTC	in	the	control	group	compared	to	
CC	and	CT	genotypes.	Furthermore,	the	results	revealed	that	HbA1c	
and	BMI	in	patients	and	CRP	in	the	control	group	were	higher	in	sub-
jects having CC and CT genotypes for rs1143770C>T in comparison 
with those with the TT genotype. There were no statistically signif-
icant associations of rs1333045T>C	with	clinical	criteria,	except	for	
HDL,	which	was	higher	in	subjects	with	CC	genotype	in	comparison	
with those with TT and CT genotypes in the control group.

3.3  |  In silico analysis of impacts of SNPs

The secondary structures of IKZF3	and	lncRNA	CDKN2B- AS1 caused 
by rs907091 C>T and rs1333045T>C, respectively, were analyzed 
using the Sfold program and Srna tool, and results are presented 
in Table S4. The secondary structures, clustering, the free energy 
of hybridization (ΔGs),	 and	 multidimensional	 scaling	 (MDS)	 plots	
for	both	SNPs	were	calculated.	Moreover,	there	were	two	clusters	
for each T and C alleles of IKZF3 rs907091 C>T, while there were 
two	and	three	clusters	for	T	and	C	alleles	of	 lncRNA	CDKN2B- AS1 
rs1333045T>C,	respectively.	Although	rs1333045T>C did not show 
a significant difference in ΔGs	for	T	(−62.70)	and	C	(−65.80)	alleles,	
IKZF3 rs907091 C>T demonstrated a significant change in ΔGs be-
tween	wild	(T:	−64.30)	and	mutant	(C:	−35.14)	alleles.	Tables 5 and 6  
show	the	results	of	the	prediction	of	microRNAs	binding	profile	at	
IKZF3 3′UTR	for	both	rs907091	alleles	using	miRSNP	and	miRSNPdb.	
Moreover,	 the	 results	of	RNAhybrid	 software	 for	 IKZF3 rs907091 
are illustrated in Table S5. There was a consensus normal binding 
site for hsa- let- 7a- 2- 3p, which showed a decrease in minimum free 
energy	(MFE)	of	the	microRNA/mRNA	duplex	in	the	presence	of	the	
T allele which may facilitate hsa- let- 7a- 2- 3p binding to IKZF3 3′UTR. 
Importantly,	 RNAhybrid	 revealed	 that	 hsa- miR- 4497 has a signifi-
cantly	lower	MFE	for	C	allele	(−21.1)	in	comparison	with	the	T	allele	

(−15.8),	resulting	in	stronger	microRNA/mRNA	duplex	binding	in	the	
presence	of	the	C	allele.	Correspondingly,	miRSNP	and	miRSNPdb	
predicted consensus binding site losses for the T allele of rs907091. 
Besides,	the	effects	of	lncRNA	CDKN2B- AS1 rs1333045T>C on the 
microRNA	profile	were	predicted	by	the	LncRNASNP2	program.	As	
Table 7 shows, rs1333045T>C causes a gain of the binding site in 
lncRNA	CDKN2B- AS1	for	seven	microRNAs.

