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Extracellular Yersinia disables the immune system of its host by injecting effector Yop proteins into host cells.
We show that a Yersinia enterocolitica nonpolar lcrG mutant is severely impaired in the translocation of YopE,
YopH, YopM, YpkA/YopO, and YopP into eukaryotic cells. LcrG is thus required for efficient internalization
of all the known Yop effectors.

The capacity of Yersinia species (Yersinia pestis, Y. pseudotuber-
culosis, and Y. enterocolitica) to resist the immune systems of their
hosts depends on the Yop virulon, which is encoded by the 70-kb
pYV plasmid. This virulon allows extracellular bacteria adhering
to the surfaces of eukaryotic cells to inject bacterial proteins into
the cytosol in order to disable these cells (9). Translocation of the
intracellular effectors (YopE, YopH, YpkA/YopO, YopM, and
YopP) across the eukaryotic cell membrane requires at least two
other secreted proteins, namely, YopB and YopD (5, 12–14, 19,
22, 28, 33–35). The Yop proteins are secreted outside the bacte-
rial cell by a contact (type III) secretion apparatus called Ysc (1,
2, 4, 10, 16, 18, 23, 24, 37). The translocators YopB and YopD are
encoded by a large operon that also encodes LcrV and LcrG (3,
20, 26). LcrG is a 96-amino-acid (11-kDa) protein that appears to
be involved in the control of Yop release (31). In addition, LcrG
has been shown to bind LcrV, a protein required for the secretion
of YopB and YopD (21, 29). Yop secretion occurs only when
bacteria are in contact with eukaryotic cells or deprived of Ca21

ions. A nonpolar lcrG mutant of Y. pestis is Ca21 blind, secreting
large amounts of Yops in the absence as well as in the presence
of eukaryotic cells or Ca21 ions, like the yopN mutants of
Y. pseudotuberculosis and Y. enterocolitica and the tyeA mutant of
Y. enterocolitica (5, 11, 14, 28, 31). In spite of their deregulated
phenotype, yopN45 mutant bacteria (i.e., bacteria in which the
yopN gene is interrupted after codon 45) can efficiently deliver
Yop effectors into the cytosol of eukaryotic cells (5). YopN is thus
thought to act at the level of Yop release as the stop valve of the
secretion apparatus. TyeA is required for the translocation of a
subset of Yop effectors (14). We have recently shown that LcrG
can bind to HeLa cells via heparan sulfate proteoglycans and that
addition of exogenous heparin can interfere with the transloca-
tion of Yops into HeLa cells (7). We inferred that LcrG could
have an important role to play in translocation and that interac-
tion with heparan sulfate could affect the activity of LcrG. In this

work, we present evidence that LcrG is indeed essential for effi-
cient translocation to occur.

Construction and characterization of an lcrG mutant. To in-
vestigate the role of LcrG in the secretion of Yops and their
subsequent translocation into eukaryotic cells, we constructed an
lcrG nonpolar mutant. First, we inactivated the chromosomal
gene encoding b-lactamase A of Y. enterocolitica E40(pYV40)
(34) with the mutator plasmid pKNG105 (15) to produce strain
MRS40(pYV40). Next, 147 bp (bp 22 to 169) of lcrG were deleted
from pMRS22 (Table 1) by site-directed mutagenesis (17) with
oligonucleotide MIPA310 (59-AGTCTTCCCATTTTGATAAG
CTAGCGGAGCGCGAG-39), which is identical to nucleotides 5
to 21 and nucleotides 170 to 187 of lcrG but which changes Pro58
to Leu. The mutated allele of lcrG, called lcrGD8–57, was verified
by sequencing, cloned in a suicide vector, and introduced into
MRS40(pYV40) to create strain MRS40(pMRS4043) (Table 1).
The lcrG mutant strain was tested for Ca21 dependency and in
vitro Yop secretion (2, 8). The mutant was unable to grow at 37°C
in the presence or absence of Ca21 (data not shown) and as such
was defined as growth thermosensitive. The Y. enterocolitica lcrG
mutant secreted all the Yops in the presence and absence of Ca21

(Fig. 1) and was thus Ca21 blind, as was previously described for
Y. pestis (31). The translocators YopB and YopD, whose genes
are situated downstream of LcrG, are efficiently secreted, dem-
onstrating the nonpolarity of the lcrG mutation. Yop secretion
was prevented by Ca21 ions after the introduction of plasmid
pMSK23, containing lcrG alone transcribed from the yopE pro-
moter, into MRS40(pMRS4043) (Table 1; Fig. 1). This confirmed
the nonpolarity of the lcrG mutation.