4  |  DISCUSSION

MetS is a multifactorial disorder which may be influenced by ge-
netic polymorphisms involved in the regulation of the obesity pro-
cess, blood pressure, blood sugar levels, and lipid metabolism,30,31 
as	evidenced	by	 studies	on	protein-	coding	genes	nitric	oxide	 syn-
thase (NOS4)	cluster	of	differentiation	36	(CD36),	BUD13	Homolog	
(BUD13),	ZPR1	Zinc	Finger	 (ZPR1),	and	apolipoprotein	A5	 (APOA5) 
SNPs	in	the	Iranian	population.	However,	in	the	present	study,	our	
focus	 shifted	 towards	 non-	coding	RNA	SNPs.13–15 Specifically, we 
investigated the association of IKZF3 rs907091 C>T,	 microRNA-	
LET7- a- 2 rs1143770C>T,	and	 lncRNA	CDKN2B- AS1 rs1333045T>C 
with susceptibility to MetS. The locus of the CDKN2A/B on chromo-
some 9p21 has been widely investigated and showed an association 
with a higher incidence of coronary artery calcium, ischemic stroke, 
obesity,	 T2DM,	 cardiomyopathy,	 myocardial	 infarction,	 coronary	
heart	 disease,	 and	 low	HDL–cholesterol	 levels.32–37 The results of 
the present study disclosed a significant difference in the allele and 
genotype distribution of rs1333045 between studied groups and 
also	an	association	of	 the	CC	genotype	with	 increased	HDL	 levels	
compared	 to	 the	 TC + TT	 genotype	 (p = 0.038).	 Accordingly,	 a	 sig-
nificant increase in the CC genotype has been reported in atrophic 
gastritis	patients	in	comparison	with	controls	(33.6%	and	21.9%,	re-
spectively, p = 0.014),	while	 similar	 results	were	 not	 found	 for	 the	
gastric cancer group.38	 Noticeably,	 other	 studies	 have	 shown	 no	
significant difference for rs1333045 alleles and genotypes between 
studied groups in autism spectrum disorders and multiple sclerosis, 
highlighting the probable role of sample size and ethnicity for this 
discrepancy.39,40	 Furthermore,	 a	meta-	analysis	 on	 19	 SNPs	 in	 five	
common	 lncRNAs,	 including	 CDKN2B- AS1, showed no significant 

TA B L E  4 Association	between	variants	and	TG,	Cholesterol,	CRP,	HDL,	HOMA,	and	HbA1c	values	in	all	participants.

Factor

Cases Controls Combined

IKZF3 MicroRNA- let7 CDKN2B IKZF3 MicroRNA- let7 CDKN2B IKZF3 MicroRNA- let7 CDKN2B

TG (mg/dL) 0.013* 0.032* 0.344 0.797 0.039* 0.835 0.020* 0.093 0.849

Cholesterol (mg/dL) 0.047* 0.005* 0.107 0.446 0.043* 0.249 0.038* 0.0008* 0.850

CRP (mg/dL) 0.788 0.022* 0.073 0.008* 0.033* 0.561 0.093 0.536 0.135

HDL	(mg/dL) 0.076 0.469 0.196 0.254 0.880 0.367 0.048* 0.770 0.042*

HOMA 0.011* 0.943 0.496 0.857 0.556 0.924 0.054 0.733 0.911

HbA1c (mmol/mol) 0.200 0.006* 0.571 0.337 0.096 0.191 0.958 0.039* 0.030*

Note:	The	statistical	analysis	involved	determining	whether	the	difference	between	means	is	statistically	significant,	rather	than	computing	an	OR.	
Significance level was set at p-	value	<0.05 (*).
Abbreviations:	CRP,	c-	reactive	protein;	HDL,	high-	density	lipoprotein;	HOMA,	homeostatic	model	assessment;	TG,	triglycerides.
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association of rs1333045 with cancer risk. However, rs1333048 and 
rs4977574 were significantly associated with the risk of overall can-
cer in all genetic models.41

Our	 findings	 also	 illustrated	 the	 association	 of	 lncRNA	
CDKN2B- AS1 rs1333045T>C under the codominant, dominant, and 
log-	additive	models	with	 decreased	 risk	 of	MetS	 after	P value cor-
rection	 by	 the	 Benjamini	 &	 Hochberg	 method.	 In	 this	 regard,	 Hul	
et al.42	 showed	a	significant	difference	between	allele	 frequency	 in	
coronary heart disease patients and the healthy group and elevated 
levels	 of	 LDL	 in	 the	 CC	 genotype	 compared	 to	 the	 TC+TT geno-
type (p = 0.032).	Noteworthy,	HDL	has	been	long	known	as	an	anti-	
thrombotic factor reducing cardiovascular disease risk because of 
its key role in cholesterol transportation from peripheral tissues into 
the liver under a process known as the reverse cholesterol transport 
(RCT) system.43–45 Herein, according to our findings, it is not surpris-
ing	that	subjects	carrying	CC	with	higher	levels	of	HDL	are	at	lower	
risk	for	MetS	development.	A	study	that	genotyped	8	CDKN2B	SNPs	
in	4650	Saudi	Arabs	 to	assess	 their	association	with	cardiovascular	
risk	found	that	the	T	allele	of	rs1333045	[0.54(0.48–0.61);	p < 0.0001]	
was	significantly	associated	with	coronary	artery	disease	(CAD)	after	
adjusting for other risk factors. This finding suggests that the CDKN2B 
gene	locus	plays	a	critical	role	in	cardiovascular	risk	among	Arabs.46 
Consistently, it has been reported that the T allele at rs1333045 is 
statistically associated with increased susceptibility to coronary ar-
tery disease (p < 0.0001),	 T2DM	 (p = 0.048),	 and	myocardial	 infarc-
tion (p = 1.15E−08).47–49	 Noteworthy	 in	 silico	 analysis	 showed	 that	
lncRNA	 CDKN2B rs1333045T>C	 causes	 to	 gain	 microRNA	 target	
sites	for	seven	microRNAs	and	probably	has	the	strongest	and	weak-
est binding to hsa- miR- 5006- 5p and hsa- miR- 5582- 5p, respectively. 
Interestingly,	Hyun-	Ju	An	et	al.	discovered	hsa- miR- 5582- 5p as a novel 
microRNA	that	acts	as	a	tumor	suppressor.	They	found	that	hsa- miR- 
5582- 5p can induce apoptosis and cell cycle arrest in cancer cells, but 
not in normal cells. The researchers identified three target proteins, 
GRB2-	associated	binding	protein	1	(GAB1),	SRC	homology	2	domain	
containing	 1	 (SHC1),	 and	 growth	 factor	 receptor-	bound	 protein	 2	
(CDK2),	which	 are	directly	 regulated	by	hsa- miR- 5582- 5p. Knocking 
down the corresponding genes mimicked the effects of miR- 5582- 5p 
on	apoptosis	and	cell	cycle	arrest.	They	showed	that	the	expression	

TA B L E  5 Predicting	of	microRNAs	profile	binding	to	IKZF3 
3′UTR for alleles of rs907091 T>C	by	miRSNPs.

microRNAs Effect Allele Score Energy Conservation

hsa- miR- 1266 Break T 140.00 −15.29 0.002

A NA NA NA

hsa- miR- 1266 Break T 140.00 −15.29 0.002

C NA NA NA

hsa- miR- 1266 Break T 140.00 −15.29 0.002

G NA NA NA

hsa- miR- 211- 3p Break T 143.00 −16.54 0.001

A NA NA NA

hsa- miR- 211- 3p Break T 143.00 −16.54 0.001

C NA NA NA

hsa- miR- 211- 3p Break T 143.00 −16.54 0.001

G NA NA NA

hsa- miR- 3144- 5p Break C 145.00 −17.46 0.001

A NA NA NA

hsa- miR- 3144- 5p Create G NA NA NA

C 145.00 −17.46 0.001

hsa- miR- 3144- 5p Create T NA NA NA

C 145.00 −17.46 0.001

hsa- miR- 3191- 5p Create C NA NA NA

A 147.00 −20.51 0.002

hsa- miR- 3191- 5p Create G NA NA NA

A 147.00 −20.51 0.002

hsa- miR- 3191- 5p Create T NA NA NA

A 147.00 −20.51 0.002

hsa- miR- 326 Create C NA NA NA

A 153.00 −23.56 0.002

hsa- miR- 326 Create G NA NA NA

A 153.00 −23.56 0.002

hsa- miR- 326 Create T NA NA NA

A 153.00 −23.56 0.002

hsa- miR- 330- 5p Create C NA NA NA

A 150.00 −21.21 0.002

hsa- miR- 330- 5p Create G NA NA NA

A 150.00 −21.21 0.002

hsa- miR- 330- 5p Create T NA NA NA

A 150.00 −21.21 0.002

hsa- miR- 4314 Create C NA NA NA

A 140.00 −15.81 0.000

hsa- miR- 4314 Create G NA NA NA

A 140.00 −15.81 0.000

hsa- miR- 4314 Create T NA NA NA

A 140.00 −15.81 0.000

hsa- miR- 4497 Break G 153.00 −25.87 0.000

A NA NA NA

hsa- miR- 4497 Break G 153.00 −25.87 0.000

C NA NA NA

microRNAs Effect Allele Score Energy Conservation

hsa- miR- 4497 Create T NA NA NA

G 153.00 −25.87 0.000

hsa- miR- 4518 Break T 162.00 −23.66 0.002

A NA NA NA

hsa- miR- 4518 Break T NA NA NA

C 162.00 −23.66 0.002

hsa- miR- 4518 Break T NA NA NA

G 162.00 −23.66 0.002

Note:	Profile	of	nine	different	microRNAs	was	found	to	be	influenced	by	
rs907091 T>C.
Abbreviation:	NA,	not	analyzed.