LcrG is involved in the translocation of the YopE cytotoxin.
Wild-type Y. enterocolitica induces a cytotoxic response on HeLa
cells that is characterized by the rounding up and detachment of
the target cells due to the disruption of actin microfilaments (25,
27). After 2 h of infection, the lcrG mutant bacteria were unable
to induce this cytotoxicity (data not shown). This observation
suggested that the lcrG mutant was impaired in its ability to
internalize YopE, the major cytotoxin, inside HeLa cells. To in-
vestigate this further, we introduced plasmid pMS111, encoding
YopE130-Cya (i.e., a hybrid protein made of 130 residues of YopE
fused to Cya), into wild-type Y. enterocolitica, a yscN secretion
mutant, the lcrG mutant, a yopN mutant, and a yopB translocation
mutant (Table 1). Cultured PU5-1.8 macrophages were infected

* Corresponding author. Mailing address: Microbial Pathogenesis
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with each of these strains in the presence of cytochalasin D. We
monitored both the release of hybrid adenylate cyclase into the
culture medium and the accumulation of cyclic AMP (cAMP)
inside the eukaryotic cells. In good agreement with the Ca21 blind
phenotype, the lcrG and yopN mutant bacteria secreted much
more YopE130-Cya into the culture medium than the wild-type
strain (5) (Table 2). Hence, the lcrG mutant strain was able to
efficiently secrete Yops in the presence of eukaryotic cells, but this
Yop secretion was deregulated and probably independent of eu-
karyotic cell contact. Unlike the yopN mutant bacteria but like the
yopB mutant bacteria, the lcrG mutant bacteria were unable to
induce high levels of cAMP accumulation in the cytosol of PU5-
1.8 macrophages (Table 2). LcrG was thus involved in the delivery
of YopE into eukaryotic cells. Introduction of lcrG on plasmid
pMSK23 into the lcrG mutant strain resulted in the recovery of
the translocation ability of YopE, thus showing that the translo-

cation phenotype was due solely to the defect in the lcrG gene
(Table 2). To visualize directly the internalization of YopE inside
eukaryotic cells, macrophages infected with wild-type and mutant
lcrG isogenic Y. enterocolitica overproducing YopE from plasmid
pMS3 (32) were subjected to immunostaining and examined by
confocal microscopy. YopE appeared dispersed in the cytosol of
macrophages infected with the wild-type bacteria but not in the
cytosol of cells infected with the mutant lcrG bacteria (Fig. 2).
Taken together, these results led us to conclude that LcrG is
essential for the efficient translocation of YopE across the eu-
karyotic cell membrane.

We also tested the secretion and translocation phenotypes of
a Yersinia lcrG yopN double mutant strain (pMRS99) (Table
1). This strain was Ca21 blind for Yop secretion like the lcrG
and yopN individual mutant strains (data not shown). How-
ever, the lcrG yopN mutant strain did not significantly translo-

TABLE 1. Plasmids used in this work

Plasmid Genotype and/or description Reference or origin

pAB409 pYV40 yopHD1–352 yopE21 yopOD65–558 yopP23 yopM23 yopBD89–217 6, 19, 30, 36
pABL403 pYV40 yopHD1–352 yopE21 yopOD65–558 yopP23 yopM23 6, 19, 36
pAB6 pTM100 PyopM yopM100-cyaA91; encodes YopM100-Cya 5
pCD10 pTM100 PsycE yopO143-cyaA91; encodes YopO143-Cya 14
pIM41 pYV40 yopN45 5
pMRS20 pBluescriptII SK1 1 PCR-amplified fragment (using MIPA271 [CCGGAATTCACTTTCATACCAAGAGCTGA] and