TA B L E  5 (Continued)
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TA B L E  6 Predicting	of	microRNA	profile	binding	to	IKZF3 3′UTR for alleles of rs907091 T>C	by	miRSNPdb.

Mature 
microRNA ID

MicroRNA 
Normal/Snp Target gene ID

Target gene 
name

UTR 
type Target SNP RS ID

Consensus normal hsa- let- 7a- 2- 3p ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

Consensus gains hsa- miR- 3191- 5p Wild Type ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

hsa- miR- 326 Wild Type ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

hsa- miR- 330- 5p Wild Type ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

hsa- miR- 4314 Wild Type ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

Consensus losses hsa- miR- 4497 Wild Type ENSG00000161405 IKZF3 3′ UTR 301 C/T rs907091

TA B L E  7 Predicting	of	the	microRNA	profile	for	lncRNA	CDKN2B- AS1 in the presence of rs1333045 T>C	alleles	through	lncRNASNP2	
tool.

MicroRNA ID
Energy 
(kCal/mol)

Binding 
start (target 
scan)

Binding end 
(target scan)

Binding start 
(miRanda)

Binding 
end 
(miRanda) miRNA- lncRNA interaction

hsa- miR- 5582- 5p −13.71 22,119,192 22,119,198 22,119,178 22,119,199
miRNA: 3' cgAUAUUGAAAUUCACACGGAu 
5' 
            ||||   |  | |||||||  
lncRNA:5' aaTATATAGTACACTGTGCCTg 
3'  

hsa- miR- 4755- 3p −15.22 22,119,195 22,119,202 22,119,181 22,119,202
miRNA: 3' ugaaagggaaGUCUCGGACCGa 
5' 
                    | | |||||||  
lncRNA:5' atatagtacaCTGTGCCTGGCa 
3'  

hsa- miR- 5006- 5p −21.18 22,119,196 22,119,202 22,119,182 22,119,203
miRNA: 3' aagguggagGACG-GGACCGUu 
5' 
                   |||: |||||||  
lncRNA:5' tatagtacaCTGTGCCTGGCAt 
3'  

hsa- miR- 
6715b- 5p

−16.540001 22,119,193 22,119,199 22,119,181 22,119,200
miRNA: 3' acgGUUUGGUCAGCACGGACa 
5' 
             :|:  || | |||||||  
lncRNA:5' ataTAGTACACT-GTGCCTGg 
3'  

hsa- miR- 4673 −17.16 22,119,194 22,119,200 22,119,182 22,119,201
miRNA: 3' agGUCAGGCCGAGGACGGACCu 
5' 
            :||| |  ||  |||||||  
lncRNA:5' taTAGTAC-ACT-GTGCCTGGc 
3'  

hsa- miR- 4645- 5p −16.110001 22,119,194 22,119,200 22,119,183 22,119,201
miRNA: 3' ugUUAUAAAGAACGGACCa 5' 
            |:||   : |||||||  

lncRNA:5' atAGTACACTGTGCCTGGc 3'  

hsa- miR- 4269 −19.780001 22,119,193 22,119,199 22,119,180 22,119,200
miRNA: 3' cggucccgacaGACACGGACg 
5' 
                     |||||||||  
lncRNA:5' tatatagtacaCTGTGCCTGg 
3'  
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of hsa- miR- 5582- 5p was lower in tumor tissues compared to adjacent 
normal	tissues	in	colorectal	cancer	patients,	while	the	expression	of	
the	 target	 proteins	 showed	opposite	 patterns.	 Injecting	 a	mimic	 of	
hsa- miR- 5582- 5p	or	inducing	its	expression	in	tumor	cells	suppressed	
tumor	 growth	 in	 xenografts.	 These	 findings	 suggest	 that	 hsa- miR- 
5582- 5p has a novel tumor suppressive function and could potentially 
be used for tumor control.50