MIPA64 [ATGTCGACCTGTCGTCTCTTGTTG]) of pYV227 (8) cloned in EcoRI and SalI sites; contains lcrRGV
This work

pMRS22 pBluescriptII SK1 1 HindIII-XmnI fragment of pMRS20; contains lcrR9 lcrG lcrV9 This work
pMRS42 pMRS22 lcrGD8–57; contains lcrR9 lcrGD8–57 lcrV9 This work
pMRS43 pKNG101 (15) 1 XbaI-SalI fragment of pMRS42; encoding lcrGD8–57 This work
pMRS99 pYV40 yopN45 lcrGD8–57 5; this work
pMRS4043 pYV40 lcrGD8–57 This work
pMS3 pACYC184 1 oriTRK2 1 yopE sycE 32
pMS111 pTM100 sycE1, PyopE yopE130-cyaA91; encodes SycE and YopE130-Cya 33
pMSK3 pTM100 PyopE yopP99-cyaA91; encodes YopP99-Cya 35
pMSK23 XbaI-HindIII deletion of pMRS72 (29); pBC19R; PyopE lcrG This work
pMSK48 pYV40 yopHD1–352 yopE21 yopOD65–558 yopP23 yopM23 lcrGD8–57 6, 19, 36; this work
pMSL41 pYV40 yscND169–177 (secretion mutant) 34, 37
pMSLH99 pTM100 PyopH yopH99-cyaA91; encodes YopH99-Cya 34
pPW401 pYV40 yopBD89–217 (translocation mutant) 5, 30

FIG. 1. The lcrG mutant strain MRS40(pMRS4043) is Ca21 blind. Yop secre-
tion by the Y. enterocolitica wild-type strain MRS40(pYV40) (lane 1), the lcrG mu-
tant strain MRS40(pMRS4043) (lane 2), and the complemented strain MRS40
(pMRS4043)(pMSK23) (lane 3) in the absence (2) and in the presence (1) of Ca21

was analyzed. Bacteria were grown in brain heart infusion-oxalate or brain heart
infusion-Ca21, and Yop secretion was induced for 4 h at 37°C. Purified Yops were
subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and stained
with Coomassie blue.

TABLE 2. Role of LcrG in the translocation of YopE-Cya,
YopH-Cya, and YopM-Cya into PU5-1.8 macrophages

Hybrid
protein Plasmid(s) Characteristic(s) cAMP

concna
AC activity in

RPMI mediumb

YopE130-Cya pYV40 Wild type 5.7 6 2.5 12.6 6 7.5
pMSL41 yscN 0.36 6 0.14 0.30
pIM41 yopN45 9.2 6 2.5 125
pPW401 yopBD89–217 0.09 6 0.03 12.3
pMRS4043 lcrGD8–57 0.24 6 0.21 69.2 6 15.8
pMRS99 yopN45, lcrGD8–57 0.09 6 0.02 ND
pMRS4043,

pMSK23
lcrGD8–57, lcrG1 9.6 ND

pYV40,
pMSK23

Wild type, lcrG1 8.5 ND

YopH99-Cya pYV40 Wild type 2.0 6 0.8 2.3
pPW401 yopBD89–217 0.27 6 0.14 2.8
pMRS4043 lcrGD8–57 0.17 6 0.06 9.4

YopM100-Cya pYV40 Wild type 1.2 6 0.7 2.7
pPW401 yopBD89–217 0.03 6 0.03 7.0
pMRS4043 lcrGD8–57 0.38 6 0.24 10.6

a Data are means of two experiments (in nanomoles per milligram of protein)
or three experiments (in nanomoles per milligram of protein 6 standard devi-
ation), each carried out in duplicate. Cells were infected with bacteria for 2 h in
the presence of cytochalasin D.

b Adenylate cyclase (AC) units per milliliter of supernatant from RPMI me-
dium of macrophages. ND, not determined.
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cate YopE130-Cya into macrophages (Table 2). Thus, the func-
tion of LcrG is not solely to control the opening of the Yop
secretion pore by YopN to allow Yop release and subsequent
translocation. Rather, LcrG is itself independently required for
optimal translocation of YopE.

LcrG is involved in the internalization of YopH, YopM, YopO,
and YopP. We then investigated whether translocation of
YopH99-Cya and YopM100-Cya was also dependent on LcrG
(Table 1). Although the lcrG mutant bacteria secreted more
YopH99-Cya and YopM100-Cya into the culture medium than the
wild-type bacteria, they did not induce significant accumulation of
cAMP in infected macrophages (Table 2). Thus, the efficient
internalization of YopH and YopM was also dependent on the
presence of LcrG.