IKZF3	as	a	hematopoietic-	specific	transcription	factor	plays	a	fun-
damental role in the regulation of lymphocyte development, especially 
B lymphocyte proliferation and differentiation.16	Moreover,	genome-	
wide	association	 studies	 (GWASs)	have	 shown	 that	 IKZF3 is associ-
ated with lipid metabolism disorders.17 The first study of the impact of 
IKZF3	rs907091	on	disease	development	was	conducted	by	Verlaan	
et al. and revealed the significant association of the T allele at IKZF3 
rs907091 with susceptibility to autoimmune disease.49	Our	 findings	
revealed no significant difference in rs907091 alleles and genotypes 
between	 the	 studied	 groups.	 On	 the	 contrary,	 a	 significant	 lower	
frequency	in	the	CC	genotype	and	C	allele	has	been	reported	in	the	
systemic lupus erythematous group in comparison with the control 
group (p = 0.001).	Besides,	the	frequency	of	the	T	allele	was	reported	
to be significantly higher in patients compared to the control group 
(p = 0.015)	and	probably	increased	risk	of	systematic	lupus	erythem-
atous progression.51	 Nevertheless,	 our	 results	 showed	 that	 the	 TT	
genotype at IKZF3 rs907091 is associated with increased levels of TG, 
cholesterol,	insulin,	and	HOMA	and	also	new	binding	site	creation	for	
hsa- miR- 326 in the presence of the T allele. Consistently, Rechardson 
et al.52	demonstrated	that	the	T	allele	reduces	the	expression	levels	of	
IKZF3	in	T-	cells	by	creating	a	microRNA	seed	region	for	hsa- miR- 326.52 
Moreover, in silico analyses revealed that rs907091 T strongly changed 
the secondary structure of IKZF3, and the ΔG hybridization difference 
in	the	presence	of	C	and	T	alleles	 (−35.14	and	−64.30,	respectively)	
was remarkable. hsa- miR- 1266 also had the strongest binding to IKZF3 
(ΔGs = −37.5	 for	 the	T	allele	and	ΔGs = −36.8	 for	C	allele),	while	 the	
highest difference for ΔGs was related to hsa- miR- LET7- a- 2 (T allele: 
ΔGs = −16.6)	and	(C	allele:	ΔGs = −20.1)	alleles.	Strikingly,	hsa- miR- 1266 
has been shown to be associated with proliferation, migration, and in-
vasion	through	targeting	DAB2IP	in	HeLa	and	SiHa	cells.	It	was	also	
shown to enhance cervical cancer tumorigenesis and metastasis in the 
cervical cancer nude mice model.53

MicroRNA- LET7- a2 has a key role in different disorders including 
T2DM,	 diabetic	 neuropathy,	 inflammation,	 and	 cerebral	 and	 cardio-
vascular conditions.54,55 There was no significant difference in the al-
lele	and	genotype	frequency	of	rs1143770C>T between the studied 
groups.	Inconsistently,	Heidari	et	al.	revealed	a	statistically	significant	
higher	 frequency	of	CT	and	TT	genotypes	 in	patients	with	papillary	
thyroid carcinoma compared to controls, and these genotypes were 
associated	with	a	1.9-	fold	and	2.2-	fold	higher	risk	of	disease,	respec-
tively.56 The results of the present study showed the association be-
tween CC and CT genotypes of LET7- a2 rs1143770C>T with increased 
levels	of	HbA1C,	BMI,	and	CRP	and	probably	higher	risk	of	MetS	sus-
ceptibility. Consistent with our results, the rs1143770 TT genotype 
was reported to be associated with significantly better overall survival 
and	disease-	free	survival	in	patients	with	surgically	treated	non-	small	

cell lung cancer (p = 0.01).57	 In	addition,	 investigating	the	association	
between LET7a- 2 rs1143770 and papillary thyroid carcinoma (PTC) 
susceptibility demonstrated that CT and TT genotypes were associ-
ated	with	a	higher	risk	of	PTC,	as	well	as	a	higher	risk	of	N1	stage	in	PTC	
patients.56	On	the	other	hand,	Wang	et	al.	revealed	that	subjects	with	
the rs1143770 CC genotype were at reduced risk of ischemic stroke in 
comparison with individuals with the TT genotype.58	In	addition,	Zhou	
et	al.	reported	a	significant	increase	of	CT + TT	genotype	frequencies	
in diabetic nephropathy and diabetes mellitus in comparison with the 
control group (p = 0.007	and	0.040,	respectively)	and	a	significant	as-
sociation with increased risk for diabetic nephropathy.55 These con-
troversial results may be due to different sample sizes, methods, and 
population origins among mentioned studies and should be validated 
with a larger sample size and similar conditions.