We also wanted to look at the translocation of YopO143-Cya
and YopP99-Cya into eukaryotic cells (Table 3). Because these
Yops are not translocated as efficiently as YopE, YopH, and
YopM, this must be studied in a Y. enterocolitica strain lacking the
Yop effectors YopE, YopH, YopO, YopP, and YopM (12, 14,
35). Due to the lack of competition for the secretion and trans-
location apparatuses, the translocation of the Yop-Cya hybrid is
optimized. We thus introduced the lcrGD8–57 allele into the Yop
effector polymutant strain MRS40(pABL403) (Table 1). As can
be seen in Table 3, the translocation of YopO143-Cya, YopP99-
Cya, and the other Yop-Cya hybrid proteins was greatly reduced
in the lcrG mutant strain compared to that in the parental strain.
The level of translocation of each of the hybrid Cya proteins by
the polymutant lcrG was almost similar to that of the polymutant
yopB strain. Thus, LcrG is involved in the translocation of all the
known effector Yops.

Conclusions. The phenotype of the newly constructed Y. en-
terocolitica lcrG mutant is unique. Not only is it Ca21 blind like
the yopN and tyeA mutants (5, 11, 14, 28, 31), but it is also a

FIG. 2. Delivery of YopE into macrophages. PU5-1.8 macrophages grown on
coverslips were infected for 2 h with Y. enterocolitica MRS40(pPW401)(pMS3),
a yopB mutant bacterium overproducing YopE (A); MRS40(pYV40)(pMS3), a
wild-type bacterium overproducing YopE (B); or MRS40(pMRS4043)(pMS3),
an lcrG mutant bacterium also overproducing YopE (C). The asterisk indicates
YopE inside the cytosol of the macrophages. The arrows indicate bacteria. After

infection, the cells were fixed, incubated with purified anti-YopE antibodies,
stained with fluorescein isothiocyanate-labelled anti-rabbit antiserum, and exam-
ined by confocal microscopy. The eukaryotic cell membranes were labelled with
wheat germ agglutinin-Texas red. Each panel shows a single optical plane at the
level of the nucleus. Note that in panel C, bacteria are heavily stained because of
deregulated and depolarized Yop secretion.

TABLE 3. Role of LcrG in the translocation of YopO-Cya
and YopP-Cya into PU5-1.8 macrophages

Hybrid
protein pYV Genotype cAMP

concna

YopE130-Cya pABL403 yopH yopE yopO yopP yopM 7.8
pAB409 yopH yopE yopO yopP yopM yopB 0.35
pMSK48 yopH yopE yopO yopP yopM lcrG 0.58

YopH99-Cya pABL403 yopH yopE yopO yopP yopM 9.5
pAB409 yopH yopE yopO yopP yopM yopB 0.71
pMSK48 yopH yopE yopO yopP yopM lcrG 1.4

YopM100-Cya pABL403 yopH yopE yopO yopP yopM 12.8
pAB409 yopH yopE yopO yopP yopM yopB 0.09
pMSK48 yopH yopE yopO yopP yopM lcrG 0.28

YopO143-Cya pABL403 yopH yopE yopO yopP yopM 10.7
pAB409 yopH yopE yopO yopP yopM yopB 0.03
pMSK48 yopH yopE yopO yopP yopM lcrG 0.25

YopP99-Cya pABL403 yopH yopE yopO yopP yopM 1.4
pAB409 yopH yopE yopO yopP yopM yopB 0.08
pMSK48 yopH yopE yopO yopP yopM lcrG 0.10

a Data are means of two experiments (in nanomoles per milligram of protein)
carried out in duplicate. Cells were infected for 2 h in the presence of cytocha-
lasin D.
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weak Yop translocator like the yopB and yopD mutants (5, 22,
28). This phenotype clearly shows that LcrG is involved in
translocation of all the Yop effectors. This is in contrast to the
yopN mutant, which translocates all the Yops efficiently, and
the tyeA mutant, which is required for the translocation of only
a subset of Yop effectors, namely, YopE and YopH (5, 18).

There are several possibilities regarding the role of LcrG in
translocation. LcrG could be an essential element of the translo-
cation machinery along with YopB and YopD. It is also possible
that LcrG is an element regulating the deployment of the trans-
location apparatus or the action of the translocation process itself.
We have recently shown that LcrG can bind to HeLa cells via
heparan sulfate proteoglycans and that heparin can interfere with
the translocation of Yops inside HeLa cells (7). Thus, LcrG could
be a Yop apparatus ligand whose interaction with heparan sulfate
proteoglycans augments its function in the translocation of Yops
into eukaryotic cells. We plan to investigate these possibilities in
greater detail in our future work.
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