The present study disclosed a significant association between 
the TT genotype at IKZF3 rs907091 T>C and the CC genotype at 
microRNA- LET7- a2 rs1143770 C>T with increased risk of Mets, 
while the CC genotype for rs1333045 T>C was associated with de-
creased	risk	of	Mets.	In	this	context,	subjects	with	the	TT	genotype	for	
rs907091 T>C showed higher levels of TG, cholesterol, serum insulin 
levels,	and	HOMA	index	in	comparison	with	those	with	TC	and	CC	gen-
otypes.	Notably,	the	T	allele	at	rs907091	T>C created a new binding 
site	for	hsa-	miR-	326	and	also	caused	much	strong	binding	to	hsa-	miR-	
LET7-	a-	2.	Moreover,	HbA1C	and	BMI	were	disclosed	to	be	higher	in	
patients with the CC and CT genotypes for rs1143770 C>T compared 
to patients with the TT genotype contributing to an increased risk of 
MetS	development.	In	addition,	the	CC	genotype	for	rs1333045	T>C 
was	clearly	associated	with	increased	HDL	levels	in	subjects	who	had	
CC genotype in comparison with subjects with TT and CT genotypes 
and	probably	decreased	MetS	susceptibility	risk.	It	is	worth	mentioning	
that	lncRNA- CDKN2B- AS1 rs1333045 T>C created new binding sites 
for	seven	microRNAs	of	which	hsa-	miR-	5006-	5p	and	hsa-	miR-	5582-	5p	
had	the	strongest	and	weakest	binding	potential,	respectively.	Notably,	
after	SNP	 interaction	analyses	 to	assess	whether	 there	were	 syner-
gistic or modifying effects between these gene, we did not observe 
any statistically significant interactions between the studied genes. 
Although	the	absence	of	significant	interactions	suggests	that	the	ef-
fects of these genetic variants may act independently or have minimal 
interaction	in	our	studied	population,	it	is	important	to	note	that	non-	
significant findings do not necessarily indicate the absence of inter-
actions	 in	a	broader	context	or	 in	different	populations.	 Interactions	
between	genes	can	be	complex	and	influenced	by	various	factors,	in-
cluding	genetic	backgrounds	and	environmental	exposures.

It	 is	worth	noting	that	the	strengths	of	the	present	study	lie	 in	
investigating the association of specific genetic polymorphisms in 
IKZF3, LET7- a2, and CDKN2B- AS1, with MetS pathogenesis under 
different genetic models in a large sample size for the first time. 
Furthermore,	genotype–phenotype	was	assessed	to	investigate	the	
association of specific genetic polymorphisms with various biochem-
ical, hematological, clinical, and physiological parameters. We also 
utilized different bioinformatics databases to analyze the impact of 
these	polymorphisms	on	mRNA	and	microRNA	profiles,	providing	a	
broad	overview	on	the	crucial	role	of	ncRNAs	in	MetS	pathogenesis.	
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On	the	other	hand,	one	of	the	important	disadvantages	of	the	pres-
ent study is its reliance on a single population (Mazandarn province) 
for analysis, which may limit the generalizability of the findings. 
Additionally,	the	study	does	not	use	methods	to	analyze	the	possible	
impact	of	 these	polymorphisms	on	 the	expression	 levels	of	 either	
IKZF3,	 LET7-	a2,	 and	CDKN2B-	AS1	genes	or	 proteins.	 The	 lack	of	
in vivo analyses for the data recruited from bioinformatics tools is 
another weakness of this study. Taken together, identifying genetic 
polymorphisms which put subjects at higher risk of MetS may pave 
the road to approving the efficient predictive biomarkers at the early 
stage	of	MetS	development.	Further	evaluation	of	 these	polymor-
phisms in other populations could be helpful in this regard.
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